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Blind Linear MMSE Receivers for
MC-CDMA Systems
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Abstract—This paper studies blind constrained minimum
output energy (CMOE)-based and subspace-based linear min-
imum mean-squared-error (LMMSE) detectors for multi-carrier
code division multiple access (MC-CDMA) systems. By imposing
quadratic weight constraint, the CMOE detector is made more
robust against signature waveform mismatch, and a better perfor-
mance over the standard CMOE detector is obtained. Because of
separation of signal and noise subspaces, the more complicated
subspace-based LMMSE detector has better performance than the
CMOE detector. The recursive subspace tracking algorithms are
also investigated for the subspace-based MMSE receiver. Numer-
ical results show that the steady-state performance of the robust
CMOE detector is close to the subspace-based MMSE method.
The blind mode decision-directed LMMSE detection is studied
where the blind detectors are used for initial adaptation. Numer-
ical simulations illustrate that the blind mode decision-directed
MMSE detection substantially improves the system performance
when the frequency-selective channel is slowly-varying.

Index Terms—Adaptive signal processing, channel estimation,
multiuser detection, wireless communications.

I. INTRODUCTION

MC-CDMA has recently been proposed as an efficient
multicarrier transmission scheme for supporting mul-

tiple access communications [1], which combines CDMA
and orthogonal frequency division multiplexing (OFDM)
techniques. It has received considerable attention because of
its advantages in frequency diversity, multipath fading re-
silience, etc. [2]–[5]. Similar to conventional CDMA systems,
MC-CDMA is an interference-limited system. It is rather sen-
sitive to multiple-access interference (MAI), which arises from
the sharing of the same frequency band by the users simultane-
ously. LMMSE multiuser detectors [6]–[8] have been proposed
as effective and relatively simple techniques to mitigate MAI in
CDMA systems. A typical operation of the LMMSE detector
uses decision-directed mode, where a training sequence is sent
for initial adaptation. However, the training mode decision-di-
rected detector reduces the data rate and channel efficiency.
Blind MMSE receivers with the performance equal or close to
that of the exact Wiener solution are hence highly desirable.
The subspace-based MMSE detector [9], [10] is one effective
blind algorithm exploiting subspace structures of the obser-
vation. The subspace-based method has high computational
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complexity due to estimation of the signal and noise subspaces.
In [11], Honig et al. proposed a simpler blind LMMSE receiver,
called the CMOE detector, for MAI suppression in CDMA sys-
tems. Under ideal conditions, the CMOE detector maximizes
the signal-to-interference-plus-noise ratio (SINR), and achieves
performance close to that of the optimal LMMSE receiver [12].

Due to the advantages mentioned earlier for MC-CDMA
systems, the extension of these blind LMMSE receivers to
the MC-CDMA context is of great interest. We first formu-
late a CMOE-based blind detector and channel estimator for
MC-CDMA systems. It is based on the recursive least squares
(RLS) updating of the correlation matrix, and the channel
can be estimated blindly by solving the minimum eigenvector
of a data sub-matrix. It is found that the performance of the
CMOE detector will degrade considerably in presence of
channel and data correlation matrix estimation errors. This has
been observed in adaptive beamforming [13]–[15] and direct
sequence (DS)-CDMA multiuser detection [16]. A robust
CMOE detector with quadratic constraint is then proposed,
where quadratic constraint on the weight vector of the detector
is imposed. This technique is a simple and effective method for
improving the robustness of the detector with respect to signal
modeling errors. In order to reduce the complexity in com-
puting the minimum eigenvector associated with the channel
information, the inverse iteration method [17] is employed to
recursively estimate the minimum eigenvector.

Adaptive robust CMOE detectors with quadratic constraint
have been developed in DS-CDMA either in the direct form
or with the partitioned linear interference cancellation (PLIC)
structure [16]. The blocking matrix in DS-CDMA is constant
and can be computed off line. However, in MC-CDMA systems,
the effective signature waveform is the multiplication (element
wise) of the spreading code and the channel coefficients. The
blocking matrix in MC-CDMA is time variant and should be up-
dated for each time interval in time-varying wireless channels.
The PLIC in MC-CDMA thus has high computational com-
plexity due to the real-time updating of the blocking matrix.
Moreover, the direct form of the robust CMOE detector in [16]
cannot be applied to MC-CDMA for its assumption that the
blocking matrix is constant. In this paper, an adaptive algo-
rithm of the robust CMOE detector for MC-CDMA is presented.
By imposing quadratic weight constraint, the robust CMOE de-
tector outperforms the standard CMOE detector.

In the case of white Gaussian noise, the subspace-based
MMSE detector performs better than the standard CMOE
receiver. Recently, there has been a lot of research on the sub-
space-based blind receivers for MC-CDMA. A subspace-based
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Fig. 1. Block diagram of a MC-CDMA transmitter.

MMSE detector for quasi-synchronous MC-CDMA systems
was proposed in [18] without exact knowledge of the channel
order. In [19], a subspace-based MMSE detector was proposed
for MC-CDMA without cyclic prefix. The subspace-based
blind detector was extended to coded MC-CDMA systems
[20], [21]. In this paper, we paid special attention to the adap-
tive subspace-based MMSE receivers using efficient subspace
tracking algorithms. In particular, the projection approximation
subspace tracking with deflation (PASTd) [22] and the bi-it-
eration square-root singular value decomposition (Bi-SVD)
[23] algorithms are used for signal subspace tracking; while
the square-root QR inverse iteration method [24] is adopted for
noise subspace tracking. The steady-state performances of the
subspace-based MMSE detector and the robust CMOE detector
are found to be similar.

By steady-state SINR analysis, the adaptive training LMMSE
detector performs much better than the adaptive blind MMSE
detectors. Therefore, the blind mode decision-directed LMMSE
detector is proposed, where the blind methods are used for initial
adaptation. Numerical simulations show that the blind mode de-
cision-directed LMMSE receivers using the robust CMOE and
subspace-based detectors present similar MSE performance at
medium signal-to-noise ratio (SNR).

The rest of the paper is organized as follows. Section II briefly
describes the principle of MC-CDMA systems and the system
model under consideration. Section III is devoted to the blind
CMOE, robust CMOE and subspace-based LMMSE receivers.
The theoretical steady-state SINR analysis of the adaptive blind
CMOE and the adaptive training LMMSE detection is derived
in Section IV. Section V presents numerical examples, and con-
clusion is drawn in Section VI.

Notation: Vectors/matrices are denoted by lowercase/upper-
case boldfaces; superscripts and denote the
complex conjugate, transpose, and conjugate transpose, respec-
tively; denotes the statistical expectation; denotes
the trace of a matrix.

II. SYSTEM MODEL

Consider a -user synchronous MC-CDMA system for up-
link transmission from the terminal users to the base station.
Fig. 1 shows the diagram of an MC-CDMA transmitter. The
original data stream of the th user is first converted into
parallel data sequences
at the th time. Let and be the symbol duration before
and after the serial/parallel (S/P) conversion, respectively. It
has . When the symbol duration at the subcar-
rier is large relative to the channel’s multipath delay spread,
each subcarrier approximately experiences flat fading. Each S/P
converted output spreads with the user’s spreading code

. The data chips after
spreading are S/P converted into subcarriers. The frequency
separation between the successive subcarriers is .
To achieve the maximum frequency diversity, the data bit
are transmitted on subcarriers with frequencies

. The resulting chips, in total,
is

. The data vector is then
modulated by an inverse fast Fourier transform (IFFT). The data
samples after IFFT modulation of user at the th time is given
as

(1)

where is the Fourier matrix performing the IDFT,
whose th element is .

The user signal propagates through a frequency-selective
channel with received paths. The channel is represented by a

th-order finite-impulse response (FIR) filter [21]

(2)
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Fig. 2. Block diagram of a MC-CDMA receiver.

where is the user index, is the th path gain which is
independent zero mean, complex Gaussian random process with
variance , and is the propagation delay for the th path,
respectively. The ensemble is the power
delay profile.

To combat intersymbol interference (ISI) caused by multi-
path fading, a cyclic prefix (CP) of samples is added to an
MC-CDMA symbol. When , the effect of ISI can be
eliminated. Fig. 2 illustrates a configuration of an MC- CDMA
receiver. Assume the communication channel remains constant
during one MC-CDMA symbol. At the receiver, the signal is
sampled at a rate . The baseband received signal
at the th sample is hence given by

(3)

where accounts for the complex envelop at the th path,
is the transmitted signal

vector, is the chip energy of the th user, respectively, and
denotes additive white Gaussian noise vector with zero

mean and variance .
Assume that time and frequency synchronization has been

achieved at the receiver, and ISI does not occur under the con-
dition . The samples corresponding to the CP are
then discarded. The synchronized th MC-CDMA symbol after
removal of the cyclic prefix is then given as

(4)

where
, and

is a Toeplitz matrix with the form

...
...

...
. . .

...

Finally, a fast Fourier transform (FFT) of size is performed
at the receiver. Let be the Fourier matrix, the

th element of which is . The baseband
MC-CDMA signal in the frequency-domain can then be ob-
tained in matrix notation as

(5)

where represents the
channel matrix, whose diagonal elements are the channel
frequency response of the user , given by

,
and is the complex white Gaussian with zero mean and
variance .

Without loss of generality, the th data stream trans-
mitted by each user is considered. The data vector

corre-
sponding to the symbol is then represented as

(6)

where
is the channel coefficients at the th subcarriers,

denotes the code matrix,
represents the effective signature of the

th user, respectively, and is the complex white Gaussian
noise with zero mean and variance .

III. BLIND LINEAR MMSE DETECTION

In this section, the blind CMOE, robust CMOE, and
subspace-based LMMSE detectors will be formulated for
MC-CDMA systems, respectively.
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A. CMOE Detection and Channel Estimation

The basic idea of the CMOE detector is to minimize the
overall variance of the receiver output, while preserving the
desired signals with unit-gain. For convenience, the subscript

will be dropped from the signal model in (6). Assume the
zeroth user is the desired user. The CMOE detector can be
formulated by a constrained optimization problem as [12]

(7)

where is the forgetting factor, is the weight
vector at the th time, and is the effective
signature waveform of the desired user.

The solution to the constrained optimization problem in (7)
is given by [11]

(8)

where is the covariance matrix obtained as

Using (8), the minimum output variance of the detector can
be given as [12]

(9)

To estimate the effective signature waveform , we can
maximize (9) with respect to such that the signal com-
ponents at the receiver output are maximized after interference
suppression. Maximization of (9) is equivalent to minimization
of its reciprocal

(10)

Let denote the channel impulse response of the
zeroth user with paths. It has ,
where is an matrix with entries,

. Hence, minimizing (10) with respect to
yields

(11)

The channel estimate is the eigenvector associated with
the smallest eigenvalue of .

Conventional methods, such as SVD or eigenvalue decom-
position (ED), are computationally expensive to keep track of
the desired eigenvector of . To further simplify the algorithm,
iterative techniques, such as conjugate gradient, inverse itera-
tion, and steepest decent can be developed to seek for the de-
sired eigenvector. The steepest decent method is computation-
ally simplest. However, it is very sensitive to the step size. In

the paper, the inverse iteration algorithm is used because of
its reasonable complexity and good tracking performance [17].
The inverse iteration method for computing the minimum eigen-
vector of the matrix , is given as

(12)

B. Robust CMOE Detector

In practical applications, the optimal solution given in (8) is
rarely achieved. First, the estimated effective signature wave-
form generally contains errors, i.e., . Sec-
ondly, the estimated covariance matrix is obtained from
a finite number of the observed data. Thus, the adaptive weight
vector in practical applications is

(13)

As a result, the performance of the CMOE detector will de-
grade greatly due to these two advert factors. Robust CMOE de-
tectors are thus desirable to overcome signal modeling errors.
One simple and efficient method is to impose quadratic con-
straints on the norm of the weight vector

(14)

The basic idea is to avoid from being too large so that the
desired signal is severely attenuated due to model errors. This
method has the same effect to add diagonal loading of the data
covariance matrix [13]

(15)

There is no closed-form expression for the optimal loading
level [16]. Inspired by the approach presented in [14], we
propose an adaptive algorithm to compute the diagonal loading

given a quadratic constraint . To ensure that the constraint
is met, is defined as

(16)

This vector projects the received signal vector onto
the constraint subspace. A reasonable constraint value is

. Equation (15) can be rewritten as

(17)

For small , the term can be approximated
using the first two terms of its Taylor series expansion. Let

. Then, its first-order derivative is

(18)
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By Taylor series expansion, , that is

(19)

With this approximation, (17) becomes

(20)

Denote , and
, we get

(21)

Hence, when does not satisfy the norm constraint, we can
substitute (21) into (14) and solve the equality for

(22)

where ,
and .

The solution is an approximation to the optimal loading
level and should be a real, non-negative value. The covariance
matrix can be decomposed in term of its eigenvectors and
eigenvalues

(23)

The term is then decomposed as follows:

(24)

The eigenvalues are positive since is positive definite.
To ensure the stability of the algorithm, should be real and
non-negative. In numerical simulations, we found that the value
of was negative and the value of was positive. More de-
tails of choosing the value of from (22) are presented in [14].
With these properties mentioned above, an appropriate solution
of (22) is given by

(25)

An RLS algorithm for updating the weight vector in
(14) is summarized in Table I, where is an identity ma-
trix, and is a positive small constant. It is seen that this al-
gorithm serves as a convenient adaptive implementation of the
robust CMOE detector. The update procedure of to satisfy
the norm constraint has a complexity of . The complexity
of the robust CMOE is hence determined by the RLS updating,
and has a complexity of .

TABLE I
RLS ALGORITHM FOR THE ROBUST CMOE DETECTOR

C. Subspace-Based LMMSE Detector

Assume that the data stream for each user is independent, that
is, , and the ambient noise is white Gaussian.
The correlation matrix can be given by

(26)

Following the eigenvalue decomposition, is given as

(27)

where contains largest eigen-
values, contains signal eigenvectors which
span the signal subspace, and contains

noise eigenvectors which span the noise subspace.
The subspace-based LMMSE detector for the zeroth user is

formulated as the following constrained optimization problem

(28)

By the method of Lagrange multipliers, the solution of (28) can
be written as [9]

(29)

The orthogonality between the noise and signal subspace im-
plies . Therefore, the channel
vector can be estimated by the least-squares approach

(30)



372 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 2, FEBRUARY 2007

The channel estimate is the eigenvector associated with the
minimum eigenvalue of the matrix . As and

, the CMOE-based channel estimate asymptotically
converges to the subspace-based channel estimate [12].

The computational complexity of the detectors employing
recursive implementation depends on the subspace tracking
algorithms. In the paper, the PASTd algorithm [22] with a
complexity of , and the Bi-SVD algorithm [23] with a
complexity of are used for signal subspace tracking.
The square-root QR inverse iteration method [24] with a
complexity of is adopted for noise subspace
tracking. In the numerical simulations, we found that the
convergence of the PASTd algorithm is quite slow especially
when the rank of signal subspace is large and SNR is high.
Whereas, the Bi-SVD algorithm has a close performance to the
exact SVD solution. When Bi-SVD/(square-root QR inverse
iteration) is used for signal/noise subspace tracking, the sub-
space-based LMMSE detector has a computational complexity
of .

The desired user’s data bit is demodulated according to

(31)

The proposed blind CMOE and subspace-based MMSE re-
ceivers for synchronous MC-CDMA systems in uplink channels
can be directly extended to quasi-synchronous MC-CDMA sys-
tems uplink. The required timing of the desired user can be es-
timated by training or blind methods [27], [28].

IV. SINR ANALYSIS

The efficiency of linear detectors to suppress MAI is eval-
uated by the output SINR. Assume that the users’ transmitting
symbols are independently and identically distributed (i.i.d.) se-
quences. The correlation matrix is hence given in (24), and
can be rewritten as

(32)

The SINR is defined as .
The ideal CMOE detector maximizes the output SINR, and the
optimal value is given as .

Steady-State SINR for RLS Adaptive Blind CMOE Detector:
The mean value is given as

(33)

Let the optimal weight vector be , and .
is given by

(34)

where . Since
as [30], we have . In [29], it gets

(35)

where is the length of . Since for
converges, i.e.,

, where . The steady-state SINR
of the RLS adaptive CMOE detector can then be obtained as

(36)

Steady-State SINR for RLS Adaptive Training MMSE De-
tector: In this case, the exponentially windowed algorithm
chooses to minimize the cost function

(37)

Denote the optimal solution and . Then
is given as

(38)

where as . The weight error correlation
matrix is given as [29]

(39)

where is the MSE of the optimum filter
. Pre-multiplying both sides of (39) by , then taking the

trace, it yields

(40)

Hence, converges for , and it has

(41)

In practical applications, is around 0.9. Therefore,
with reasonably high SNR, it has , and

can be approximated by
. It is shown

that [26]

(42)
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Therefore, the output SINR of the RLS adaptive training
LMMSE detector is given by

(43)

It is seen that the SINR performance of the adaptive blind
CMOE detector is inferior to that of the adaptive training
LMMSE detector, due to the absence of training.

V. NUMERICAL RESULTS

In this section, numerical results are presented to illustrate
the performance of the proposed blind LMMSE receivers and
the blind mode decision-directed LMMSE detectors. Con-
sider a synchronous MC-CDMA system in uplink channels
with random spreading sequence of length . The quadratic
constraint is set as . The SNR is defined to
be the average received bit energy to noise ratio . A
frequency-selective channel is considered with paths.
The total channel power of the th user is normalized to 1.
In the simulations, the inherent scalar ambiguity of the blind
channel estimators is compensated with a complex constant,
which makes the first element of the estimation and that
of the true channel vector identical. Referred to the design
scheme for MC-CDMA in [3], we set .
Consequently, the original data sequence is first S/P converted
into 8 parallel data streams, then each data symbol after S/P
spreads with a random spreading code of length . An
additional guard tones is added to prevent ISI. There
are 8 simultaneous users in the channel, and assume the zeroth
user is the desired user. The interference-signal ratio (ISR) of
the multiple access interferers (MAI’s) is 10-dB higher than the
desired user, i.e., .

Static Channels: First, the steady-state performance of
the detectors is investigated. Following the Rayleigh fading
assumption, the channel coefficients are randomly generated
according to a complex Gaussian distribution. The simulation
results are averaged over 400 Monte Carlo trials. Fig. 3(a)
and (b) shows the normalized channel estimation error of the
CMOE-based and subspace-based channel estimators versus
data samples and SNR, respectively. The normalized channel
estimation error is measured by . The
square-root QR inverse iteration subspace tracker is adopted
in the subspace-based channel estimator. It is shown that, at
high SNR, the CMOE-based channel estimator has a similar
performance to the subspace-based channel estimator. Fig. 4
illustrates the output SINR of the blind CMOE and sub-
space-based LMMSE receivers versus snapshots. The PASTd
and the Bi-SVD algorithms were employed for signal subspace
tracking in the subspace-based detection. We found that the
convergence of the PASTd algorithm is very slow. However,
the Bi-SVD algorithm presents similar convergence property
as that of the exact SVD solution. It can also be seen that
the output steady-state SINR of the proposed robust CMOE
detector is much better than the standard CMOE, and it is close
to that of the subspace-based LMMSE detector. Fig. 5(a) and
(b) shows the SINR and MSE for different LMMSE detectors
versus the SNR. The robust CMOE performs better than the

Fig. 3. (a) Normalized channel estimation error versus the data samples at
SNR = 15 dB. (b) Normalized channel estimation error versus the SNR. When
M = 16; P = 8;K = 8; ISR = 10 dB, � = 0:995; � = 0:1.

Fig. 4. The averaged SINR versus data samples. When SNR = 15 dB, M =

16; P = 8;K = 8; ISR = 10 dB, � = 0:995; � = 0:1.

conventional CMOE detector, and has similar performance as
that of the subspace-based detector at high SNR. It can also be
seen that the output SINR and MSE of the adaptive training
LMMSE detector is close to the optimal values. Moreover,
Fig. 6 shows that the SINR of the blind mode decision-directed
LMMSE detectors (after 800 samples) converges to the optimal
SINR, which is plotted as the dash line. Therefore, switching to
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Fig. 5. (a) The averaged SINR versus the SNR. (b). The MSE versus the SNR.
When M = 16; P = 8;K = 8; ISR = 10 dB, � = 0:995; � = 0:1.

the decision-directed mode after the blind detectors reach their
steady states will greatly improve the system performance.
Figs. 4 and 6 show that the SINR learning curves of the robust
CMOE and subspace-based MMSE detector have the same
convergence property when dB. Since both RLS
updating and Bi-SVD subspace tracking algorithm exploit the
one rank update of the correlation matrix, the learning curves
present the same convergence property with identical forgetting
factor .

As mentioned in Section III, the proposed blind CMOE and
subspace-based receivers can be directly applied to quasi-syn-
chronous MC-CDMA systems in uplink channels assuming the
receivers know the timing of the desired user. Next, we con-
sider the performance of the blind CMOE and subspace-based
receivers in quasi-synchronous MC-CDMA systems. We use
the same system setting as that in synchronous systems. The
users’ transmission delays are discrete random variables with
equi-probable values . Fig. 7(a) and (b) shows the
normalized channel estimation error of the CMOE-based and
subspace-based channel estimators. Verde [18] proposed a
subspace-based detector to jointly estimate the timing and the
channel coefficients. As a comparison, the channel estimation
error of the subspace-based channel estimator presented in [18]
(labeled as Subspace-Exact-Verde) is also shown in Fig. 7. It is

Fig. 6. The averaged SINR versus the data samples in the decision-directed
mode. When SNR = 15 dB, M = 16; P = 8;K = 8; ISR = 10 dB,
� = 0:995; � = 0:1.

Fig. 7. Normalized channel estimation error for quasi-synchronous
MC-CDMA systems. (a) Versus the data samples at SNR = 15 dB.
(b) Versus the SNR. When M = 16; P = 8;K = 8; ISR = 10 dB,
� = 0:995; � = 0:1.

shown that the proposed subspace-based channel estimator with
the known timing outperforms the channel estimator in [18],
while the latter has better performance than the CMOE-based
channel estimator when SNR is low. Fig. 8 depicts the output
SINR of the different receivers versus snapshots. It can be seen
that the output SINR of the subspace-based detector in [18]
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Fig. 8. The averaged SINR versus data samples for quasi-synchronous
MC-CDMA systems. When SNR = 15 dB, M = 16; P = 8;K = 8; ISR =

10 dB, � = 0:995; � = 0:1.

Fig. 9. The BER versus the SNR of the blind LMMSE detection.
M = 16; P = 8;K = 8; ISR = 10 dB, f T = 1:664 � 10 ; � =

0:97; � = 0:1.

(labeled as Subspace-Verde) is close to that of the proposed
robust CMOE and subspace-based MMSE detectors.

Indoor Rayleigh Fading Channels: A slowly time-varying
frequency-selective channel with six Rayleigh fading
paths in indoor environments is considered [31]. The multipath
intensity profile decays exponentially. The maximum Doppler
frequency is 52 Hz corresponding to a terminal speed

m/s with a carrier frequency of 5.2 GHz. The subcarrier
spacing is 312.5 KHz, and the time duration at the sub-
carrier is s. The normalized fading rate is

. Fig. 9 compares the BER performance for the
blind CMOE, robust CMOE, and subspace-based LMMSE de-
tectors. In the numerical simulations, 500 bits are allowed for the
blind detectors to reach a steady state before accumulating er-
rors. The BER is averaged over 600 000 MC-CDMA symbols. It
can be seen that the robust CMOE detector performs much better
than the standard CMOE detector. The performance of the sub-
space-based detector using the subspace tracking algorithms is
close to that of detectors using an exact SVD, which provides a
performance upper bound for all SVD-based subspace tracking
algorithms. Fig. 10 shows the MSE performance versus the SNR

Fig. 10. The MSE versus the SNR of the blind mode decision-directed
LMMSE detection. When M = 16; P = 8;K = 8; ISR = 10 dB,
f T = 1:664� 10 ; � = 0:97; � = 0:1.

of the proposed blind mode decision-directed LMMSE detector.
The blind detectors switch to the decision-directed mode after
500 data samples. It is seen that the blind mode decision-di-
rected LMMSE detector with the subspace-based method per-
forms best at the low SNR. The detector using the robust CMOE
for the initial adaptation outperforms the detector using the stan-
dard CMOE.

VI. CONCLUSION

In this paper, the blind CMOE, robust CMOE and sub-
space-based LMMSE receivers for MC-CDMA systems are
studied. By imposing quadratic weight constraints, the CMOE
detector is made more robust against signal modeling errors,
and a better performance over the standard CMOE detector
is obtained. The subspace-based LMMSE receiver has better
performance and higher computational complexity than the
CMOE method. The performance of subspace-based receiver
using subspace tracking algorithms is also studied. The robust
CMOE and the subspace-based LMMSE receivers present sim-
ilar steady-state SINR and MSE performance. The blind mode
decision-directed LMMSE detection is proposed to further
improve the performance of the blind detection, where the blind
detectors are used for initial adaptation. Numerical examples
show that the blind mode decision-directed detectors using the
robust CMOE and the subspace-based LMMSE detection have
the same MSE performance at medium SNR when the channel
is slowly-varying.
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