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Abstract—In this paper, we propose a framework to study how to effectively perform load sharing in multipath communication

networks. A generalized load sharing (GLS) model has been developed to conceptualize how traffic is split ideally on a set of active

paths. A simple traffic splitting algorithm, called packet-by-packet weighted fair routing (PWFR), has been developed to approximate

GLS with the given routing weight vector by transmitting each packet as a whole. We have developed some performance bounds for

PWFR and found that PWFR is a deterministically fair traffic splitting algorithm. This attractive property is useful in the provision of

service with guaranteed performance when multiple paths can be used simultaneously to transmit packets which belong to the same

flow. Our simulation studies, based on a collection of Internet backbone traces, reveal that PWFR outperforms two other traffic splitting

algorithms, namely, packet-by-packet generalized round robin routing (PGRR), and packet-by-packet probabilistic routing (PPRR).

Index Terms—Computer communications, dispersity routing, high speed networks, inverse multiplexing, load sharing, multipath

routing, multiprotocol label switching, network striping, performance modeling, traffic dispersion, traffic engineering.
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1 INTRODUCTION

LOAD sharing is a channel aggregation approach that
permits data traffic to be dispersed on multiple

channels to reduce network load fluctuations. Given a set
of paths connecting a source to a destination, the key to
multipath routing is the traffic splitter, a scheduler which
distributes traffic to the paths based on the given optimal
traffic split.

The most common form of traffic splitting distributes
packets to a set of active paths in a round robin fashion [2].
Such an algorithm is quite simple to implement. However,
it can only support uniform traffic splitting or cyclic
dispersion. With heterogeneous paths, the best way to
spread traffic along multiple paths may not be by cyclic
dispersion, since it may not achieve the objective, such as
minimizing the end-to-end path delay. Such limitation can
be alleviated by using a splitter which routes packets in a
generalized round robin fashion, according to the given
traffic split. Nevertheless, these routing approaches imple-
ment the desired traffic split in terms of the number of
packets being routed, rather than the actual workload in
bytes. Since packets are generally of different sizes in
packet-switched networks, except in Asynchronous Trans-
fer Mode (ATM) networks, the actual workloads to paths
may deviate unboundedly from the expected workloads. A
set of standardized protocols that currently support packet-
based load sharing includes inverse multiplexing for ATM
(IMA) [2], multilink Point-to-Point Protocol (MP) [11], and

link aggregation for carrier sense multiple access with
collision detection (CSMA/CD) [6].

1.1 Our Contributions

The focus of this work, first described in [8], is to propose a
framework to study how to effectively perform load sharing
in multipath communication networks. A generalized load
sharing (GLS) model has been developed to conceptualize
how traffic is split ideally on a set of active paths. A simple
traffic splitting algorithm, called packet-by-packet weighted
fair routing (PWFR), has been devised to approximate GLS
with the given routing weight vector by transmitting each
packet as a whole. We have developed some performance
bounds for PWFR and found that PWFR is a determinis-
tically fair traffic splitting algorithm. This attractive
property is useful in the provision of service with
guaranteed performance when multiple paths can be used
simultaneously to transmit packets which belong to the
same flow.

A technique has been developed in [1] to transform a
causal fair queueing algorithm to a load sharing algorithm.
A causal fair queueing algorithm, such as round robin,
depends only on the previous packets sent to choose the
current queue (or flow) to serve. By applying the proposed
transformation technique, the function to push packets to
paths for any converted load sharing algorithm is com-
pletely characterized by the state of the splitter. However,
many well-known fair queueing algorithms providing tight
delay bounds, such as weighted fair queueing (WFQ) [5],
also known as packet-by-packet generalized processor
sharing (PGPS) [10], and worst-case fair weighted fair
queueing (WF2Q) [3], are noncausal. Moreover, the function
to assign packets to paths for PWFR does not merely
depend on the state of the splitter, but also on the sizes of
the packets to be sent in order to minimize the maximum
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residual workload among all paths. Though PWFR is
similar to WFQ (or PGPS), it cannot be transformed from
any noncausal fair queueing algorithm by employing the
transformation technique described in [1].

1.2 Organization of the Paper

This paper is organized as follows. Section 2 develops a
generalized load sharing model to conceptualize how traffic
is split on a set of active paths. Section 3 presents a
packetized weighted fair routing algorithm to achieve the
best load balancing according to the given traffic split.
Section 4 outlines a set of traffic splitting algorithms for
performance studies, defines the performance metric that
will be used to compare various splitting algorithms, briefly
describes the characteristics of the traffic traces used for the
simulation, and examines the simulation results of the
proposed traffic splitting algorithms. Section 5 concludes
and discusses some possible extensions to our work.

2 THE GENERALIZED LOAD SHARING MODEL

In [1], [4], it has been observed that there is a close relationship
between link sharing and load sharing. Processor sharing is a
channel multiplexing technique that allows different traffic
flows to share the same link or path simultaneously to
improve link utilization, whereas load sharing is a channel
aggregation approach that permits data traffic to be
dispersed on multiple channels at the same time to reduce
network load fluctuation. The roles of these two techniques
are diagrammed in Fig. 1.

Both techniques are aimed at the efficient use of network
resources to minimize network congestion and they can be
applied in a complementary manner. For example, a set of
M traffic flows can be multiplexed to share a set of
N outgoing paths, as shown in Fig. 2.

A methodology that is similar to generalized processor
sharing (GPS) [10] can be applied for load sharing. Our load
sharing model consists of a network node and a set of
N (logical) outgoing links or paths, namely, Path 1, Path 2,
. . . , Path N , as shown in Fig. 1b. Without loss of generality,
we assume that there is a single class of traffic for traffic
splitting. In other words, for ease of presentation, all
incoming traffic to the captioned network node will be
treated by the same traffic splitter, installed with a routing
weight vector. Indeed, it is simple to generalize to cases
with multiple classes, each of which can correspond to a
destination with a quality of service (QoS) class. Incoming
traffic is fed into a traffic splitter for load sharing, according
to its traffic class.

When the node receives an incoming packet destined to
another node, a traffic splitter installed in the network node

is invoked to decide which outgoing path the packet is
forwarded to. Once an assignment is made, the packet will
be dispatched to an output queue of the corresponding path
to wait for transmission. Suppose pi is the routing weight
for Path i. It denotes the portion of dispersed traffic to be
routed on Path i, where

PN
i¼1 pi ¼ 1. Denote the routing

weight vector by pppppppp ¼ ð p1 p2 . . . pN Þ. Given the routing
weight vector pppppppp, the quality of a traffic splitter depends on
how close to pppppppp the actual load distribution is at all times.

Let Lið�; tÞ be the amount of traffic (in bytes) prepared to
be sent on Path i during the time interval ð�; t�. Since
departing traffic will be routed on one of the outgoing
paths, the total amount of incoming traffic to be forwarded
to the destination during the time interval ð�; t�, T ð�; tÞ, is
equal to the sum of all traffic scheduled to be routed on each
outgoing path to the same destination during the same time
interval. That is,

T ð�; tÞ ¼
XN
i¼1

Lið�; tÞ ð1Þ

for any period ð�; t�.
A generalized load sharing (GLS) traffic splitter is one

that can divide traffic to the set of outgoing paths exactly

according to the given routing weight vector pppp. Thus, for
any period ð�; t�, a GLS traffic splitter1 is defined [4] as one
for which

Lið�; tÞ ¼ pi T ð�; tÞ ð2Þ

or

Lið�; tÞ
Ljð�; tÞ

¼ pi
pj

ð3Þ

for every i; j ¼ 1; 2; . . . ; N .
If a traffic source is constrained by a leaky bucket, the

following lemma states that all dispersed flows split by a
GLS traffic splitter are also leaky bucket constrained.

Lemma 1. Suppose a traffic source is constrained by a leaky
bucket with parameters ð�; �Þ, where � and � represent the

maximum size of the bucket token pool and the average token

generation rate, respectively. If it is fed into a GLS traffic
splitter, a dispersed flow to be routed on Path i, where

i ¼ 1; 2; . . . ; N , is constrained by another leaky bucket with
parameters ðpi �; pi �Þ.

To summarize, there are two major attractive features for
GLS. First, it distributes traffic exactly according to
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Fig. 1. The roles of processor sharing and load sharing. (a) Processor

sharing. (b) Load sharing. Fig. 2. A generalized sharing model.

1. In [4], this type of ideal load balancing is termed ideal traffic splitting.



a set of prescribed routing weights. It is always fair
deterministically, where the actual traffic routed to any
path is equal to the expected one, for all time intervals.
Second, if a GPS server works with a GLS traffic splitter, it is
possible to make worst-case network queueing delay
guarantees when the flows are constrained by leaky
buckets. It follows directly from [10] that the worst-case
network queueing delay of a leaky bucket constrained
source is bounded under a GPS system.

3 PACKET-BY-PACKET WEIGHTED FAIR ROUTING

The generalized load sharing (GLS) approach is an
idealized scheme that assumes input traffic to be infinitely
divisible for routing, but the smallest possible data unit for
routing in the packet-switched networks is a packet. Thus, a
load sharing approach, called packet-by-packet weighted
fair routing (PWFR), is proposed. The main philosophy of
the proposed scheme is to minimize the deviation of the
actual load distribution from the given routing weight
vector in making each routing decision. In PWFR, a set of
packets is split on a set of (logical) outgoing links or paths.

3.1 Algorithm

Suppose there is a sequence of packets, namely, Packet 1,

Packet 2, . . . , to be split on a set of N (logical) paths or

channels. Denote the size of Packet k by SðkÞ bytes. The

routing weight for Path i is given as pi, where
PN

i¼1 pi ¼ 1.

Define the routing weight vector as pp ¼ ð p1 p2 . . . pNÞ.
LetWp

i ðkÞ and ŴWp
i ðkÞ, respectively, be the expected workload

(in bytes), based on pi, and the actual workload (in bytes) to

be sent on Path i, just after the routing decision for the kth

packet has been made. Without loss of generality, we assume

pi > 0 and define

Wp
i ð0Þ ¼ ŴW

p
i ð0Þ ¼ 0 ð4Þ

for all i ¼ 1; 2; . . . ; N .
For an idealized load sharing performed by a GLS traffic

splitter,

Wp
i ðkÞ ¼ pi �

Xk
j¼1

SðjÞ; ð5Þ

where i ¼ 1; 2; . . . ; N .
By the conservation of traffic, there is neither creation

nor destruction of traffic when a routing decision is made
by any traffic splitters. This means that the total traffic to be
routed by all paths is independent of what traffic splitter is
chosen. Therefore,

XN
i¼1

Wp
i ðkÞ ¼

XN
i¼1

ŴWp
i ðkÞ ¼

Xk
j¼1

SðjÞ: ð6Þ

The idea of PWFR is to simulate GLS as closely as
possible, with the constraint that each packet is transmitted
on a path as a whole, so as to minimize the maximum
residual workload among all paths. The assignment of a
complete packet to a path may cause a transient load
imbalance with respect to the targeted routing weight
vector. That is, some paths may be fed more traffic than

expected temporarily while other paths may have less, after
the routing decision for a certain packet, say, Packet ðk� 1Þ,
is made. Those paths fed with more traffic than expected
have the tendency of not having the next packet, i.e.,

Packet k, routed on them. However, if Packet k is large and

an overloaded path has a large routing weight, it may still
be preferable to send the packet on this overloaded path.

Therefore, both the current level of load imbalance as well
as the size of the next successive packet are required for the

traffic splitter to make the next routing decision.
To quantify the above selection criterion, a metric is

introduced to measure the traffic underload on a path. The

residual workload of Path i, where i ¼ 1; 2; . . . ; N , just before

the routing decision for Packet k is made, Rp
i ðkÞ, is defined

as the amount of work (in bytes) that should be fed on Path i
in order to achieve the expected workload Wp

i ðkÞ. In other

words,

Rp
i ðkÞ ¼

Wp
i ð1Þ if k ¼ 1;

Wp
i ðkÞ � ŴW

p
i ðk� 1Þ otherwise

�
ð7Þ

and, hence,

XN
i¼1

Rp
i ðkÞ ¼ SðkÞ: ð8Þ

We use Rp
i ðkÞ to measure the traffic underload on Path i,

just before the routing decision of Packet k is made. If

Rp
i ðkÞ > 0, Path i has been injected with less traffic than

expected and, hence, Packet k can be sent on this path. On
the other hand, if Rp

i ðkÞ < 0, Path i has too much traffic

being routed on it and, hence, Packet k should not be
transmitted on this path. In other words, Rp

i ðkÞ provides an

indicator to the traffic splitter for deciding which path
Packet k should be transmitted on. Packet k is to be sent on

Path j when Rp
j ðkÞ is maximized along all participating

paths. Ties are broken by a path with the largest routing

weight and, if still unresolved, the smallest path identifica-
tion number. The complete PWFR algorithm is summarized

in Fig. 3.

696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

Fig. 3. The PWFR algorithm.



As far as the time and space complexities are concerned,
PWFR takes OðNÞ time for processing each packet as it
searches for a path j such that Rp

j is maximized. PWFR
needs OðNÞ counters to store its working variables. As the
number of paths N is generally small and fixed, we
consider that the computational and storage costs are
minimal with respect to the number of traffic flows
maintained at each router, nowadays. In the following
section, we are going to show that, given that all packets are
bounded in sizes and the number of paths is fixed, PWFR is
a deterministically fair traffic splitting algorithm.

3.2 Performance Bounds

A traffic splitting algorithm is deterministically fair if, for any
sequences of packets to be dispersed, the absolute differ-
ence between the actual workload and the expected work-
load (in bytes) allocated to each path is always bounded by
a finite constant. This means that any deterministically fair
traffic splitter attempts to approximate GLS such that the
workload deviation on every path is limited by a certain
constant. In this section, we are going to show that, if all
packets are bounded in sizes and the number of paths is
fixed, PWFR is a deterministically fair traffic splitting
algorithm.

Lemma 2. For every positive integer k, there exists a positive

residual workload on some active Path i just before the routing

decision for a positive-size Packet k is made. That is,

Rp
i ðkÞ > 0 ð9Þ

for some i 2 f1; 2; . . . ; Ng.
Proof. If k ¼ 1,

Rp
i ð1Þ ¼W

p
i ð1Þ ¼ pi Sð1Þ > 0 ð10Þ

for all i ¼ 1; 2; . . . ; N .
Suppose k > 1. By the conservation of traffic,

XN
j¼1

Wp
j ðk� 1Þ ¼

XN
j¼1

ŴWp
j ðk� 1Þ: ð11Þ

This implies that either

Wp
i ðk� 1Þ ¼ ŴWp

i ðk� 1Þ ð12Þ

for all i ¼ 1; 2; . . . ; N , or

Wp
i ðk� 1Þ > ŴWp

i ðk� 1Þ ð13Þ

for some i ¼ 1; 2; . . . ; N .
Since Packet k is positive in size,

Wp
i ðkÞ ¼W

p
i ðk� 1Þ þ pi SðkÞ > ŴWp

i ðk� 1Þ ð14Þ

for some i ¼ 1; 2; . . . ; N .
Combining, the lemma is proved. tu

Lemma 3. For every positive integer k, the actual workload

allocated to Path i cannot exceed the expected workload by an

amount equal to or more than the maximum packet size

Smax bytes. That is,

ŴWp
i ðkÞ �W

p
i ðkÞ < Smax; ð15Þ

where i ¼ 1; 2; . . . ; N .

Proof. When k ¼ 1,

ŴWp
i ð1Þ �W

p
i ð1Þ � ð1� piÞ � S1 < Smax: ð16Þ

Suppose ŴWp
i ðkÞ �W

p
i ðkÞ < Smax is true for some

positive integer k ¼ �. That is,

ŴWp
i ð�Þ �W

p
i ð�Þ < Smax ð17Þ

for all i ¼ 1; 2; . . . ; N .
There are two possible cases to consider.
Case 1: Packet ð� þ 1Þ is not routed on Path i.
This implies

ŴWp
i ð� þ 1Þ ¼ ŴWp

i ð�Þ; ð18Þ
ŴWp

i ð� þ 1Þ �Wp
i ð� þ 1Þ ¼ ŴWp

i ð�Þ � ½W
p
i ð�Þ þ pi S�þ1� < Smax:

ð19Þ

Case 2: Packet ð� þ 1Þ is routed on Path i.
This implies

ŴWp
i ð� þ 1Þ ¼ ŴWp

i ð�Þ þ S�þ1: ð20Þ

By applying Lemma 2,

Rp
i ð� þ 1Þ ¼Wp

i ð� þ 1Þ � ŴWp
i ð�Þ > 0; ð21Þ

ŴWp
i ð� þ 1Þ �Wp

i ð� þ 1Þ ¼ ½ŴWp
i ð�Þ þ S�þ1� �Wp

i ð� þ 1Þ < Smax:

ð22Þ

Combining, the actual workload allocated to Path i is
always upper bounded, where i ¼ 1; 2; . . . ; N . tu

Lemma 4. For every positive integer k, the actual workload

allocated to Path i cannot lag behind the expected workload by

an amount equal to or more than ðN � 1Þ � Smax bytes, where

N is the number of paths and Smax is the maximum packet size

in bytes. That is,

Wp
i ðkÞ � ŴW

p
i ðkÞ < ðN � 1Þ � Smax; ð23Þ

where i ¼ 1; 2; . . . ; N .

Proof. By using Lemma 3,

Wp
i ðkÞ � ŴW

p
i ðkÞ ¼

XN
j¼1
j 6¼i

½ŴWp
j ðkÞ �W

p
j ðkÞ�

< ðN � 1Þ � Smax:

ð24Þ

Combining, the actual workload allocated to Path i is
always lower bounded, where i ¼ 1; 2; . . . ; N . tu

Theorem 1. Given that all packets are bounded in sizes and the

number of paths is fixed, PWFR is a deterministically fair

traffic splitting algorithm.

Proof. The result follows directly from Lemmas 3 and 4. tu

In practice, the routing weight vector may change with

time. This means that the routing weight vector when
Packet k arrives may be different from that when
Packet ðkþ 1Þ arrives, for some positive integer k. It is easy
to show that the lemmas and theorem in this section still
hold when the routing weight vector changes between any
two successive packet arrivals, as their proofs do not
require any specific relationship among routing weights.
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3.3 Provision of Guaranteed Performance Service

The following lemma shows that, when a leaky bucket
constrained traffic source is divided on a set of paths by a
PWFR traffic splitter, the offered workload to each path is
also leaky bucket constrained.

Lemma 5. Suppose a traffic source is constrained by a leaky
bucket with parameters ð�; �Þ, where � and � represent the
maximum size of the bucket token pool and the average token
generation rate respectively. Let Smax be the maximum packet
size in bytes. If the traffic source is fed into a PWFR traffic
splitter, a dispersed subflow to be routed on Path i, where
i ¼ 1; 2; . . . ; N , is constrained by another leaky bucket with
parameters ð�i; �iÞ, where

�i ¼ pi �þ Smax

�i ¼ pi �:

�
ð25Þ

Proof. Since a GLS traffic splitter can divide traffic ideally
according to the given routing weight vector pppp,

Wp
i ð�Þ � ðpi �Þ þ ðpi �Þ � ðt� �Þ ð26Þ

for all i ¼ 1; 2; . . . ; N .
By applying Lemma 3, consider any positive integer k,

ŴWp
i ðkÞ < Wp

i ðkÞ þ Smax

� ðpi �þ SmaxÞ þ ðpi �Þ � ðt� �Þ
ð27Þ

for some t � � .
The lemma is proved. tu

Compared with Lemma 1, a PWFR traffic splitter
requires an expansion of the bucket token pool by the
maximum packet size to constrain a dispersed subflow.
This means that a PWFR traffic splitter may give a
dispersed subflow with a larger burstiness than the one
outputted from the idealized GLS traffic splitter. Yet, the
difference can become insignificant if a traffic source is very
bursty in nature (with a large �). This is generally true for
multimedia traffic found in the current Internet.

Based on the result from Lemma 5, we can derive
performance bounds for the provision of guaranteed quality
of service (QoS) using multiple paths for a single flow,
which is leaky bucket constrained by the parameters ð�; �Þ.
The performance bounds are useful as they can be adopted
to routing policed traffic with end-to-end QoS guarantees,
such as in [9], with the extension of supporting the
concurrent use of multiple routes. Further research is
needed to devise an efficient and practical algorithm for
QoS multipath routing.

Denote by gi (where gi � �i), hi, Cij, and �ij, respectively,
the reserved bandwidth on Path i, the number of hops for
Path i, the link capacity at the jth hop for Path i, and the
propagation delay at the jth hop for Path i. It can be shown
[12] that the delay bound for Path i, Diðpi; giÞ, the delay
jitter bound for Path i, Jiðpi; giÞ, and the buffer space
requirement at the jth hop router for Path i, BijðpiÞ,
respectively, can be written as

Diðpi; giÞ ¼ �iþhi Smax

gi
þ
Phi

j¼1

�
Smax

Cij
þ �ij

�
Jiðpi; giÞ ¼ �iþhi Smax

gi

BijðpiÞ ¼ �i þ j Smax:

8><
>: ð28Þ

Denote the reserved bandwidth vector by

gggggggg ¼ ð g1 g2 . . . gN Þ: ð29Þ

The end-to-end delay bound can be found as

Dðpppppppp; ggggggggÞ ¼ maxNi¼1ðDiðpi; giÞÞ ð30Þ

and the end-to-end delay jitter bound can be calculated as

Jðpppppppp; ggggggggÞ ¼ Dðpppppppp; ggggÞ �minNi¼1ðDiðpi; giÞ � Jiðpi; giÞÞ

¼ Dðpppp; ggggggggÞ �minNi¼1

Xhi
j¼1

�
Smax

Cij
þ �ij

� !
:

ð31Þ

These end-to-end delay and jitter bounds can be easily
extended when a PWFR traffic splitter is used concurrently
with some packet-based fair queueing algorithms which
closely imitate GPS with bounded fairness among different
traffic flows, such as WFQ (or PGPS) [5], [10] and worst-
case fair weighted fair queueing (WF2Q) [3].

4 PERFORMANCE EVALUATION

In this section, we first outline a set of traffic splitting
algorithms for performance studies. A performance metric
is then defined for comparing various splitting algorithms.
Afterward, we briefly describe the characteristics of the
traffic traces used for the simulation and, finally, we
examine the simulation results of the proposed traffic
splitting algorithm.

4.1 Traffic Splitting Algorithms

We study three basic traffic splitting algorithms, namely,
packet-by-packet weighted fair routing (PWFR), packet-by-
packet generalized round robin routing (PGRR), and packet-
by-packet probabilistic routing (PPRR). The PWFR ap-
proach, which is described in Section 3, simulates general-
ized load sharing (GLS) as closely as possible, subject to the
granularity constraint imposed by transmitting each packet
as a whole.

PGRR distributes packets to each path in a cyclical
fashion so that the arrival instants of any two packets to
each path is as uniformly as possible. Indeed, a way to
implement PGRR is to apply PWFR by setting all packet
sizes to one unit, or any other constant.

According to the routing weight vector, PPRR divides
packets to each route at random. Thus, PPRR is equivalent
to a packet-based perfect hashing routing scheme, which
provides a performance benchmark to all other hashing-
based traffic splitting algorithms.

4.2 Performance Metric

Our performance metric for a traffic splitter is the mean
squared workload deviation, which measures the variation
of the actual workloads allocated by the traffic splitter to a
set of N paths from the expected ones distributed under
GLS. A good traffic splitting algorithm should divide traffic
according to the given routing weight vector and, hence, it
should be able to keep the value of the mean squared
workload deviation as small as possible.

Suppose a set of M packets, namely, Packet 1, Packet 2,
:::, Packet M, which belong to connectionless traffic for
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non-TCP connections, are split on a set of paths. Let
Wp

i ðkÞ, and ŴWp
i ðkÞ, respectively, be the expected and

actual workloads (in bytes) allocated to Path i, just after
the routing decision for the kth packet has been made.
The mean squared workload deviation for the set of
packets is defined as

E½ðŴWp �WpÞ2� ¼
PM

k¼1

PN
i¼1ðŴW

p
i ðkÞ �W

p
i ðkÞÞ

2

MN
: ð32Þ

4.3 Traffic Traces

The simulation is based on a set of real packet traces
collected on the Internet backbones for the Passive
Measurement and Analysis (PMA) Project over four trunks,
namely, the SDSC FDDI DMZ, the FIX-West facility at
NASA Ames (FDDI interface), the SDSC OC12mon vBNS
connection, and the Indiana University GigaPOP. A total of
seven traces, from July 1994 to August 2001, are employed
for our simulation studies. The characteristics and the
packet size distributions for non-TCP connections of these
traffic traces are summarized in Figs. 4 and 5, respectively.

4.4 Simulation Results

Our simulation experiments are based on a network node
which routes incoming traffic on a set of outgoing paths.
Each simulation run is executed with a complete traffic

trace, and the statistics for computing the performance
metric are collected only when the routes for the first
10,000 packets have been determined. For PWFR and
PGRR, a single run is sufficient to determine the mean
squared workload deviation for a certain setting. How-
ever, since PPRR involves the use of random numbers, a
total of 10 runs have been done to find an average value
of the performance metric, and a 95 percent confidence
interval for each average value of the metric is also
computed. Due to space limitations, plots showing similar
results are left out and, hence, only plots corresponding
to the trace file “IND-20010815” are presented here.

The results are provided in three sets. The first set
examines the performance of different traffic splitters for
multipath routing with different number of homogeneous
paths used, where the routing weight for each path is the
same. Fig. 6 exhibits the mean squared workload deviation
for connectionless traffic. The number of paths used varies
from one to 10. When all packets travel on a single path, no
traffic splitting is needed and, thus, the mean squared
workload deviation for all traffic splitters considered is
always zero. By using two or more paths, we observe that
the mean squared workload deviation when PWFR is
employed is substantially smaller than when PGRR or
PPRR is used. The performance of PWFR is more or less the
same with the number of paths used. Obviously, it is due to
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Fig. 4. The characteristics of traffic traces.

Fig. 5. Packet size distribution plot for non-TCP traffic. (a) All seven traffic traces. (b) Trace file “IND-20010815.”



the fact that PWFR aims to minimize workload deviation
each time the route of each packet is assigned. Though
PGRR tries to distribute packets to paths as closely to the
routing weight vector as possible, it does not take the
dynamics of packet size into account. PPRR routes packets
at random and, hence, it can be expected that it can split the
workload approximately equal to the expected load dis-
tribution over a very long time period. This means that,
over short time periods, the workload may be very different
from the expected one. Thus, this approach cannot mini-
mize workload deviation in general.

The second set of results compares the effectiveness of
different traffic splitters for heterogeneous multipath rout-
ing, where the routing weight for one path can differ from
that for another path. It is sufficient to consider only
three paths for the extensive study as it has been shown [7],
under a wide range of scenarios, that multipath routing is
effective in using a small number of paths, say, up to three.
The routing weight vector, pppp ¼ ð p1 p2 p3 Þ, has been set
such that p3 ¼ 0 or 0:35. When p3 ¼ 0, p1 varies between
0.001 and 0.5, with a total of 11 data points. Due to
symmetry, it is not necessary to perform duplicate experi-
ments when p1 is greater than 0.5. For instance, the result of

p1 ¼ 0:7 is the same as that of p1 ¼ 0:3 since, for both cases,
the routing weight of one path is 0.3 and that of another
is 0.7, and, thus, the results should be the same. Similarly,
when p3 ¼ 0:35, p1 varies between 0.001 and 0.3, with a total
of seven data points.

Fig. 7a shows the mean squared workload deviation
for connectionless traffic when the routing weight for
Path 3 is 0, i.e., no traffic will be routed on Path 3. The
routing weight for Path 1 varies between 0.001 and 0.5.
Similar to our first set of results, we see that the mean
squared workload deviation when PWFR is employed is
significantly lower than when PGRR or PPRR is used.
Fig. 7b exhibits the mean squared workload deviation for
connectionless traffic when the routing weight for Path 3
is 0.35, where the routing weight for Path 1 varies
between 0.001 and 0.3. The results are similar to cases
when the routing weight for Path 3 is 0. Combining,
PGRR is very effective in splitting traffic to paths as
closely to any routing weight vector as possible.

The third set of results demonstrates the effectiveness
of our proposed algorithm on load balancing by means of
plotting a set of sample load vectors. Each sample load
vector consists of two sample loads, each corresponding
to a path. A sample load is taken at intervals of
0.001 seconds. Fig. 8 illustrates the distribution of sample
load vectors for connectionless traffic with the routing
weight vector ð0:35 0:65 0Þ. It is clear that, when
PWFR is used, the sample load vectors are concentrated
on a region of a thin diagonal stripe, where the slope of
that stripe is equal to the ratio of the routing weights
between Path 1 and Path 2, i.e., 1.857. There is a much
thicker stripe for using PGRR, and even a “cloud” of
sample load vectors when PPRR is employed. This means
that, for connectionless traffic, only PWFR can effectively
balance the workloads to paths in proportion to their
routing weights.

5 CONCLUSIONS

In this paper, we have proposed a framework to study how
to effectively perform load sharing in multipath commu-
nication networks. A generalized load sharing (GLS) model
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Fig. 6. Workload deviation plot for homogenous multipath routing.

Fig. 7. Workload deviation plot for heterogenous multipath routing. (a) p3 ¼ 0. (b) p3 ¼ 0:35.



has been developed to conceptualize how traffic is split
ideally on a set of active paths. A simple traffic splitting
algorithm, called packet-by-packet weighted fair routing
(PWFR), has been devised to approximate GLS with the
given routing weight vector by transmitting each packet as

a whole. We have developed some performance bounds for
PWFR and found that PWFR is a deterministically fair
traffic splitting algorithm. This attractive property is useful
in the provision of service with guaranteed performance
when multiple paths can be used simultaneously to
transmit packets which belong to the same flow.

A total of seven historical Internet backbone traces have
been used in our simulation studies. For each of the traffic
trace, we investigated connectionless traffic from non-
TCP connections. Our simulation studies, based on these
traffic traces, reveal that PWFR outperforms two other
traffic splitting algorithms, namely, packet-by-packet gen-
eralized round robin routing (PGRR), and packet-by-packet
probabilistic routing (PPRR). These promising results form
a basis for designing future adaptive quality of service
(QoS) or constraint-based multipath routing protocols.

ACKNOWLEDGMENTS

This research is supported in part by the Areas of Excellence

Scheme established under the University Grants Committee

of the Hong Kong Special Administrative Region, China

(Project Number AoE/E-01/99). The authors would like to

thank the US National Science Foundation Cooperative

Agreement Numbers ANI-0129677 (2002) and ANI-9807479

(1998), and the National Laboratory for Applied Network

Research, Measurement and Network Analysis Group for

making their real Internet backbone packet traces available

for their research, and the anonymous reviewers for their

valuable comments and suggestions which assisted them in

improving the quality of the paper.

REFERENCES

[1] H. Adiseshu, G. Varghese, and G. Parulkar, “An Architecture for
Packet-Striping Protocols,” ACM Trans. Computer Systems, vol. 17,
no. 4, pp. 249-287, Nov. 1999.

[2] Inverse Multiplexing for ATM (IMA) Specification Version 1.1, ATM
Forum Technical Committee, Mar. 1999.

[3] J.C.R. Bennett and H. Zhang, “WF2Q: Worst-Case Fair Weighted
Fair Queueing,” Proc. IEEE INFOCOM ’96, vol. 1, pp. 120-128,
Mar. 1996.

[4] Z. Cao, Z. Wang, and E. Zegura, “Performance of Hashing-Based
Schemes for Internet Load Balancing” Proc. IEEE INFOCOM,
vol. 1, pp. 332-341, Mar. 2000.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation
of a Fair Queueing Algorithm,” Internetworking: Research and
Experience, vol. 1, no. 1, pp. 3-26, Sept. 1990.

[6] IEEE Standard 802.3-2002, IEEE CS, Mar. 2002.
[7] K.-C. Leung and V.O.K. Li., “A Resequencing Model for High

Speed Networks,” Proc. IEEE Int’l Conf. Comm., vol. 2, pp. 1239-
1243, June 1999.

[8] K.-C. Leung and V.O.K. Li, “Generalized Load Sharing for Packet-
Switching Networks” Proc. IEEE Int’l Conf. Network Protocols,
pp. 305-314, Nov. 2000.

[9] A. Orda, “Routing with End-to-End QoS Guarantees in Broad-
band Networks,” IEEE/ACM Trans. Networking, vol. 7, no. 3,
pp. 365-374, June 1999.

[10] A.K. Parekh and R.G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,” IEEE/ACM Trans. Networking, vol. 1, no. 3,
pp. 344-357, June 1993.

[11] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, The
PPP Multilink Protocol (MP), Request for Comments, RFC 1990,
Network Working Group, Internet Eng. Task Force, Aug. 1996.

[12] H. Zhang, “Service Disciplines for Guaranteed Performance
Service in Packet-Switching Networks, Proc. IEEE, vol. 83, no. 10,
pp. 1374-1396, Oct. 1995.

LEUNG AND LI: GENERALIZED LOAD SHARING FOR PACKET-SWITCHING NETWORKS I: THEORY AND PACKET-BASED ALGORITHM 701

Fig. 8. Sample load plot for connectionless traffic with p1 ¼ 0:35,

p2 ¼ 0:65, and p3 ¼ 0. (a) Packet-by-packet weighted fair routing.

(b) Packet-by-packet generalized round robin routing. (c) Packet-by-

packet probabilistic routing.



Ka-Cheong Leung received the BEng degree in
computer science from the Hong Kong Univer-
sity of Science and Technology in 1994, and the
MSc degree in electrical engineering (computer
networks), and the PhD degree in computer
engineering from the University of Southern
California, Los Angeles, in 1997 and 2000,
respectively. He worked as a senior research
engineer at Nokia Research Center, Nokia Inc.,
Irving, Texas, from 2001 to 2002. He was an

assistant professor in the Department of Computer Science at Texas
Tech University, Lubbock, from 2002 to 2005. Since June 2005, he has
been with the University of Hong Kong, where he is a visiting assistant
professor in the Department of Electrical and Electronic Engineering. His
research interests include wireless packet scheduling, routing, conges-
tion control, and quality of service guarantees in high-speed commu-
nication networks, content distribution, high-performance computing,
and parallel applications. He is listed in the 60th (2006) edition of
Marquis Who’s Who in America and is a member of the IEEE.

Victor O.K. Li received the SB, SM, EE, and
ScD degrees in electrical engineering and
computer science from the Massachusetts
Institute of Technology, Cambridge, in 1977,
1979, 1980, and 1981, respectively. He joined
the University of Southern California (USC), Los
Angeles, in February 1981, and became a
professor of electrical engineering and director
of the USC Communication Sciences Institute.
Since September 1997, he has been with the

University of Hong Kong, where he is the chair professor of information
engineering. He also served as managing director of Versitech Ltd., the
technology transfer and commercial arm of the university, from
September 1997 to June 2004. He serves on various corporate boards.
His research is in information technology, including all-optical networks,
wireless networks, and Internet technologies and applications. Sought
by government, industry, and academic organizations, he has lectured
and consulted extensively around the world. He is very active in the
research community, and has chaired various international conferences
and served on the editorial boards of various international journals. He
has given distinguished lectures at universities around the world, and
keynote speeches at many international conferences. He has received
numerous awards, including, most recently, the UK Royal Academy of
Engineering Senior Visiting Fellowship in Communications, the KC
Wong Education Foundation Lectureship, the Croucher Foundation
Senior Research Fellowship, and the Bronze Bauhinia Star, Govern-
ment of the Hong Kong Special Administrative Region, China. He was
elected an IEEE fellow in 1992.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

702 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


