HKU CSIS Tech Report TR-2004-04

To appear in Software Engineering Research and Applications,
C.V. Ramamoorthy, R. Y. Lee, and K. W. Lee (eds.),
Lecture Notes in Computer Science, vol. 3026, Springer, Berlin (22})

An Automatic Test Data Generation System Based on
the Integrated Classification-Tree Methodology~ ™ ***

A. Cain!, T.Y. Chent, D. Grant!, Pak-Lok Poor, Sau-Fun Tang 3, and T.H. Tsé

1 school of Information Technology
Swinburne University of Technology
Hawthorn 3122, Australia
2 School of Accounting and Finance
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong
e-mail: af pl poon@net. pol yu. edu. hk
phone: (+852) 2766 7072 fax: (+852) 2356 9550
3 Department of Finance and Decision Sciences
Hong Kong Baptist University
Kowloon Tong, Kowloon, Hong Kong
4 Department of Computer Science and Information Systems
The University of Hong Kong
Pokfulam Road, Hong Kong

Abstract. Grochtmann and Grimm have developed the classification-tree method
(CTM) to facilitate software testers in generating test cases from funttpaaifi-
cations. While the method is very useful, it is hindered by the lack of a syttem
tree construction algorithm. This problem has been alleviated by Chen et al.
via their “integrated” classification-tree methodology (ICTM). In this pape
describe and discuss a prototype systnICT that is built on ICTM.

Keywords Automatic test case generation, black box testing, category-partition
method, choice relation framework, classification-tree method, saftieating

* (© 2004 Springer. This material is presented to ensure timely disseminatsaiofarly and
technical work. Personal use of this material is permitted. Copyrigtitadinrights therein
are retained by authors or by other copyright holders. All persopgirg this information
are expected to adhere to the terms and constraints invoked by eachsaotipyright. In
most cases, these works may not be reposted without the explicit g@mef the copyright
holder. Permission to reprint/republish this material for advertising omptimnal purposes
or for creating new collective works for resale or redistribution to ssree lists, or to reuse
anyrcopyrighted component of this work in other works must be obddfimen Springer.

** A preliminary version of this paper was presented at the 1st ACIS latierral Conference
on Software Engineering Research and Applications (SERA03) [3].
*** This work is supported in part by a grant of the Research Grants @oohdiong
Kong (Project No. HKU 7029/01E), a research and conferencet gfaThe University of

Hong Kong, and a grant from the Australian Research Council (ARCdvery Project:
DP 0345147).


Administrator
HKU CSIS Tech Report TR-2004-04


1 Introduction

The generation of test cases is an important aspect in seftesting because it affects
the scope and, hence, the quality of the process [1, 7]. Tif®itance has inspired
researchers to develop various test case generation nsethiobng these researchers,
Grochtmann and Grimm [8] have developed thessification-tree metho@TM). The
major concept of the method is to generate test cases viattstraction of classifica-
tion trees (which we shall denote l1is). Although the concept of CTM is promising,
this method has a major weakness —the absence of a systemegticonstruction
algorithm. As a result, users of CTM are left with a looselfimied task of constructing
7s. For complicated specifications, this construction tasKd:be difficult and hence
prone to human errors. If @ is wrongly constructed, the quality of the resulting test
cases generated from it will be adversely affected.

The problem of the absence of a tree construction algorithetiéviated by Chen et
al. via their integrated classification-tree methodoldgyTM) [5]. With this methodol-
ogy, software testers can construzs by using a systematic tree construction
algorithm. In this paper, we discuss the development andtiwmality of a prototype
systemaDDICT (which stands foAutomat® testData generation using thategrated
ClassificationTree methodology) built upon ICTM.

The rest of the paper is organized as follows. Section 2rmglthe major concept of
ICTM [5]. Section 3 describes in detail the hardware andvearfé platforms on which
ADDICT is built, the various system features mbDICT, and the major contribution
of ADDICT. Section 4 discusses our planned extensiomODICT. Section 5 describe
other work related to CTM and ICTM. Finally, Sect. 6 summesiand concludes the
paper.

2 Overview of the Integrated Classification-Tree Methodolog
(ICTM)

Basically, ICTM [5] helps testers generate test cases frpetifications via the con-
struction of7's. The tree construction task is supported by a predefinedéim. ICTM
consists of the following steps:

(1) Decompose the specification into sevdtaictional unitsus that can be tested
independently. For eact selected for testing, repeat steps (2) to (7) below.

(2) Identify classifications and their associated classedie selected:. Classifi-
cationsare different criteria for partitioning the input domain tbie selectedu,
whereasclassesare disjoint subsets of values for each classification. Ferye
classificationX], its associated classes should partition the possiblesaX]
completely? The grouping of certain values in a single cla¥sx| indicates the
belief that a test case with any value|Xt x| is essentially as good as one with any
other value in that class [11].

5 In this paper, classifications are enclosed by square brackaisile classes are enclosed by
vertical barg |. Furthermore, the notatidiX: x| denotes classin classificationX.



(3) Construct alassification-hierarchy tabler,, for «, which captures the hierarchi-
cal relation for each pair of classifications.

(4) Construct alassification treer;, from (.

(5) Construct &ombination tabldrom 7. Various combinations of classes can then
be selected from the table according to a set of predefinedtgs rules. Each of
these combinations of classes is callgubtential test frame B

(6) Check allB's againstu, with a view to identifying whether they are complete or
incomplete. Given 8, if a standalone input te: can be formed by selecting one
element from every class iB, thenB is acomplete test framédenoted byB®).
Otherwise,B is incomplete Incomplete test frames are not useful to testing and,
hence, should be discarded before testing commences.

(7) From eachs®, construct a test case by selecting one element from eashiclg®.

In step (6) above, two potential reasons fd o be incomplete are: (8 contains
insufficient classes to form a standalone inputitp and/or (b) the combination of
classes iB contradictsu . Readers may refer to [5] for details. Nevertheless, when we
describe the various system feature\bbICT in Sect. 3.2, we shall elaborate on the
above steps with examples.

3 ADDICT: A Prototype System for Automated Test Case
Generation

3.1 Technical Details

We have carefully considered the hardware and softwarépias on whichapbict
should be built. To improve its applicability, we have implentedaDbDICT on the stan-
dard PC platform with Microsoft Windows as the operatingtegs ADDICT is written

in Delphi, which is a Pascal-based object-oriented prognang language. We have
applied object-oriented techniques when designing anthgadDICT. For examples,
a classificatiorn[X] is an aggregation of classés: xi|, [X:Xz], ..., |[X: x|, and[X] is
related to other classifications through hierarchicalti@iships. In generalabDICT
does not impose a maximum limit on the number of classificatend classes, as long
as the available memory in the PC can support them. The dureesion of ADDICT
supports steps (2) to (5) of ICTM outlined in Sect. 2 above.

3.2 Functionality of ADDICT

We use a commercial specification, denotedPWRCHASE, to explain each step of
ICTM mentioned in Sect. 2 and to describe the various featofeaDDICT. Part of
the specification is listed below:

Part of the SpecificationPURCHASE for the Program Ppyrcuase:

XYZ is an international bank that issues credit cards to aygxt customers. ... For
each purchaseppyremase Shall accept the transaction details together with theouari



information of the credit card. Thereafter, validation bése details is performed in
order to determine whether the purchase should be apprdvedfollowing are the
various inputs t@Ppyrcuase:

(a) Details of Credit Cards:

e Class of Credit Card: Either “Gold” or “Classic”.

e Credit Limit of Credit Card: For gold credit cards, the credit limit is either
$5000 or $6 000. For classic credit cards, the credit liméiitker $2 000 or
$3000.

o ...

(b) Details of Purchase:
e Current Purchase Amount: It can be any amount greater than $0.00.

Step (1) of ICTM (Decomposition of Specification):

The first step is to decompo®ERCHASE into a number of independent functional
units us. In our case, because of the simplicity RRCHASE, no decomposition is
needed. In other words, the entire specification can beetlead one functional unit
denoted by pypciase-

Step (2) of ICTM (Identification of Classifications and Clas®s):

From U psyrcnase, the tester identifies 9 classifications and 22 classes. Thwer
of classes contained in a classification ranges from 2 to &. féllowing lists four
examples of these classifications together with their agtamtclasses:

(a) Classification [Class of Credit Card], wifBlass of Credit Card: Go|dand|Class
of Credit Card: Classia@s its two associated classes.

(b) Classification [Credit Limit of Gold Card], witfCredit Limit of Gold Card: $5,000
and|Credit Limit of Gold Card: $6,000as its two associated classes.

(c) Classification [Credit Limit of Classic Card], witlCredit Limit of Classic Card:
$2,000 and|Credit Limit of Classic Card: $3,00@s its two associated classes.

(d) Classification [Current Purchase AmouPRgy], with |Current Purchase Amount:
PA < $2000.00, |Current Purchase Amount:$2000 < PA < $300000|,
|Current Purchase Amount: $3000 < PA < $500000/, |Current Purchase
Amount: $500000 < PA < $6000.00, and |Current Purchase Amount:
PA > $6 00000 as its five associated classes.

It can be seen from (d) above that a class can be defined foga cdinalues and, hence,
although all the classes in a classificat[¥ should cover the input domain relevant to
[X], the number of classes jX] is not necessarily large.

Consider Fig. 1 which depicts an input screen providedbyiCT for entering the
full and short names of classifications and classes. In thigdi the tester has defined
classification [Credit Limit of Gold Card] in the upper-l&fox, and clasfCredit Limit
of Gold Card: $500Din the bottom-right box. Additionally, the tester is addiclgss
|Credit Limit of Gold Card: $6 000through the upper-right box.



( E ClassificationForm =10l x|

@9 X

Class Mame: |$BDDD

Full Mame: IEredit Lirnit of Gold Card

Shart NamEZIB Shart Mame: |b2

Description: [T wa possible credit limits: Add Class
Either "$5000" or "$5000"| Classes —_I

Fig. 1. Input screen for classifications and classes

Step (3) of ICTM (Construction of Classification-Hierarchy Table):

After entering all the classifications and classes imtmICT, the next step is to
construct the classification-hierarchy talH@ygcuase for PURCHASE. Here, the tester
defines the hierarchical relation for each pair of clasdifics [X] and[Y] (denoted by
[X] — [Y]). There are four possible types of hierarchical relatiofolsws:

e [X] is aloose ancestor of [Y] (denoted byX] < [Y]),
e [X]is adtrict ancestor of [Y] (denoted by{X] = [Y])
e [X]is incompatible with [Y] (denoted by{X] ~ [Y]), and
e [X] hasother relations with [Y] (denoted by[X] ® [Y]).

In the above, the symbols=”, “ =", “~”", and “®" are known ashierarchical
operators Readers may refer to [5] for details, especially the camilétin determining
the correct hierarchical relation f@X] — [Y]. Note that the conditions associated with
each of the above hierarchical relations are mutually eskeduand exhaustive and,
hence|X] — [Y] is well defined. These hierarchical relations will detererine relative
position of[X] and[Y] in 7. For example[X] = [Y] corresponds to the situation where
[X] will appear as either a parent or an ancestdyofn 7 .°

Figure 2 depicts an input screen to capture the constraifi@redit Limit of Gold
Card] on [Credit Limit of Classic Card]. These captured d¢rmsts will be used by
ADDICT to determine the appropriate hierarchical operator foef@rLimit of Gold
Card] — [Credit Limit of Classic Card]. In the input screen, the &édndicates that
|Credit Limit of Gold Card: $5 000cannot be combined with any class (thai Gredit
Limit of Classic Card: $2 000and |Credit Limit of Classic Card: $3 0QPin [Credit
Limit of Classic Card] to form part of any complete test frarBg clicking the ‘Make

6 For theparent-childrelation, a classification is “directly” placed under one or more classes
of another classification. For tlencestor-descendantlation, a classification is “indirectly”
placed under one or more classes of another classification.



( +__- RelationshipForm -Ol x|
If Credit Limnit of Gold Card is

45000 ¢ AtLeast One of

Credit Limit of Clazsic
Card's Classes are
walid

Make all the same |

Fig. 2. Input screen for constraints between a pair of classifications

all the sane” button near the bottom-right part of the input screen, #stdr also
indicates that the constraint redit Limit of Gold Card: $6 000on all the classes in
[Credit Limit of Classic Card] is the same as that@fedit Limit of Gold Card: $5 000
on all the classes in [Credit Limit of Classic Card]. This esithe effort in defining
all constraints individually. Based on the entered comstsan Fig. 2, ADDICT will
automatically assign the hierarchical operatef’ to [Credit Limit of Gold Card]—
[Credit Limit of Classic Card]. In shorabDICT will determine and assign the appro-
priate hierarchical operator {X] — [Y], based on the captured constraintgXf on
[Y].

Figure 3 depicts the completedpyrcaase With every element in it contains a hier-
archical operator and corresponds to the hierarchicaioalbetween a pair of classi-
fications’! We usetj; to denote the element in thith row and thejth column ofs;.
Consider, for examplédys in # pyrcnase. It contains the hierarchical operator™, and
corresponds to [Credit Limit of Gold Card} [Credit Limit of Classic Card]. Note
that the background color of all unassigned element# jgrcrpse IS initially set to
“blue”. Once the constraints corresponding to an elemgiftave been entered and a
hierarchical operator has been assigned to it, the backdroolor of that element will
change to “white”.

With regard to the construction af;,, the following features provided bypDICT
are worth mentioning:

(a) A constraint of ICTM is that the parent-child or ancestescendant hierarchi-
cal relation must banti-symmetridor any pair of classifications. Otherwiseza
cannot be constructed. In other worf$] = [Y] must imply[X] # [Y]. Software

7 Note that, short names instead of full names for the classifications (aotesare entered via
the input screen as depicted in Fig. 1) are displayed as row and coladmge in# pyrchase-
The idea is to fit the entiré/ pyrcuase iNto the screen. In the situation wher&ygrcuase IS t00
large (because of too many classifications) that exceeds the size ofé¢lea sthen vertical and
horizontal scroll bars can be used to view different par# @frcuase-



File Edit Project Window Help

Y= =T e N =]
Classification-Hierarchy Table |

m
o

COOEORE
CeOOEREU
434340

QEOEOEOEE

&
&
&

|Project 1 &

Fig. 3. Classification-hierarchy table pyrcuase for PURCHASE

testers may need to redefine the original set of classifitstiad classes in order to
meet this constraint while preserving the requirementh@target system (see [5]
for details).

Regarding this issue, ICTM helps testers identify such uravdéed situations by
means of the hierarchical operatas”. Whenever[X] < [Y] is being defined, we
know that a symmetric parent-child or ancestor-descendimnarchical relation
occurs betweefX] and[Y]. In this case, testers will be alerted to redefiXgand
[Y] (and their associated classes) so as to prevent a loop in

Considert;z andta1 in # pyremase Of Fig. 3. They correspond tdClass of Credit
Card]=- [Credit Limit of Gold Card) and ([Credit Limit of Gold Card]® [Class
of Credit Card], respectively. Suppose, during the process of enteringdine
straints between these two classifications, the tester hdg 1@ mistake and even-
tually causedADDICT to assign the hierarchical operatas” to both tyo andto;.
Accordingly, the background color tf; andt,; will change from “white” to “red”,
thus alerts the tester that symmetric parent-child or aocelescendant hierarchi-
cal relations occur. Note that, in this case, the unwarthsitiation happens to
occur because of an input error; symmetric parent-child rmestor-descendant
hierarchical relations in fact do not existineyrcaase. |n SOMe other cases, however,
this occurrence may result from correct inputs because stnarparent-child or
ancestor-descendant hierarchical relations do existdstvgome pairs of classifi-
cations identified fron:.



(b) In [5], Chen et al. have identified three properties of tkerarchical relations as

follows:

Property 1: If [X] = [Y], then]Y]® [X].

Property 2: If [X] ~ [Y], then[Y] ~ [X].

Property 3: If [X]®[Y], then[Y] = [X] or [Y]® [X].

Using these properties,bDICT provides a certain degree of automatic deduction

and consistency check during the constructiomgf Examples are given as below:

(i) Automatic deduction: Consider Fig. 2 again. This input screen is used to
enter the constraints of each class in [Credit Limit of Golard} on [Credit
Limit of Classic Card]. The entered constraints caus®ICT to assign the
hierarchical operator~” to [Credit Limit of Gold Card]— [Credit Limit of
Classic Card]. Later, without automatic deduction, thésteis required to enter
the constraints of each class in [Credit Limit of Classicd}an [Credit Limit
of Gold Card] via another input screen similar to Fig. 2, flseonstraints have
not yet been entered. Now, by using Prop. 2, this requiremetdnger exists
becauseaDDICT will automatically deduce the hierarchical operator forddit
Limit of Classic Card}— [Credit Limit of Gold Card] to be ~". Accordingly,
the background color fotz, (which corresponds to [Credit Limit of Classic
Card] ~ [Credit Limit of Gold Card]) will change from “blue” to “gre® to
inform the tester that the hierarchical operatortfgiis automatically deduced
(note that the background color for all the table elementesghhierarchical
operators are manually defined is “white”). Besides Prop.oqyiCcT will also
provide automatic deduction based on Prop. 1. In fact, withfeature of
automatic deduction, only about three-quarters of theahihical relations in
H purcaase have to be manually defined.

(i) Consistency Checking: Considert;> andtz1 in # pyrenase iN Fig. 3 again,
which correspond tg@[Class of Credit Card}- [Credit Limit of Gold Card)
and ([Credit Limit of Gold Card]® [Class of Credit Card] respectively.
Suppose,

e The constraints fo»; are entered before that fap.

e The constraints fot; are entered correctly, causia@DICT to assign the
hierarchical operator$” to ta.

e Thereafter, the tester has made a mistake during the entng abnstraints
for t12, causingaDDICT to incorrectly assign the hierarchical operater™
totys.

This mistake is undesirable because incorrect hierariat@lzdions will eventu-
ally result in the generation of incomplete test framesherdmission of some
complete test frames. Regarding this problempICT provides a consistency
check for the defined hierarchical relations. In fact, theoimect hierarchical
operator =" for t1, will be detected as an inconsistencyAypicT with refer-
ence to Prop(s). (2) and (3) mentioned above. This is bechassmbination
of ([Class of Credit Card}~ [Credit Limit of Gold Card) and ([Credit Limit

of Gold Card]® [Class of Credit Card] contradicts these two properties.
Accordingly, the background dfi; andtz; in # pyreaase Will change from



“white” to “red” to alert the tester to take correction act® An alert message
box will also be displayed automatically BypDICT to inform the tester about
the inconsistency (see Fig. 4).

+ ADDICT I ] [

File Edit Project Window Help

O] & 5=e 28|

+ 'Project 1

g

Eip|

Clazsification-Hierarchy T able I

B

X

The entered relationship is inconsistent with other relationships!

H

®®®®i®®®¢°

VOEVOOORE
YOOOEORE

| o

|Project 1 Z

Fig. 4. Message box to alert users about inconsistent hierarchical relations

In summary,ADDICT adopts the following principles in order to improve on the
effectiveness and efficiency of table construction:
e To perform automatic deduction instead of manual definifmmeach unas-
signedtj; whenever possible.

o To perform consistency checking after every manual dedimiift;; .

Step (4) of ICTM (Construction of Classification Tree):

Based on the completed pygcnase in Fig. 3, ADDICT will automatically construct
the corresponding classification tregurcase (S€€ Fig. 5), based on a predefined tree
construction algorithm provided in [5]. Similarly t& pygcaase, Short names are used
for the classifications and classes in displayinggrcmse, and vertical and horizontal
scroll bars can be used to view different partsrefrcusse if the tree is too large to fit
into the screen.

In step (5) of ICTM described in Sect. 2, potential test frafs are generated by
selecting combinations of classes from the combinatiotetab7 , based on certain
selection rules. Thereafter, the combination of classesvery B has to be checked
againstu, with a view to classifyingB either as a complete test frar® or as an



& ADDICT i — (ol x|

Ele Edit Project Window Help

D& & [E=e] SSim

Classification-Hierarchy Table § Classification Tree ?| Potertial Test Frames

Fig. 5. Classification tre@ pyrcuase for PURCHASE

incomplete test frame. The reason for checking is becausasmwnally, a& may not
be able to capture all the constraints and relationshipsgrotassifications identified
from . This problem results in the selection of some incompleteftames from the
combination table of .

Let Ng and Nge denote the total number &'s and (B®)’s, respectively, selected
from the combination table af . In [5], Chen et al. define an effectiveness mekic
forany7 as:

— NBC
= N

Es 1)

E, is defined as such based on the argumentthatmerely a means to constry&®)’s

for testing. The ideal situation is that &% are complete (that i$yg = Ngc) and, hence,
E, = 1. Obviously, a small value d&; is undesirable since more effort is required to
identify all the incomplete test frames. Furthermore, thanual identification process
is prone to human errors, especially whidg is large. If some(B°)’s are somehow
mistakenly classified as incomplete and hence not being, tisedomprehensiveness
of testing will be adversely affected.

Chen et al. [5] observe that a major reason for a small vall&- a6 the occurrence
of duplicated subtrees im. To deal with this problem, they develop a classification
tree restructuring technique to suppress the occurrencrigfcated subtrees imr .
This restructuring technique is part of their integrateassification tree construction
algorithm. Two important properties of this restructuriteghnique are: (i) to reduce
the value ofNg by pruning some duplicated subtrees framand (ii) to retain all the
(B®)'s and, hencelNge remains unchanged. Because of these two properties, the val
of the effectiveness metrie,; can be increased. Readers may refer to [5] for details.

10



In ADDICT, the construction of the resulting is performed on an incremental
basis — classifications and classes are firstly assemblethtgo form subtrees, which
in turn are joined together to form the resultimg During the tree construction process,
ADDICT will automatically detect the occurrence of duplicatedtsess. If duplicated
subtrees do exiseDDICT will apply the tree restructuring technique by Chen et al.,
in order to increase the value Bf- of the resultingr . Note that the tree construction
process, that incorporates the restructuring technicupeiformed byAaDDICT in a
fully automatic manner without human intervention.

Step (5) of ICTM (Construction of Combination Table and Sele&tion of Potential
Test Frames):

With T pyrerase in Fig. 5, the next step is to construct the correspondingaoation
table, from whichB's can be selected. This step is rather straightforward bgvitng
some selection rules given in [5], which will not be repedtede. Same a% pyrcrases
the construction of the combination table and the seleafdsis are done byabDICT
automatically. In our case, a total of 2B& will be selected from the combination table
of 7 pyrcuase DY ADDICT. Figure 6 shows a partial list &'s constructed bybDICT.

& ADDICT =1}

Eile Edit Project Window Help
Ol|E| & B B8

& Proj =10 x|
Cla n-Hierarcl by Table | Classification Tree  Potential Test Frames |

=1
Frame 4 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate Puichase of Aifine Ticket=Yes  Aiine Company = ABC L
Frame 5 | Class of Credit Cord = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate Purchase of Aifine Ticket=Yes  Ailine Company = BT
Frame 6 | Class of Gredit Cord = Gold Credit Limit of Gold Card = $5000  Type of Gradit Gard = Gomorats.— Puishass of Aifine Ticket=Yes  Aiins Gompany = Dther Airines
Frame 7 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000 Aitine Compary = Dther
8 Cre 35000 -0
g Cre 95000 -0

Frame 10| Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Coorate. Purchase of Aitine Ticket=Yes  Aiine Compary = Other
Frame 11 | Class of Credit Card = Giold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate. Purchase of Aifine Ticket=Yes  Ailine Company = Other Aiiines
Frame 12 | Class of Credit Cord = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate. Purchase of Aifine Ticket=Yes  ailine Company = Other Airines
Frame 13 | Class af Credit Card = Giokd Credit Limit of Gold Card = $5000  Type of Credit Card = Corporate. Purchase of Aifine Ticket=Yes  Aifine Company = Dther Airines
Frame 14 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Coparate.  Purchase of Ailine Ticket =Yes  Ailine Company = Other Allines
Frame 15 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Coparate.  Purchase of Ailine Ticket =Yes  Ailine Company = Dther Ailines
Frame 16 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate. Puichase of Ailine Ticket=Yes  Aiine Company = Dther Aines
Frame 17 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate.  Purchase of Aifine Ticket=Yes  Ailine Company = Dther Ailines
Frame 16 | Class of Credit Card = Giold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate. Purchase of Aifine Ticket=Yes  Ailine Company = Other Aiiines
Frame 19| Class of Credit Cord = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate. Purchase of Aifine Ticket=Yes  ailine Company = Other Airines
Frame 20| Class af Credit Card = Giokd Credit Limit of Gold Card = $5000  Type of Credit Card = Corporate. Purchase of Aifine Ticket=Yes  Aifine Company = Dther Airines
Frame 21 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Coparate.  Purchase of Ailine Ticket=Ho  Types of Dutlet = Bonus Outlets
Frame 22 | Class of Credit Card = Giold Credit Limit of Gold Card = $5000  Type of Credit Card = Coparate.  Purchase of Ailine Ticket=Ho  Types of Dutlet = Bonus Dutlets
Frame 23 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate. Puichase of Ailine Ticket=Ha  Types of Dutlet = Bonus Outlets
Frame 28 | Class of Credit Card = Gold Credit Limit of Gold Card = $5000  Type of Credit Card = Comorate Purchase of Aifine Ticket=Ho  Types of Dutlet = Bonus Outlets
Ll | _'l_I

N

Fig. 6. Partial list of potential test frames f8tURCHASE

Step (6) of ICTM (Differentiation between Complete and Incanplete Test Frames):
As discussed in step (4) above, the tester has to check d@fsheith ¢ pyrcrage 1O
see whether any of them is incomplete. In our case, no incaapst frame exists and,
hence, all the 24@'s are also complete.

11



Step (7) of ICTM (Construction of Test Cases):

For each of the 24(B®)’s, the tester selects an element from each class contained i
B® to form a test case. Consider, for example, the followBfdor U pyrcuase generated
by ADDICT:

{|Class of Credit Card: Gold|Credit Limit of Gold Card: $6 000 |Current
Purchase Amounf@): $500000 < PA < $600000, ...}

A possible test case f@ is:

(Class of Credit Card= Gold, Credit Limit of Gold Card= $6 000, Current
Purchase Amount $5123.40, ...)

Obviously, a total of 240 test cases will be constructedigmgtep for testingi pyrcrase-

3.3 Major Contribution of ADDICT

As mentioned earlier in the paper, the main purpose of ICTMADICT is to provide
a systematic method for the constructionzo$ from specifications. This feature does
not exist in CTM. Hence, users of CTM have to constrit in an ad hoc manner
based on their knowledge and experience. This ad hoc agpmaes not provide
assurance on the quality of the constructesd If theseT s are incorrectly constructed,
some(B®)'s may not be generated and, hence, parts of the system thitircdaults
may not be tested. In this respect, the contribution of ICTM abDICT is obvious.
Readers may note that the effectiveness of ICTM andicCT is greatly improved via
the automatic detection of symmetric parent-child or atwredescendant hierarchical
relations, the automatic deduction and consistency chgobd hierarchical relations,
and the automatic detection and removal of duplicated eabtfin order to improve on
the effectiveness metrie; ).

4 Planned Extensions to ADDICT

The current version oADDICT supports steps (2) to (5) of ICTM outlined in Sect. 2.
For step (1), the decomposition of the specification intessvi s is not a trivial task
that can be easily automated. Similarly, it is difficult, btnimpossible, to automate
step (6) regarding the differentiation between completkincomplete test frames.

With regard to step (7), we plan to extend the system featpregided by the
current version oADDICT in the following two ways:

(a) After the automatic construction of the combinationgaind the selection @'s
in step (5), the next task is to construct a test case fromye®erThis task can
be performed automatically bypDICT by arbitrarily selecting one element from
every class contained iB. Note that, in this approach, the generated test cases
may contradictu because th®&'s have not been checked againstto determine
whether they are complete or incomplete. Hence, the testetdcheck all the
generated test cases againsto see which of them are useful for testing.

12



(b) In (a) above, only one test case is generated for BadSimilarly, in the original
ICTM, only one test case is generated for e&H In our planned extension to
ADDICT, the approach in (a) can be made more flexible so that one c& test
cases can be generated for eBcfhis caters for the situation where the tester can
afford to testu with more test cases.

5 Related Work

Finally, we would like to compare CTM and ICTM with other rdd work, thus
allowing readers to have a better grasp of the current stagsearch and practice:

(1) Ostrand et al. [2, 11] have developed tagegory-partition metho(CPM) for gen-
erating test cases from specifications. The basic apprdaCPM is very similar
to that of CTM/ICTM —all of them aim at constructing a model of the consttsin
in the input domain so that combinations of compatible edssan be generated
and combinations of incompatible classes can be suppresséal as possible.
The main difference between CPM and CTI@TM is how the constraints among
classes are captured. While the former captures the cantstraa the notion of a
formal test specifications (which is a list of categotjeshoices, and constraints
in textural format), the latter capture these constraigtebans of a classification
tree 7. CPM has also been enhanced by Chen et al. [6] viectiméce relation
frameworkso that the test case generation process can be more systemat

(2) Singh et al. [12] have developed a technique to genezateases from Z specifica-
tions by combining CTM with disjunctive normal forms (DNE#) this technique,
“high-level” test cases are first generated from the Z spetifin via the con-
struction of a7. These high-level test cases are then refined by generabigfa
for them. Also working on Z, Hierons et al. [9] have introddcn approach that
extracts predicates from a Z specification and constructéram these predicates,
thus showing how the construction ofacan be semi-automated based on a formal
specification.

Readers may note that the work described in [9] and [12] mdoduses on the
application of CTM to Z specifications, whereas our work iis thaper is more
general, in the sense that our prototype syst&micT does not impose any limi-
tation on the type of specification, as long as a set of claasifins and classes can
be identified.

(3) In [10], Lehmann and Wegener have described a classiiicaiee editor (CTE)
known as CTE XL (eXtended Logics). This editor is used tosglome weaknesses
they have identified in CTM. An example of such weaknessédwmis@TM does not
provide a feature to specify logical dependencies betwéssses. Hence, when
selecting potential test frames from the combination tadaéware testers have to
take care of the logical compatibility of the classes thdvese
The objective of our work is quite different from that of [1GDur prototype
ADDICT helps testers construats from specifications. On the other hand, CTE

8 “Classes” in CTM/ICTM are known as “choices” in CPM.
9 “Classifications” in CTM/ICTM are known as “categories” in CPM.

13



XL is mainly a classification-tree “editor” rather than a fgeator”, and requires
testers to construct@a by themselves, usually in an ad hoc manner.

(4) At the initial stage of CTMICTM, software testers have to identify a set of clas-
sifications and classes. Owing to the absence of a systematitification tech-
nique, this identification process is currently performedan ad hoc approach.
Chen et al. [4] argue that this approach does not providenasdde assurance on
the quality of the identified classifications and classed,f@nce on the quality of
the resulting test cases. They have performed case stodi@sl tout the common
mistakes made by software testers when they identify ¢ieagons and classes
from specifications in such an ad hoc approach.

6 Summary and Conclusion

In this paper, we have introduced ICTM and outlined its majeps. This is followed
by discussions of the technical details and system feawir@®DICT, particularly
the automatic detection of symmetric parent-child or atwwedescendant hierarchical
relations, the automatic deduction and consistency chgabd hierarchical relations,
and the automatic detection and removal of duplicated sabtr\We have also high-
lighted the major contribution oADDICT and two possible areas for extending the
current version ofaDDICT in order to make it more useful. We believe that ICTM
is a viable method for generating test cases from speciitsitiespecially with the
support of appropriate automated tools suchaasicT. We plan to perform case
studies to further investigate the contributionsaafDICT, especially with respect to
the application of the system to the testing of real-lifesafe.

References

1. P. Ammann and J. Offutt. Using formal methods to derive test fsaine category-
partition testing.Safety, Reliability, Fault Tolerance, Concurrency, and Real Time 8gcur
Proceedings of the 9th Annual IEEE Conference on Computer Assei(@OMPASS "94
pages 69-79. Los Alamitos, California: IEEE Computer Society Pré&gl.1

2. M.J. Balcer, W. M. Hasling, and T.J. Ostrand. Automatic generatfotest scripts from
formal test specificationsProceedings of the 3rd ACM Annual Symposium on Software
Testing, Analysis, and VerificatigiAV '89), pages 210-218. New York: ACM Press, 1989.

3. A. Cain, T.Y. Chen, D. Grant, P.-L. Poon, S.-F. Tang, and TT&t. ADDICT: a prototype
system for automated test data generation using the integrated classitoe¢giomethodology.
Proceedings of the 1st ACIS International Conference on Softwarmé&gring Research and
Applications(SERA’03, pages 76—81. Mt. Pleasant, Michigan: International Association for
Computer and Information Science, 2003.

4. T.Y. Chen, P.-L. Poon, S.-F. Tang, and T.H. Tse. An expertaieanalysis of the
identification of categories and choices from specificatidtreceedings of the 3rd ACIS
International Conference on Software Engineering, Atrtificial Intelligerdetworking and
Parallel/Distributed Computing(SNPD 2003 pages 99-106. Mt. Pleasant, Michigan:
International Association for Computer and Information Science, 2002

5. T.Y. Chen, P.-L. Poon, and T.H. Tse. An integrated classificdte@mmethodology for test
case generatiomnternational Journal of Software Engineering and Knowledge Enginge
10(6):647-679, 2000.

14



6. T.Y. Chen, P.-L. Poon, and T.H. Tse. A choice relation fram&fior supporting category-
partition test case generatiofEEE Transactions on Software Engineerir&9(7):577-593,
20083.

7. T. Chusho. Test data selection and quality estimation based on theptmicessential
branches for path testintEEE Transactions on Software Engineerin@(5):509-517, 1987.

8. M. Grochtmann and K. Grimm. Classification trees for partition testBaftware Testing,
Verification and Reliability3(2):63-82, 1993.

9. R.M. Hierons, M. Harman, and H. Singh. Automatically generatingrin&gion from a Z
specification to support the classification tree method. Volume 263Jectiures Notes in
Computer Sciencgages 388—407. Berlin, Heidelberg: Springer-Verlag, 2003.

10. E. Lehmann and J. Wegener. Test case design by means of eXCTProceedings
of the 8th European International Conference on Software Testing, sinaind Review
(EuroSTAR 2000 2000.

11. T.J. Ostrand and M. J. Balcer. The category-partition methodpfmifying and generating
functional testsCommunications of the ACM1(6):676—686, 1988.

12. H. Singh, M. Conrad, and S. Sadeghipour. Test case desigd bag and the classification-
tree methodProceedings of the 1st IEEE International Conference on Formalri&eging
MethodqICFEM '97), pages 81-90. Los Alamitos, California: IEEE Computer Society Press
1997.

15





