Formation and emplacement of the Northland ophiolite, northern New Zealand: S...

Scott A Whattam; John Malpas; Jason R Ali; Ching-Hua Lo; Ian E M Smith Journal of the Geological Society; Mar 2005; 162, Academic Research Library pg. 225

Formation and emplacement of the Northland ophiolite, northern New Zealand: SW Pacific tectonic implications

${ }^{1}$ Meparmem of Earth Sciences. L niversity of Hong Komes. Pokfulam Rocal. Hong Komer (hina

Abstract

 comsidered whe part of the ophiobite probabl? represent the basement upon which the opholite was enptaced. and are probable pat of the Mom (amel are-related terane. The opholite is beliew ed thate been semerated adjustment on the transom tault. thereby allowing a poenton of the uper-crustal sethon of the southern

The 100 0 Va tectonic enolation of the sill Pacific region has been comple (Yan \& Kroenke l093: Hall 2002). In the larly Cretacooss, the castern edge of the Austratian Plate formed a consergent boundary agains which varous Pacific oceanic terames were acereted. From about 80 to 55 Ma. eastern Gondwana experienced larges-acale extension and fragmentation. and a number of ribbon-like slisers of Australian basement simulancously separated from the margin extending the Australian Plate 2000)km eastuad (Falsey \& Muther 1981: (baina at al. 1908). In the Palacogene the castern edge of the phate became a consergent boundars and oceanic terames were accered against the Austrabian Plate at aroons stages in castern New (iuinea, Vew (aledonia and northern New /eatand Malpas a al. 1092. 199tl. Since the begmang of the veogene the system has continued to esolse particularls in the formation of the thre-ridge preading system in the West Fiji Basin and with development of the lat (back-ate) Basin.

Geological setting

The Northand ophotise of mothern Xew Kaband (Fig. 1) comprises massifs of mainly basaltic wolcanic rocks, which form the upper thrust slices of the Vorthland Allochthon. It represents a key fragment in a commonly accepted regional model (Aubouin Cot al. 1977: Walcot1 1978: Parot \& Dugas 1980). Where it forms the youngest emplaced segment of an almost continuous Late Cretaceous focenc weanic belt that collided with eastem (ondwana diachronously, starting in the north in New Guinea in the Palacocene (D)a is 1971) followed by Ven (aledonia in the latter part of the Encene (Ai \& Aitchison 2000). Howewer. to understand the wole of the Northand opholite in the development of the

Sill Pacifice a mumber of points ned to be addresed includinge the tectonic setting in which it formed. when and where it formed. and how it relates wother regomal 心etomic elements.

Despice the effors of various workers (Malpas af al. ly92.
 the origin of the Nothand ophiotile has now se emerged. One of the bigges questions concerns its age. Traditomalla. it hat been accepted that the opholite formed in the bate (retaceots to Palacocenc. based on miero- and matobanas reconered foon a number of massifs (Famell 1973: Brook ot al. 1988: 1 atsen d
 dates hate been based on k ir datime methods. but the latee spread of ages (100 +2 Nat) (Brothers de Delahowe 1982) hats made their interpertation and sumbers difficult in a tectonic
 the generation of the ophoblite is that it is difficult to develop a plate model that places such old oceamic erust adjacent b mothern Nen /ealand in the late olgoceme (Malpas of al. (992). In an attempt to resolve this commandm, we hate camied out multidisciplinary research insolving bed stadics. fadiometric dating. geochemintr, palacontohy and pabacomagnetism. (for example genchemical data cleary indicate that all rocks mapped as ophiolite formed in supasubduction-ance ensionments
 The geochemical data. howerer, when placed in a regomal context and matched with other ncarby soleanic bodies ce.g. Mount Camel bolcanics, and possibls the (") (retaceous Hikurangi Platean basalst (Kamp $198($) . bogether with our radiomeric data. suggest that the Northland opholite as it is curmend mapped. represents two distinct units: one relatively minor group of rocks that formed in the late (retacous and the main part of

Fig. 1. Simplified geological map of northern New Zealand showing the location of the Northland ophiolite and Cretaceous arc-related outcrops sampled for geochemical and geochronological analyses. Inset shows location of Northland in the SW Pacific with respect to New Caledonia and Papua New Guinea.
the allobhthomos iencous wrame that fomed in the late ()ligocene

Field exposures

Vorthland ophiolico
()nterops comsist primarily of basaltic pillow lasas and less common sheet floms. Basalt dominates with subordinate diabase and gabbro. wegether with minor alkatic rocks (Larsen \& Partier
 ultamatic roch crop out at Xorth (ape (Bemnet 1976) (Fig. 1)
and include a saried of lithologies including serpentinite. cumalate harforgite and therabite olivine clanopyroxenite. welatite dyke and homblendite (Malpas of al. 1992). In addition. minor intermediate and acis intousice rocks that include diorite. yarat, diorite and plagiogranite form part of the terane
 are present as irtegular dykes and micro-sills intuded into the high-lele gathros of the opheolite.

Crebucous ar-melated rocks
Rate volamiclastic rocks are exponed in tho small of
$10 \mathrm{~m} \times 10 \mathrm{~m}$) outcrops on the Nf: coast near Whangaroa massif 17. Fig. 11. Alkalic basalts are conlined to the lowest exposed stratigraphic level of the Apenga massif in south central Northland and are overlain by tholeitic basalts. Transitional basalts consist of sheet flows and less common pillows and are restricted to the Bluff massif on the west coast hetween Ahipara and Cape Reinga (massif 5 . Pig. 1). The volcanchastic rocks and the transitional basalts probably represent an extension of the Mount (amel basemem terrane (bsace of al. 19se). The alkalic basalts may represent the southermmost extension of or a unique basemem terrane different from that of the Mount Camel terrane.

Petroleg.

Petrological differences between the ophiolite and are-related rocks are readily apparem. Thelesitic basalts of the Northland opholite comprise primarily labradorite (phenocryst cores Anse

 and magnetite with rare orthopyoxenc and olis ine. They display textures characteristic of submarine basalt and exhibit secondary alteration phases tepical of hydrothermally altered submarine volcanic rocks, i.e. chlorite epidote palagonite and reolites (stilbite lammonite).

Basaltic intrusite equivalents of the tholecitic basalt include diabase and gabbo, and intermediate and acid differentates of diorite and plagiogramie. As with the basats. the diabase and gabbro comprise primarily plagioclase. clinopyroxene and magnetite. Gabbro plagioclase is bytownite (An-s we whereas diabase plagioclase is essentially labradorite ($\mathrm{An}_{\text {ow }}-1$). Augite is the clinopyowene in both the gabbro and diabase. The diorites consist of andesine (Anso s2) amphibole (cummingtonite), quartz, are augite and titaniferous magnetite. Plagiogranite is composed of albite (Ans; s). quarť. rare amphibole and augite. chlorite. amphibole and titaniferous magnetite. Micrographic textures are well developed in the plagiogranite manifest as granophoric intergrow the of allbite and quarts. The plagioclase compositions decrease in Ca and sympathetically increase in Na with increasing fractionation from gabbro to diorite and to plagiogranite.

The transitional basalts of the are-related suite are best classified as spilites or keratophyres (the rolcanielastic rocks are interpreted to represent reworked transitional basalt). The spilites comprise albite phenocrst cores Anz s. groundmass cores Anz (0). rare green. phochroic augite (phenocrysts Wose
 (grothite). (linopyroxene is absent from the groundmass.

The opholite-related alkalic basalt consists of labradorite

 olivine pseudomorphs composed of calcite and iddingsite. amphibole and magnetite. The are-related alkalic basalts are grossly similar to those from the opholite: however, olivine pseadomorphs are absent. the groundmass clinops roxene composition is
 3 wt"ov. $56 w t^{6}$), and amphibole is absent.

Geochemistry

Analytical techmiques

Some 120 samples collected trom 20 massifs (tig. I) were cleaned and crushed in an agate mill. Major element abondances were obtamed by

 except Hf. Ta. Xhi were determined on presed pellets by XRF at the

 of llong kong w detomine selected trace clement (llf. Fat Vh) and RE concentrations. Complete antuses of whataic and plutonic rock of the Xorthland upholite and the Cetacoun are are arablable from the Browh Libaty Decument Supply (entre, Benton Spa. Wetherby. Dent Yorhnhe

Results

Hopper \& Smith (fe9() were the firs to deleet a suprasubduc-tion-rone signature for rocks forming the Vorthand ophtotite based on their eseothemical study of gabbro and sheeded basaltic intrusise rocks from North (ape in the far north of Vorthand (fig. 1). Research conducted by Thompoon at al. (1997) an plutonic rocks. and Vicholson if al ZOOOG, h) on tholeitic basaltic rocks of the Vorthand ophiolite corroborate the findings of Hopper \& Smith (1906). (icochemical data from this study further substamtiate these findings (Fige Za and b). An important feature of our dataset is that it is the first to unequivocally show that prexiousty mapped rochs of the ophiolite can be subdevided not only on the basis of petrological and geochemical chatacteristics, but also by geochronology

Like the nomal mid-ocean ridge basalt (N-MORB)-nomalied signature displayed by the ophiolite basalts, the oblamiclastic rocks hate a prominent negative Nb amomaly with respect to Th and Ce but display higher N-MORB-momalised concentrations of No (lig. 2c). This pattern of higher concentations of N ,
 is typical of calc-alkaline are basalts (Pearee 1982).
(hondrite-nomalized REE patterns for all wolcanie rocks are shown in Figure 3. The Northland opholite basalte are light RIE: (L.REE) depleted of gencrally fow concentration (maximum to : chondrite) indicatise of an V-MIORB-like depleted magma source (Fig. 3a). The alkalic basalts display I.RELE and midde RII: (MREE) entichment (Fig. 3b). A single sample shows I RI:I: enrichment not present in the tholefitio basalt samples. sugesesting that it is umelated to these basalts. In stark contrast th the tholecitio basalts, the wolanic rocks of the are-related suite display significan L_RI:I: and moderate MRI: Emrichment, suggesting formation by melting of an I REA-Emiched source (fige 30).

Plagiogramite chemistry

Figure 2d shows the similarity of X - QO ORB-mormalised patterns of the diorites and dated plagiogranite sample No KL 19.1 to those of the ophiolite gabbroic suite. Vegatise P and lif anomalies sugesest apatite and te Ti oxide fractionation. Shown in Figure 3 dis the chondrite-nomalised RELE composition of the dated plagiogrante (sample Not 19.1) the less elolled diorites and the 'parent' gabhore suite. The largely hat RIS pattern of the diorite and plagheramite with minor IREL depletion is identical to that of the opholite gabbroic parent suite from which it differentiated and is typiab of plagingramites in general (Coleman \& Donato 1979). Its pattern is similar to signatures reported for plagiogranites from other ophiolite complexes feg. the Karmong opholite. Pedersen \& Malpas 198t: the Sarikaraman opholite foyd at al 199s) and has been shown to represent exteme fractional ervataliation from a hadrous gabbroic source (Pedersen \& Malpas 198t).

Fig. 2. N-MORB-normalized patterns for all rocks from this study. MORB concentrations are from Sun \& McDonough (1989).

Tertonice aftimitios

 display a negatue th anomaly and an embehment in latoce bon lithophile elements (I It la). These two features are indeatise of formation in a suparabdection-sone em iromment. Ithis is confiomed in the Th IIf Ta diagram of Wood fogo) (Whatham 2003). The ditferences between the opholite and (retaceous arerelated rocks are shown in fienere 4. Son. the tholeitice hasalts plot almont conticly as back-are basin bibalts. with some owerlap

 and volembelastic andesites phot as contimental basalds and combental are hasalos. Eepectiocly Whattam 2003).

The likelihood of formation in a back-are embemment for the opholite tholematic basals is exablished when a comparison of
 tom-fonc lasas of the lat back-are basin data compided by

 exer. the Xomband opholite basalts display shagter hagh lield
 concentations of the tholetitic hasalts ate compated with western
 (0) the former (Whathan 2003) particulaty hasalts of the Vorth Fiji back-am ham datal compiled by knitad \& Ole (1905)

SHRINIP I Pb analysis of plagiogranite zircons

Amalical kehmigue

 311

Reswls

 that displas a hehls compled internal stracture Nany crystals are equatat and mon contain well-defined sector ance atthough there are some small orevens the on the exterion of the ery stals. Hensere the intemal complexits of the zireons dese not affect
 low i concentation regions. and erystah of difternt moppla-
ology all give the same age within the andytical uncertainties. The mean senpbine age based on $2+$ amalyses is 28.3 : 0.2 Ma. where the unceraint! is the 20 error on the mean. The results are slighty discordant. with a mean ${ }^{2-1} \mathrm{~Pb}{ }^{25 \mathrm{~S}} \mathrm{U}$

 constratined and camot be used. The data are comsistent with there being a single age population of timons. The \varnothing^{\prime} value for
 \therefore : 0 age it is 0.64 . These valese indicate that the fircons are from a single Gussian distributom figus 5 is al somendia nlon of all of the data and shows a single group of concordant zircons. In the inset of Figure 5, the discordant zircon of Figure 5 has been removed, so that the data for the other grains can be shown on an expanded scale. There is no age difference between the low and high U concentration analyses and no evidence of disturbance since 28 Ma .

Zr / 4

Subdivisions are as follows:

$\mathrm{AI}=\mathrm{WPA}$
$\mathrm{C}+\mathrm{D}=\mathrm{VAB}$
AII $+\mathrm{C}=$ WPT
$\mathrm{D}=\mathrm{N}-\mathrm{MORB}$
$\mathrm{B}=\mathrm{P}-\mathrm{MORB}$

Fig. 4. Tectonic affinities of rocks of the Northland ophiolite and the Cretaceous arc. Fields from Meschede (1986). Subdivisions are as follows: AI, within-plate alkalic; AII + C, within-plate tholeiitic; B, enriched MORB; C + D, volcanic-arc basalt; D, normal MORB.

Fig. 3. Chondrite-normalized patterns for all rocks from this study. Chondrite concentrations are from Nakamura (1974).

Table 1. Ion microprobe analytical $U-T h-P b$ data for zircons separated from plagiogranite sample NUKU 19.1

Spot	$\mathrm{U}(\mathrm{ppm})$	Th (ppm)	$\mathrm{Pb}(\mathrm{ppm})$	Conc. (\%)	${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ age (Ma)	${ }^{207} \mathrm{~Pb} /{ }^{235} \mathrm{U}$ age (Ma)	${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ age (Ma)	${ }^{208} \mathrm{~Pb} /{ }^{232} \mathrm{Th}$ age (Ma)
NUKU 1	1131	2055	7	13	28.5 ± 0.4	31 ± 3	219 ± 264	29 ± 1
NUKU 2	531	625	3	7	27.9 ± 0.4	33 ± 1	425 ± 61	28 ± 1
NUKU 3	637	768	4	0	28.8 ± 0.8	26 ± 12	0 ± 60	27 ± 4
NUKU 4	264	250	1	0	27.5 ± 1.0	23 ± 18	0 ± 81	26 ± 7
NUKU 5	488	459	3	1	30.6 ± 0.4	95 ± 3	2340 ± 52	54 ± 2
NUKU 6	1434	2706	9	69	28.4 ± 0.4	28 ± 3	41 ± 262	27 ± 1
NUKU 7	1348	2244	8	0	27.8 ± 0.5	27 ± 6	0 ± 44	28 ± 2
NUKU 8	672	753	4	0	28.3 ± 0.6	26 ± 9	0 ± 68	27 ± 3
NUKU 9	1568	3416	10	0	28.5 ± 0.4	23 ± 6	0 ± 39	27 ± 1
NUKU 10	1535	5203	13	28	29.0 ± 0.3	30 ± 3	103 ± 230	28 ± 1
NUKU 12	743	1591	6	0	27.9 ± 0.8	20 ± 12	0 ± 41	30 ± 2
NUKU 11	119	85	1	25	28.1 ± 2.0	29 ± 34	113 ± 1610	28 ± 18
NUKU 13	1565	3486	10	0	28.1 ± 0.3	27 ± 3	0 ± 37	27 ± 1
NUKU 14	624	728	3	28	28.3 ± 0.5	29 ± 6	102 ± 457	27 ± 1
NUKU 15	1448	2713	9	0	28.0 ± 0.3	26 ± 3	0 ± 42	26 ± 1
NUKU 16	473	497	4	10	28.6 ± 0.8	32 ± 13	291 ± 742	32 ± 5
NUKU 17	1348	2429	8	25	28.6 ± 0.4	30 ± 5	112 ± 358	28 ± 1
NUKU-18	1685	4060	12	128	28.9 ± 0.3	29 ± 2	23 ± 207	27 ± 1
NUKU 19	658	694	3	13	28.3 ± 0.3	31 ± 1	215 ± 61	28 ± 1
NUKU 20	549	592	3	10	27.9 ± 0.4	31 ± 1	286 ± 67	29 ± 1
NUKU 21	629	717	3	0	28.3 ± 0.6	28 ± 8	0 ± 56	26 ± 3
NUKU 22	1000	1514	6	19	28.1 ± 0.3	30 ± 1	145 ± 52	27 ± 1
NUKU 23	759	1215	5	17	28.7 ± 0.3	30 ± 1	167 ± 58	29 ± 1
NUKU 24	1420	2796	9	19	28.3 ± 0.3	30 ± 1	148 ± 42	27 ± 0
NUKU 25	667	754	4	0	28.0 ± 0.5	25 ± 7	0 ± 62	26 ± 2

Sample locations are shown in Figure 1. Uncertainties are 1σ (Whattam 2003).

Fig. 5. Concordia plot of all the SHRIMP $\mathrm{U}-\mathrm{Pb}$ analytical data of plagiogranite sample NUKU 19.1 and (inset) an expanded version with removal of the lowest U , largest uncertainty zircon, and the discordant zircon in the main figure.

${ }^{11}: r^{39}$ Nr step-heating

Inalutical hérhniques

Onh sample that were fient with hate of mo condence of alteration
 Where pesem. scomdan wink and altation produch were metion-

Which the were ultamomally deanced The samples. wefghtg between 50 and folos. were wraped in aluminiun foil packers betome being bached bomitudinally in the aluminum imadiation cans. which are \therefore 105 mm k ong and 25 min in diameter for monitoring the gradient of neuten bla and obtaming falacs for the age calcatation of the sample thee of more packets contaning satable sandand minerahs, in
 f9821 were sathed with the samples in the same canister the samples were iradiated alone with the IP-6 bionite standard with K A age of
 Reactor in laman for soth. Ster madation, the sample were fused

 of the I salaes ohtained from the moniter standards was adopted in the
 was rather amath. The isotope interferances callaned by (a. K and of were
 calculated from ar isotopic ration atier comections had heen made for
 atmophertie of contamimation. Analatical procedure hase been outlined
 shom in Table 2 . cxample of photed age poctrum dateram are shown in ligute 6 . and the data are vammariad in lathe ?

Resuls

Samples were eategorised and interpreted based on the morphologe of ase spetra procured. Which rethects the phases present in the rocks. The age spectum mophologies can be broadly dovided into two ypess. the chamateristics of which are deseribed helom.

Tipe / age yectram morphologi: Samples of this type are anonge the fresthest based un microsopic obseraation) of the opholite vaite athough minor atteraton is apparent as uralite after chopstoxeme and palagonite after glass. Platean exist between the lomest kmperature steps $(4.50500()$ and inter-

Table 2. ${ }^{40}$ Ar ${ }^{39}$ Ar data for samples that yield plateau dates

Sample	Assn.	Type	Rock type	$\%$ of ${ }^{39} \mathrm{Ar}$ released (for given plateau)	Plateau temp. $\left({ }^{\circ} \mathrm{C}\right)$	Plateau age (Ma)	Isochron age (Ma)	${ }^{40} \mathrm{Ar}{ }^{36} \mathrm{Ar}$
HOUT 1.1	NO	1	Thol. basalt	80	450-900	26.1 ± 1.0	24.4 ± 11.8	322.7 ± 25.7
MITI 2.1*	NO	2	Thol. basalt	88	750-1150	28.3 ± 3.4	27.1 ± 1.5	296.6 ± 1.1
NUKU 5.1	NO	1	Thol. basalt	94	500-970	26.2 ± 0.6	24.3 ± 1.8	315.9 ± 5.9
NUKU 6.1*	NO	2	Thol. basalt	82	650-1080	28.8 ± 0.5	27.9 ± 1.5	302.5 ± 16.3
OPO 3.2	NO	1	Thol. diabase	95	500-1000	25.1 ± 1.2	24.6 ± 4.1	293.1 ± 17.5
OPO 5.1	MA	1	Thol. basalt	93	640-1150	18.7 ± 0.3	18.0 ± 0.4	305.3 ± 5.4
TANG 1.1*	NO	2	Thol. basalt	76	480-980	28.1 ± 1.6	29.4 ± 2.3	291.9 ± 14.6
WHGP 4.1*	NO	2	Thol. basalt	74	500-1050	29.6 ± 1.0	31.1 ± 1.0	289.0 ± 4.4
43555 (CB)*	NO	2	Thol. basalt	77	450-1020	29.3 ± 0.7	30.1 ± 1.1	296.6 ± 6.8
TA 15	NO	n.a.	Alk. basalt	99	725-1200	25.0 ± 0.8	27.5 ± 0.4	263.6 ± 19.3
TOTA 1.1	CA	n.a.	Calc.-alk. volcaniclastic	71	590-1020	109.0 ± 0.7	107.3 ± 2.4	358.8 ± 0.7
WHANG 1.1	CA	n.a.	Calc.-alk. volcaniclastic	83	620-1050	107.4 ± 1.2	106.7 ± 1.2	320.8 ± 36.7
APE 3.1	CA?	n.a.	Alk. basalt	60	710-1060	92.2 ± 0.6	98.1 ± 0.9	202.2 ± 0.9

'Type' refers to spectra 'morphology' type (see text). Sample localities are shown in Figures 1 and 9. NO, Northland ophiolite; MA, Miocene arc; CA, Cretaceous arc. n.a., not applicable.
*Samples that fully satisfy the minima criteria needed for acceptance of a ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ age derived from a step-heating experiment (Lanphere \& Dalrymple 1978).
mediate temperature steps (900) 1000 () with the release of
 three samples yield plateat ages that are concordant with their (reverse) isochron ages. The plateaux extend from the earliest step (temperature wpically below 600 () 10 intermediate temperature steps (masimum 1000 () Ater carefully comelating the (a K and $(\mathrm{l} \mathrm{K}$ values for these platean steps with the chemical compositions of phases present in the samples. we conclude that the gats composition of these plateat steps reflects the outgassing of glass at low temperatures. followed by that coming from groundmass plagoclase and chanoproxene. Thus. the obtamed platean ages should be considered as crystallization (or eruption) ages. The anomalously old ages obtained at the highest temperature steps possibly reflect degassing of phenocryst assemblages. which possess mherited argon. The plateau ages are $26.1: 1.0 .26 .2 ; 0.6$. and $25.1 \div 1.2$ Ma for the tholeitic basales and 250 : 0.8 Ma for the athatic basald sample.
 smples is smilar to that of Type 1 apart from aboomally old ages appearing in the lowest temperature steps (Fig. ob). Petrographic evidence shows that the Type 2 samples possess tarying degrees of alteration patagonite after glass. uratite after clinopyroxene. minor atteration of plagioclase to chlorite and epidote. and chloritization of microcrstalline groundmass assemblages). which is typically found in hredrothemally altered voleanic rocks. verertheless. they yed the most robust apparent ages. satisfying all foum mimum criteria required for the aceeptance of a ${ }^{+14}$ Ar " Ar plateall age (lanphere d Dalrymple 1978). The platean ages for this group (2x.3-3.4. $28.8 \pm 0.5 .29 .3 \pm 0.7$
 of 28.3 : 0.2 Na for sireons separated from the plagiogrante. Platean exist between low temperatures $(+50) 500$ ($)$ and high temperatures (1020 1150 (') with the release of between 74 and 8か"." "Ar for a given plateata. The discordant (old) ages obtamed in the earliest and latest steps of the experiments are presumably due to excess areon: the spectra probably represent the product of hydrous phases (i.e. deuteric or secondary chlorite) outgassing at low temperatures and the outgassing of altered phenocrysts at high temperatures. which are similar to those described by Lo et al. (1904) for attered samples of woleanic rocks of the Luzon are
ncar latwan. Becanse of the instabilit (i.c. low retentiveness) of
 is released. vielding discordant (old) ages in the low-memperatur fraction of the specta. For the high-kmperature steps excess argon held in low intermediate temperature retentice stes (i.e. cores). is liberated. refleced in the discordant fold) ages at the high-emperatare fration of the spectar. At intermediate kimperature steps. gis dominated by the outgassing of matered plagioclase represents the plateata. As discassed by I or al a (1904). in many cases the platean age of an altered sample can stall provide constraints for the age of eruption, as the possible effects of alteration may be retlected in ate disturbances only at low- and hightemperature steps. Vhoreser if the alteration reactions are hydrothermal the plateatu ages can still be considered as the ages of bolemism, as such atteraton ofien ocemes concurrenty with whemism and the age difference maty be smaller than the error of the age estimate.

Consensus on the age of generation lor the Xorthland ophiolite has been elaside despite barions radometric stadies emplosing K Ar dating on whole rocks and mineral separates (Bothers de Delahoye 1982: Hopper \& Smith f90(o). The large range and anomalously old ages (100 +2 Ma) (obtained by Brothers $\mathbb{\&}$ Delahoye (198_{2})) compared with this stuty max he attributed to non-ecquilibration of the samples with atmospleric Ar. although this explanation is speculative because Brothers \& Delahose did not provide t" Ar "Ar ratios.

Combersely: Hopper \& Smith (fy) of obtamed K At ages
 and homblende from gabbro and shected intrusine rocks at Xorth (ape. They atributed the younger ayes bo argon loss. However. the older ages (i.e. ©. 25 Nat ate ont significantly different from the average age of $a, 28$ Ma for the thometioc basalts in this study.

As shown in Tables 2 and 3 . cight of the mine ophiolite basilt samples range from 29.6: 1.0 N1a to $25.1: 1.2$ 11: (the ale of one sample of 18.7 - 0.3 Na is interpreted to represent a sample from the Miocene are complex. a conclusion that is supported by its chemical chatacteristics) The ophatite alhalic basalt sample
 Fraction of ${ }^{39} \mathrm{Ar}$ released Fig. 6.

Table 3. Data for all dating methods employed on geological material from the Northland ophiolite (Whattam et al. 2003)

Sample name	Massif	Assn.	Geological medium	Dating method	Age (Ma)
HOUT 1.1	HOUT	NO	Thol. basalt	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	26.1 ± 1.0
MITI 1.1	MITI	NO	Thol. basalt	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	28.3 ± 3.4
NUKU 5.1	NUKU	NO	Thol. basalt	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	26.2 ± 0.6
NUKU 6.1	NUKU	NO	Thol. basalt	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	28.8 ± 0.5
OPO 3.2	OPO	NO	Diabase	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	25.1 ± 1.2
OPO 5.1	OPO	MA	Thol. basalt	${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ step-heating (WR)	18.7 ± 0.3
TANG 1.1	TANG	NO	Thol. basalt	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	28.1 ± 1.6
WHGP 4.1	WHGP	NO	Thol. basalt	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	29.6 ± 1.0
43555	CB	NO	Thol. basalt	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	29.3 ± 0.7
NUKU 19.1	NUKU	NO	Plagiogranite (zircon extracts)	SHRIMP $\mathrm{U}-\mathrm{Pb}$ analysis	28.3 ± 0.2
TA 15	CR	NO	Alk. basalt	${ }^{40} \mathrm{Ar} /^{39} \mathrm{Ar}$ step-heating (WR)	25.0 ± 0.8
TOTA 1.1	TOTA	CA	Volcaniclastic	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	109.0 ± 0.7
WHANG 1.1	WHANG	CA	Volcaniclastic	${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ step-heating (WR)	107.4 ± 1.2
APE 3.1	APE	CA?	Alk. basalt	${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ step-heating (WR)	92.2 ± 0.6
HOUT 2.3	HOUT	CA?	Biogenic chert	Radiolarian faunal assemblage identification (Whattam 2003)	L. CretaceousUpper Palaeocene

NO, Northland ophiolite; MA, Miocene arc; CA, Cretaceous arc; WR, whole rock. All ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dates are plateau ages. Sample localities are shown in Figures 1 and 9 and massif abbreviations are given in Figure 1.
vields an age of 25.0: 0.x Ma. The obder (6 . 108 Ma) ages obtained from thee whemictastic samples are probably attributable to them being fragments of the genetically unrelated (retaceous are (i.e. the Iouhora Complex. and derivatives thereof). The distribution and location of massifs from which samples were dated are shown in Figure 7.

Palaeomagnetism and the formation latitude of the Northland ophiolite

Palaeomagnetic data can potentially be used to deduce where the Northand opholite formed. (assidy (1903) reported the only palacomagnetic study so fier carried out on Northand ophiolite rocks, presentine data from the Cape Reinga Massif. at the tip of the Northand Penimsula (six sites), and the Mangakaha Massif. 100 km to the Sl: (also six sitcs). As with many palacomagnetic studies of ophiolitic material. the data obtamed were somenhat bariable. with only a limited number of sites vielding reliable results (five of the 12 sites of Van der Voo (1990) criteria are uncd as a gude: see Ali $\&$ A Atchisom 2000). Perhaps Cassidys most important conclusion. batsed on a subset of data. Was that the Xorthland opholite formed at about 1520 S a considerable distance north of its present-day position. and wen further from its late Oligocenc obduction site $(6.38 S$ based on the modelling of Schentino $\&$ Scotese 20011 . However mosement of the ophiolite so far south before obduction is unlikely (Ali \& Aitehison 2000 because the regional sectors of the major adjacent plates. i.e. Pacific and Indo- \ustralian, both had considcrable absolute northward motion components throughout the Pabacogenc.

Palucomagnetic metheds

Core specimens of 25 mon diancter were whathed using a gavolinepowered roch-drill. The cors wore oriented using a Brunton matnetic compass inclinometer momed on a Pomeroy orientation table. (emerally sis or sexen mini-cores were collected trom ach site although at some pillow latai site it was only possible bo collect three or four samples because of drilling-induced fracturing of the cores. The structural attitude was measured at cach site to provide a tilt correction. Stability of
the matural remament magnetization (NRMO of each secimen was assossed after stepwise aternatiog field (af) demagnetiation was used to isolate the sarious matotio componems. The spectmons were processed using a IRE 1 spimer magnetometer and demagneti/ed uing a
 1907) were used to abalye the data from cath sample (representatise phots are shons in tig. is. In most cases. principat component analysis

 demagnetifation-step difectoms fisher statistics were abo used to

Wasters Quary: thipara (hhipara Massif)

Seven sites were sampled in a 5060 m thach succession of subhorizontally dipping pillow lavas exposed in Masters Quarry. 5 km from thipara (fig. 1). An eighth site was also sampled in a 4.5 m wide diabase dyke at the western end of the quary. Three pillow lava sites yielded data with westerly declinations ($(6.264$) and moderately inclined positio inclimatons (c. 40) (see Table 4). These directions are interpreted to record a reverse polarity remanence. which has experienced considerable clockwise rotation. In contrast. the dye ($\mathrm{V}(\mathrm{O}$) has a nothery (4.9) steep upward-directed remanence $(-73 .+1$. indicating a negligibly rotated nomal-polarity magnetization. The pillow dyke directional difference strongly suggests that remanence is primary: but the apparent lach of antipodality sugesest that the two mits are of different ages. (seochemicalls. howerer they are identical. suggesting that they are magnetically coeval. the dyte being a - eeder for the pillows. It is therefore likely that Site Vox records a substantial offect in the time-aleaged direction of the geomagnetic field when the dye was emplaced.

Tantoa Point. west of thiprata (Ahipara Massif)

Four sites were sampled from a series of \therefore metrewide subvertical NW-trending basaltic dykes exposed along a halfkilometre stretch of the shore elose to lamoa Point. West of Ahipara (Fig. I). None of the sites some of which included samples from the immediately adjacent country rock pillow

Fig. 7. Sketch of Northland showing the localities and ages obtained from the various dating campaigns. (See Tables 2 and 3 for more details.) The date in italics represents the SHRIMP $\mathrm{U}-\mathrm{Pb}$ age obtained on zircons from plagiogranite sample NUKU 19.1. Abbreviations are as in Figure 1.

f. Fig. 8. Vector-end-point plots (Zijderveld 1967) showing examples of AF demagnetization data, in tilt-corrected coordinates, for Northland ophiolite specimens. (a) NO4.7 (pillow basalts) and (b) NO8.8 (diabase dyke) from Masters' Quarry; (c) NO14.6 basaltic sill, eastern Cooper's Beach; (d) NO21.7 pillow basalt site at northern end of 90-Mile Beach; (e) NO26.2 pillow basalt site at Cable Bay; (f) NO28.7 site in a diabase dyke at the western end of Cooper's Beach. The numbers indicate the AF demagnetization step in mT . Initial NRM intensities $\left(J_{\mathrm{o}}\right)$ are shown below the specimen name (units of $\mathrm{mA} \mathrm{m}^{-1}$).

Fig. 9. Summary of palaeomagnetic directional data. Upper plots are for all Class 1 and 2 sites: (a) in situ; (b) tilt corrected. Lower plots are for all Class 1 data: (c) in situ; (d) tilt corrected; sites NO3 and NO24 have been removed. Filled and open symbols are downward and upward directed, respectively. The site mean directions are shown with their 95% confidence circles (equal angle stereographic projection).
lavas y velded useful data (Table +). The magnetization in these rocks is dominated by a randomly oriented low-coercisty remancone. which probably records a laboratory storage field.

Coopers Be'ath (Mamgataniwha Massif)

The Northland ophiolite crops out at headlands to the cast and west of Coopers Beach on the castern Vorthland Peninsula (Fig. 1). Two sites were sampled from the eastern headland. where a pillow lava sequence intruded by a sill of 2.5 m thickness is exposed (dip is to towards the SEl, The two sites (NO) $3-4$) yielded similar directions (Table t). Whieh in tilt-corrected coordinates have a mean of direction of declination (D) of 247.0, and inclimation ($/$) of 54.2 . where the angular separation is $7.1^{\prime \prime}$ (the two sites are sufficiently far apart $(4 \mathrm{~m})$, for complete thermal resetting of the pillows not to hate taken place, which might have led to the two sites carrying identical directions). At the western end of Coopers Beach (1. 2 km away from Sites NOI3-4) a single site (NO2K) was sampled in a diabase dyke of 3 m width. which yielded a mean direction of $D-123 . x^{\circ}$. I -536 (Table 4). Interestingly. the inclinations of the two Coopers Beach onterops are in absolute terms, identical (and of opposite polarity). The deelinations sugesest large-scale clockwise rotation of the two outcrops, although the chearly more rotated
eastern section (120) indicates that the (wo are separated by a tectonic boundar?.

(ahte Bar (Maungataniwha Massif)

Two sites were sampled from Northland ophiolite pillow lasas al the castern end of Cable Bay (which lies just to the cast of (Oopers Beach) (fig. I). (One site (NO)5) vielded useful data. although its mean direction ($/$) $14.6 .1 \quad 58.0$) is based on just three of the fise samples processed from this site (Table 4). Site NO26 viched a broadly simitar direction (1) 19.7 . $I=-37.0$) , but the associated (6, and k values (30.0. 10.4) suggest that the data should not be used for tectonic modeling.

Bellinghamis. Quarra, somth of Kititaiat hhipara Massif)

Two sites were sampled in pillow lasas and sheed flows in Bellinghams Ouarrs. just to the south of Kamaia (Fig. 1) Site NOI5 yielded data (tilt-corrected $/$) and $/$ of 340.4 and 50.3). but the ($e_{1}=(22.1$) and k (18.2) values (Table +) indicate relatively poor clustering of the directions and. based on Van der Voo (1990), the direction should be excluded from any tectonic interpretation.

Vorthern end of 9()-Mile Beach ((if)e Reinga Massif)

The northern end of 90 -Mile Beach (IVg. 1) is marked by steep cliffs and rugged terain developed in vorthland ophiolite rocks. Two sites each were sampled in the pillow lasas (VO21-2) and presumed feeder dehes (NO23-4). The two pillow lava sites vielded northeasterly declinations with inclanations in excess of -(ot) (Table th indicating a nomal-polarity magnetization rotated through about 50 . Again this contrasts with the (feeder) dyke Site VOİt. Which yielded a negligibly rotated declination and a somewhat shathow inclimation ($\quad 36.5$) , athough as at Bellinghams Quars. the (6, and k values (17.2. 20.8) are "marginal".

Te Paki Station. near (iape Reinga (Cape Reinga Massif)

One site sampled in the shee flows exposed in a small quarry at Te Paki Station (Fig. 1) fabed to yold amy usefol palacomanetic data (Table +)

Palacomagnetic summary and interpretation

As can be seen from the preceding section (as well as the ans and k values listed in Table +). the obtained diections are of variable qualite. thus to caleulate the latitude at which the Northand opholte rocks formed at it has been necessaty to sereen the data. The site-mean directions were allocated to one of three classes ((lass 1 being good. (lass 3 being dubious) based on the clustering statisties and the suggestions of Van der Voo (1990). Nine sites belong to (lass 1 (ates 15.3) and 1 wo sites (with (6) 20) are assigned to (lass 3. Tiwo sites that sit close to the cut-off limit of Van der $\operatorname{VoO}(1900)$. NOS and No 24. are assigned to (lass 2 (l"ig. 9a and b). In all cases. the tiltcorrected mean inclinations, using the statistice of Meladden d Reid (1982), yield slighty better (tys and h values than the directions in geographical coordinates (Table +), atthough it mus be recognied that in only two exposures are the dipse greater than 25° and in many outcrops the rocks ate flat-lying. this this attitude test is limited.

The mean inclination of the (lass 1 sites gives a fomation
Table 4. Summary of palaeomagnetic data for the Northland ophiolite (Whattam 2003)

Site Lithological unit	$N c(N p)$	In situ		Tilt corrected		Polarity	$\alpha_{95} / \mathrm{AS}\left({ }^{*}\right)$	k	Site class
		D	I	D	I				
Masters' Quarry; (173 12.9^{\prime} E, $35^{\circ} 10.5$ 'S); strike none; dip none; dip direction n.a.									
NO1 Pillow basalts	No useful data								
NO2 Pillow basalts	No useful data								
NO3 Pillow basalts	$4(6)$	264.7	34.7	264.7	34.7	R	17.6	28.2	2
NO4 Pillow basalts	$4(5)$	248.8	42.1	248.8	42.1	R	10.7	74.8	1
NO5 Pillow basalts	No useful data								
NO6 Pillow basalts	$3(6)$	280.2	41.2	280.2	41.2	R	15.3	65.7	1
NO7 PBs close to dyke (NO8)	No useful data								
NO8 Diabase dyke	$5(6)$	4.9	-73.4	4.9	-73.4	N	8.0	91.4	1
Tauora Point ($173^{\circ} 03.2^{\prime}$ E, $\left.35^{\circ} 11.4^{\prime} \mathrm{S}\right)$; strike none; dip none; dip direction n.a.									
NO9 Dyke	No useful data								
NO10 Dyke	No useful data								
NO11 Dyke	No useful data								
NO12 Dyke	No useful data								
NO 13 Pillow basalts $(4 \mathrm{~m}$ from NO14)	5	292.3	28.0	252.9	53.5	R	7.2	115.0	1
$\begin{array}{ll} \text { NO14 } & \begin{array}{l} \text { Sill }(\text { c. } 2.5 \mathrm{~m} \\ \text { thick }) \end{array} \end{array}$	$5(6)$	289.3	34.7	240.9	54.6	R	5.3	213.1	1
NO15 Pillow basalts	$4(5)$	357.2	29.8	340.4	50.3	N	22.1	18.2	3
NO16 Pillow basalts	No useful data								
North end of 90-Mile Beach (172 ${ }^{\circ} 44.2^{\prime}$ E, $34^{\circ} 31.8^{\prime} \mathrm{S}$); strike 260°; dip 10°; dip direction north									
NO21 Pillow basalts	5(7)	30.4	-56.7	43.2	-63.6	N	5.7	179.0	1
NO22 Pillow basalts	2(2)	39.0	-55.2	52.3	-60.9	N	10.2*	n.a	1
NO23 Dyke									
NO24 Dyke	$5(7)$	6.0	-27.0	7.9	-36.5	N	17.2	20.8	2
Te Paki Station ($172^{\circ} 45.4^{\prime}$ E, $34^{\circ} 29.5{ }^{\prime} \mathrm{S}$); strike 308°; dip 12°; dip direction $N E$									
NO25 Pillow basalts No useful data									
NO26 Pillow basalts	$3(5)$	14.6	-58.0	14.6	-58.0	N	3.8	1050.3	1
NO27 Pillow basalts	$4(5)$	19.7	-37.0	19.7	-37.0	N	30.0	10.4	3
NO28 Diabase dyke	$4(5)$	123.8	-53.6	123.8	-53.6	N	4.9	349.0	1
Grouping of the site data									
Mean inclination Class 1 only in situ	$9(13)$						11.1	16.8	1
Mean direction Class 1 only in situ	$9(13)$	78.1	-56.4				19.8	7.8 31.9	1
Mean inclination Class 1 only tilt corrected	9(13)				-58.1		8.0	31.9	1
Mean direction Class 1 only tilt corrected	$9(13)$			66.4	-60.2		14.0	14.4	
Mean inclination Class $1+2$ in situ	$11(13)$		-49.7 -54.1				$\begin{aligned} & 10.2 \\ & 19.4 \end{aligned}$	15.3 6.5	$\begin{aligned} & 1+2 \\ & 1+2 \end{aligned}$
Mean direction Class $1+2$ in situ	11(13)	70.3	-54.1				$\begin{array}{r} 19.4 \\ 9.1 \end{array}$	6.5 17.3	$\begin{aligned} & 1+2 \\ & 1+2 \end{aligned}$
Mean inclination Class $1+2$ tilt corrected	$11(13)$ $11(13)$				$\begin{aligned} & -53.9 \\ & -57.5 \end{aligned}$		$\begin{array}{r} 9.1 \\ 14.6 \end{array}$	17.3 10.8	$\begin{aligned} & 1+2 \\ & 1+2 \end{aligned}$
Mean direction Class $1+2$ tilt corrected	$11(13)$ $13(13)$			61.9	-57.5			10.8 12.3	
Mean inclination Classes 1-3 in situ Mean direction Class 1-3 in situ	$13(13)$ $13(13)$	72.9	-47.0 -56.4				10.3 22.9	12.3 4.3	$1+2+3$ $1+2+3$
Mean inclination Class 1-3 tilt corrected	13(13)				-52.7		8.6	17.6	$1+2+3$

patacolatate of 38.8 : 10.6 S . whereas the mean of the (lass 1 and 2 sites gives a slightly fower value of 34.4 -9.0 S (ritically. howeser both values place the formation site of the Xorthland ophiolite close to its c. is S obduction site (see Fig.
 Tiwo other points to emerge from the plots in ligure ${ }^{9}$ are: (1) the (lass 1 and or (lass 2 data display a visibly better clustering in tilt-corrected rather than in sim coordinates (see Table +): (2) the majorit! of sites appear or recond a large clockwise rotation (60) With regard to point (1). howeder, the respective eluster statistics of the neme (Class 1 sites ($/$) 78.1 . $/=56.4$. (6)5 19.8 and k 7. x for the in silu direction versus I) ob.t. 1 (0).2.a95 14.0 and $k \quad 1+4$ for the tiltcorreced dimetion) indicate that this apparent grouping should be treated with some caution. With regard to (2). first it is necessary 10 subteate 7 \& from the elockivise declination offect to account for the 大vogeme motion of the Australian Plate reatice to the geographanal spin axis thased on the palacomagnetic pole compilation of Aeton \& Kettles (199(1)). Second. the apparem consistency ia declination offects is somewhat unexpected as the massifs ate klippen and in such a statation local vertical-axis rotations would probably bate taken place between bodies during emplacement. thereby scattering the declinations (it should be noted that local rotations are recorded by the Coppers Beach sites) Aeknowkedging the limitatoms in the dataset. it is postubated that the Xorthand opbiolite was emplaced as a single bods. and that the physical "gaps" between massifs are due to post-emplacement erosion.

Fig. 10. Plate reconstruction for the SW Pacific at 28 Ma , based on Schettino \& Scotese (2001), with minor modifications following Little \& Roberts (1997) (for the eastern North Island immediately to the north of Chatham Rise). The generation latitude of the Northland ophiolite is shown with the small open square (mean inclination of the Class 1 sites) and inverted filled triangle (mean inclination of the Class 1 and 2 sites); the associated errors of both values are $c .9^{\circ}$. Also shown are the PacificAustralia instantaneous rotation poles for 27, 25 and 23 Ma (from King 2000, following Sutherland 1995), and the approximate motion directions (for 25 Ma) of the Pacific Plate relative to the Australian Plate in the area to the east and NE of Northland, as well that about the rotation pole.

Plate tectonic interpretation

The possibility that the Xorthland ophiolite formed close 10 its obduction site at $夭$. $3 S^{S}($ Fig. 10$)$ maker generating a tectonic model somewhat more statehtforward that with the carlier published data of (assidy (1903). Which implied that the ophiolite formed at 1520 S , a considerable distance north of its obduction site. Along with the new geochemseal and radiometric age-dating data. It is suggested that the opholite was generated in the South lijii Basin. It this idea is eorreet then it is lirst necessary to deselop a lectonic model that can aceount for the units emplacement and also accommodate other seological knowledge for the region during the oligoceme and Miocene. Factors to consider include: (1) the period over which the south Fiji Basin formed and its tecomic relationship with northern New Zealand: (2) conspicuous changes in plate motions particularls for the mator plates. Australia and the Pacilie: (3) the time of emplacement of the opholie: (t) any releant stractural data: (5) the intiation and derelopment of the Vorthland are

Magnetic sumess of Watts at al. (1977) and Dasey (1982) in the South lifi Basin identified amomaly lineations 12 7: Nabahoff a al (1982) sugeseded that anomall 13 is locally present. This stggests, using the (ande do Kent (1995) matnetic polarity time scale that sprading started at around 3.3 Ma, and possibly 30 Ma. and that it contmoed 10 a 25.5 Ma. During formation. the bouth Fiji Basin addacent to nothern Vew Zealand had a N S SW-oriented spreadine centre. At preseme an extinct transform. the Ventog Meines Fracture $/$ one (Van der lingen 1667 , sepatates the south fiji Basin from nowhern dew /eaband but, as will be explaned below. We sugeses that another transform. located to the SW of the Venme Veinese Fancture Kone may hat heen the origimal plate boundas.

Femporalls: the Vorthland upholite emplacement corresponds closely $t=$ a change in relative motion of the Indo-
 eastern Indonesial and Papua vew (eune indicates that in the carls Miocene the Australian continemal plate in Xew fumea collided with an extensice inta-oceanic are that had fomed doring the late focene oligocene on the southern edee of the Philippine Sea Pate (Ali d lall logs: see also llall 2002). At about the same time the Hikurangi lateau. a submerged $3.5 \times 10^{\circ} \mathrm{km}^{2}$ (retaceous late igneous por ince immediately to the Nt: of (hatham Rise appears to hate collided with western New Kealand. Vortimer \& Parkinson (lyog) argued that the coeval emplacement of the Vorthland and fast (ape allochohons in the Late oligocenc laty Miocene mas hat been mogered by this edon.

The plate motion modelling studion of suthertand (1995) and the subregional reconstructions by K ing (2000) indicate that the rotation pole between the Austrabian and Pacific Pates migrated
 passing oner the central part of the (hatham Rise in the late Oligocene earlest Nocenc (Fig. (o). With regard to mothem New Kealand. the basie effect was wo gradally inerease the consergence ate betheen the two mam plates. Throughout this time the comergence direction remained roughly west-to stidirected but marginal basing growth in the Australian Plate to the East of the North Ishand (i.e. South Fiii Basin in the oligocence. Hare Trough during the Plob-Pleistocene) renders this locally more comples oner specific time intervals

A lourth consideration is the direction in which the Northand aldochthon was thrust oner the basement of northern Vew Zealand: Rait at al. (1991) and Rait (2000) have clearly shown from detaiked structural work that the unit was emplaced from
the N：$(+0: 10)$ ．As such，the compaled data are entarely compatible with the modelling of Sutherland（1995）and King Zooor）．A timal important piece of information concerns the Xorthland are．Which developed along the length of the northern Vorth lsland in the early and mid－Niocene（Raddock \＆Spöth fose：Smith of al．19x）：Havmard a al．2001）．The basic Eenomery of the preserved are sugests that the oceanic litho－ sphere comsumed bemeath Xombland was at a trench that was aliened approsimately NVIS sist

Ite tectonic seenario that is presented below and in Ifgure 1 ！ accommodates all of the aboe events．phases and features that
 period 3320.1 ar（fige 1／at）．We embisage spreading at the southuestern end of the South figi Basin to have been on exther side of a Nt：SH－orionted ridec．The basin would hate formed in a back－are setting abone the subducting Pacific Plate（a useful modem－day ambere being the neaby Hane Trough Pacific Plate subduction stsems．To decouple the spreading basin from northern New Ceatand．they must hate been separated by a tamsform fambe As prevously mentioned the current boundars beween nerthern Ven／ealand and the South Fiji Basin is the Vening Vemes fracture Zone Howeser for reasons that will be explamed in the obduction phase deseription．we deduce that the original boundary was another transform that paralleled and las （0）the SH of the Vening Veines fracture／one the evidence for Which mat be preseried at（amp Bay（lamson lo9））and possibls at the eastern heddand of cable Bay（Whattam． personal observations）．Hereatier．We refer 0 this transtom as the（amp Bay framborm

S around 25 Na the Hikurane Plateat on the Pacific Plate was brought up against northern Xew Zeatand．Although this collision would hase been soft（the platean at this time would hat been sery close to the Australia Pacific Plate instantameous rotation poles．it may hate catused regional disruption，particu－ baty preading in the South fiji Basin and at other important tectonic boundaries in the region．for example the（amp Baty Tramstorm（Fig．l1b）．lndeed．with a gencral WSW SW－directed plate consergence direction in the area to the No of Korthand （e．g．King 2000）．it mat then hase heen possible to ramp－up the upper－erustal portion of the southern South Fiii Basin onto the continental marein of Xew／ealand at the Camp Bay Transform （the ensisaged lakinge mechanism being not too dissimilar to that of（ x burgh（ロリフマ）and more specifically to Model 2 of Malpas a al．（l90？）Shortl atior this plate reorganzation． subduction of the lower－crastal portion and mantle intially，and a foll lithospheric section soon after．mas have led to the genera tion of the Corthand are．The tectomic model would also account for the sencration of the Three King Ridge（as an are）to the north of Vorthland．

Other considerations

The awatable biostratigraphic data trom inter－pillow sediment in the ophiolite span the Late Cretacoous to Palacocenc（farnell 1973：Brothers \＆Delahose 1982：Brooh of al．I988：Larsen \＆ Spött 1989 ）．Which contrasts with the obtatined late Oligocenc radiometric ages．This disparity between the two data soume can be explained in one of three was：（1）the radiolaria belone 6）（retaceons are－related rocks that were mistakenly identified as opholite：（2）the radiobarians belong to unceognifed other basement terame（ice basement excluding the Perman Jurassic Torkese Supergroup metagreywacke：（i）there are at least two ophiolites．

In the first semaros．the Late（retaceous Pabacocene fossils
 $107.4: 1.2$ and $109: 0.7 \mathrm{Ma}$ ．Which has been mistakenty identiled as part of the vorthland ophiolite．As the lithologies are not significanty different fom the oligocenc Vorthand ophiolite rocks and exposume is not alwas pertect．some massifs could incluck rocks of both ages For example at the Houto massil （massif $1+$ ．Figs 1 and 7 ）Mastrichan Palacoceme radiolaria Here reconered from sediments interealated with pillow basalt （Whattam 2003）and a ${ }^{+0} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ age for a tholeitic basalt from the same massif records an Oligocene age（Tables 2 and 3）．The I fouto massit is known to contain alkatic mets（Ifughes 1966）：as the opholite complex and the（retaceous are complex both hate alkalic sutes．the radiometric age probably records the age of the Northand ophotite whereas the fossils possibly record the age of the oder alkalic sutie within which the atre intercalated．Related （0）this the atkatic basalt of the basal segment of the nearby
 92 Ma．This sample may be from a fragment of the lower （retaceous foubora complex（fatac at ag as）．Which is interpreted to be a paratochthonous or allochthonows sequence structurally underlymg the Xorthland Alfochthon．Homeser as sample IIOET 2.3 （chert）is in close proximity to radionetrically
 more likels fo be interalated within rate tholeitic basalts of the Mount（amed Terrane．As stach．these tholetitic basalts cannot be distinguisted from the ophiofite basalts without radiometric dates．

A second platsible explanation is that the various fossil－ bearing basalts belong to the atorementioned basement terrane and or to wher distinet basement terranes．It is posible that the ＂basement of Vorthand（ie＂other basement＂．excluding the Permian Jarassic Torlesse metagreywate consists of a collage of oceanic terames that record deposition of fossils in submarine oceanic basins near offshore Vew Zeadand．It is possible that these lerames were emplaced onto the Vorthland Peninsula at barymg times between the（retaceous and oligocenc before the ophioite was emplaced．of immediately preceding（effectively synchromous with）its emplacement．

A third plamible explanation is that there exist（at least）two imbricated opholites：a volumetrically dominant one of oligo－ cenc and a subordinate one of（retaceous age

Finally．We comment on why the new palacomagnetic datase differs from that reported by（assidy（1903）．Essentially the inclinations recorded in the earlier work appear to be amom－ alously low when compared with those obtained in the present study．The lirst possibility is that the tilt corrections applied to the ofd datase stes ate incorrect（we note that only four of the 12 sites（assidy sampled needed tilt correet to be applied）． Second．the data amalysis was inadequate：for example the picking of the chamateristic directions for individual speci－ mens．A that possibility．which seems unlikely based on the new age－dating infomation presemed herein．and the inherent problem of mosing the allochthonous material south．is that Cassidy achatly sampled the oold＂（l pper Cretaceous lower Palacogenc）portions of the Northand opholite Whatever the reason．the new data are more amenable to the deselopment during the Palatogene of a tectonic model that can also accommodate a variety of features we already know about nothern X en $/$ ealand and the SW Pacific in the mid－and late （cnoroic．

Conclusions

Data from the रorthand opholite suggest that it formed between 29 and 26 Ma in a suprasubduction－rone environment at c． 35 S

b. $\sim 25 \mathrm{Ma}$

c. $\sim 21 \mathrm{Ma}$

Fig. 11. Schematic illustration of the New Zealand region in the late Oligocene (a), terminal Oligocene (b) and early Miocene (c), showing the generation and proposed obduction model for the Northland ophiolite. In part, the model draws upon Rait et al. (1991), Yan \& Kroenke (1993), Sutherland (1995), Mortimer \& Parkinson (1996), King (2000) and Rait (2000). The large arrow in the NE corner of each map shows the approximate convergence direction of the Pacific Plate relative to Australia. The inferred sense of motion at different parts within the region is shown by the teeth on the subduction zones, and arrows and electrical current symbols next to the faults. In all diagrams, the eastern part of the North Island of New Zealand has been rotated counterclockwise to remove the affects of Pliocene-Recent extension in the Taupo Volcanic fieldHavre Trough. Additionally, northern New Zealand north of the plate boundary separating it from the Chatham RiseHikurangi Plate has been modelled using Little \& Roberts (1997). SFB, South Fiji Basin.
and as such was probably generated in the southern South Fiji Basin. where a series of Oligocene magnetic anomalies (12 7A according to Watts of al. 1977: Dan ey 1982: 13 74 according to Malahoff et al. 1902) have been identified. Based on the time seale of Cande \& Kent (1905), these anomaly data suggest that the South Fitio Basin formed between 33.5 and 25.5 Ma .

We postulate that the ophiolite was emplaced following a major adjustment along a transform that separated the South Fiji

Basin and the northern New Zealand basement as a result of ${ }^{-}$ collision of the Ulikurangi Platealu with the New /ealand margin at c. 25 Ma . The WSW SW convergence derection the Patific Plate was undergoing relatise to Australia resulted in the upper crust of the South Fiji Basin being "llaked` onto the basement of northern New Zealand. thereby resulting in the Northland ophiolite (it should be noted that only at North (ape (Fig. I) is the lower portion of a classic ophiolite suite preserved. the
 the south fibi Basin lithopphere driven against the Xustralian Plate was subducted. which then led to the descopment of the

A model insolving inception of the kemadec colville ate ridec. and by implication the 心athlishment of stongly comer Esent subdectoon at the Pacitic Australia Plate boundary at 25 Ma fand hence imitiation of Viocence are wamism) is substantiated hy microfomil and k. V data for roch from the kermadec
 Farls Diocence are whanic rochs on Xarthland. and just to the "ese of the penimatat. is probably due to the highly obligue W. Silditecked subduction of the South Vigi Basin. With this new model the 1 hese kinge. Ridere are would hate fomed abouc the

Our model incompates the conclusions of Rait af al. (19) and Ratit 12000 . Which dealt with the emplacement of the Xorthand allochthom. ane genematom model and the early Noneene deckopment of the vorthand penimsula The proposed seenario is alor consistem with the regional tectonic work of Sutherland (1905) and King 20000 .

 for the bermen mathes. S. Sable for his help in the dentitication of

 (imanol.

References

 285 95: 950

 th : 159.512

 $\because-2-4$

 (1) \untalaia. Bullemin. 128

 R1men 78-701, 2+1 $\therefore+5$

 $1:-1+4$

 2940.

 cectonic fabric of marginal baven morth of vell／eatand．fommal of

 （ hemo af（somber，50．20 2lN

 101B．が かりの

 38．75－－ 5

 ज，321，15

 327．15－17

 Rom，201 ごこ

 1 in
 202 24

 3＋4 ：

 Katmos apholite．Wextern homas．（immblumom Io Vimedoes ame abrbersi 88 in

 26．105 204

 ／Ealalld latlertin．26．205 $21:$

 14．心19（：

 2l：2？

 10．12s0 1．8日l
 19

 1：－10t

 Smic．1． 419 」？

 Hone keng：

 1（以）（1）－04

