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AbstractÐThis paper addresses the problem of motion estimation from profiles (also known as apparent contours) of an object

rotating on a turntable in front of a single camera. Its main contribution is the development of a practical and accurate technique for

solving this problem from profiles alone, which is precise enough to allow for the reconstruction of the shape of the object. No

correspondences between points or lines are necessary, although the method proposed can be used equally when these features are

available without any further adaptation. Symmetry properties of the surface of revolution swept out by the rotating object are exploited

to obtain the image of the rotation axis and the homography relating epipolar lines in two views in a robust and elegant way. These,

together with geometric constraints for images of rotating objects, are then used to obtain first the image of the horizon, which is the

projection of the plane that contains the camera centers, and then the epipoles, thus fully determining the epipolar geometry of the

image sequence. The estimation of the epipolar geometry by this sequential approach (image of rotation axisÐhomographyÐimage of

the horizonÐepipoles) avoids many of the problems usually found in other algorithms for motion recovery from profiles. In particular,

the search for the epipoles, by far the most critical step, is carried out as a simple one-dimensional optimization problem. The

initialization of the parameters is trivial and completely automatic for all stages of the algorithm. After the estimation of the epipolar

geometry, the Euclidean motion is recovered using the fixed intrinsic parameters of the camera obtained either from a calibration grid

or from self-calibration techniques. Finally, the spinning object is reconstructed from its profiles using the motion estimated in the

previous stage. Results from real data are presented, demonstrating the efficiency and usefulness of the proposed methods.

Index TermsÐStructure and motion, epipolar geometry, profiles, apparent contours, circular motion.
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1 INTRODUCTION

METHODS for motion estimation and 3D reconstruction
from point or line correspondences in a sequence of

images have achieved a high level of sophistication with
impressive results [35], [21], [14]. Nevertheless, if corre-
sponding points are not available, the current techniques
cannot be applied. That is exactly the case when the scene
being viewed is composed by nontextured smooth surfaces,
and, in this situation, the dominant feature in the image is
the profile or apparent contour of the surface [22]. Besides,
even when point correspondences can be established, the
profile still offers important clues for determining both
motion and shape and, therefore, it should be used
whenever available.

The first attempts to estimate motion from profiles date

back to Rieger, in 1986 [30], who introduced the concept of a

frontier point, interpreted as ªcenters of spinº [sic] of the

image motion. The paper dealt with the case of fronto-

parallel orthographic projection. This idea was further

developed by Porrill and Pollard [29], who recognized the

frontier point as a fixed point on the surface, corresponding

to the intersection of two consecutive contour generators [7].

The connection between the epipolar geometry and the

frontier points was established in [17] and an algorithm for

motion estimation from profiles under perspective projection

was introduced in [6]. Related works also include [2], where a

technique based on registering the images using a planar

curve was first developed. This method was implemented in

[11], which also showed results of reconstruction from the

estimated motion. The work in [19] presents a method where

the affine approximation is used to bootstrap the full

projective case.
This work presents a method for estimating the motion

of an object rotating around a fixed axis from information

provided by its profiles alone. It makes use of symmetry

properties [41], [12], [15] of the surface of revolution swept

out by the rotating object to overcome the main difficulties

and drawbacks present in other methods which have

attempted to estimate motion from profiles, namely, 1) the

need for a very good initialization for the epipolar geometry

and an unrealistic demand for a large number of epipolar

tangencies [6], [2], [1] (here, as few as two epipolar

tangencies are needed), 2) restriction to linear motion [31]

(whereas circular motion is a more practical situation), or

3) the use of an affine approximation [39] (which may be

used only for shallow scenes).
An interesting comparison can be made between the

work presented here and [14]. Both papers tackle the same

problem, but while in [14] hundreds of points were tracked

and matched for each pair of adjacent images, it will be

shown here that a solution can be obtained even when only

two epipolar tangencies are available with at least compar-

able results.
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1.1 Outline of the Paper

This paper begins by describing a method to obtain the
image of the rotation axis and the coordinates of a special
vanishing point, used in the parameterization of the
fundamental matrix under circular motion, from symmetry
properties of the profile of the surface of revolution swept
out by an object placed on a turntable. These provide the
homography component of the fundamental matrix in a
plane plus parallax [9], [36] representation. The epipolar
constraint is then used to estimate the epipoles for each pair
of images in the sequence. These epipoles should be
collinear and the line containing them corresponds to the
horizon. Due to noise, this alignment will not be verified
and a line is robustly fitted to the cloud of epipoles to
provide an estimate for the horizon. Once this estimate is
available, the epipolar constraint is again employed to
recompute the epipoles with a minimal parameterization
specialized to circular motion [38]. The epipoles are now
constrained to lie on the horizon, providing an accurate
estimate for the epipolar geometry of each pair of images in
the sequence. Intrinsic parameters, either computed from a
self-calibration algorithm or precomputed by any standard
calibration technique, can then be used together with the
fundamental matrices to determine the camera motion.

Section 2 reviews the symmetry properties exhibited by

the image of a surface of revolution. Section 3 establishes

the relationship between this transformation and the

epipolar geometry and also presents two useful parameter-

izations of the fundamental matrix. These parameteriza-

tions allow the estimation of the epipoles to be carried out

as independent one-dimensional searches, avoiding local

minima and greatly reducing the computational complexity

of the estimation. Section 4 presents the algorithm for

motion recovery and the implementation of the algorithm

for real data is shown in Section 5, which also makes

comparisons with previous works. Experimental results

using the estimated motion for reconstruction are shown in

Section 6.

2 SYMMETRY IN THE IMAGE OF A SURFACE

OF REVOLUTION

An object rotating around a fixed axis sweeps out a surface
of revolution [15]. Symmetry properties of the image of this

surface of revolution can be exploited to estimate the
parameters of the motion of the object in a simple and
elegant way, as will be shown next. In the definitions that
follow, points and lines will be referred to by their
representation as vectors in homogeneous coordinates.

A 2D homography that keeps the pencil of lines through a
point v and the set of points on a line l fixed is called a
perspective collineation with center (or pole) v and axis l. A
homology is a perspective collineation whose center and axis
are not incident (otherwise, the perspective collineation is
called an elation). Let a be a point mapped by a homology
onto a point a0. It is easy to show that the center of the
homology, v, and the points a and a0 are collinear. Let qaa be
the line passing through these points and vaa be the
intersection of qaa and the axis l. If a and a0 are harmonic
conjugates with respect to v and vaa, i.e., their cross-ratio is
one, the homology is said to be a harmonic homology (see
details in [32], [10] and also Fig. 1a). The matrix W
representing a harmonic homology with center v and axis l
in homogeneous coordinates is given by

W � IIÿ 2
vlT

vTl
: �1�

Henceforth, a matrix representing a projective transforma-
tion in homogeneous coordinates will be used in reference
to the transformation itself whenever an ambiguity does not
arise.

The profile of a surface of revolution exhibits a special
symmetry property, which can be described by a harmonic
homology [24]. The next theorem gives a formal definition
for this property.

Theorem 1. The profile of a surface of revolution S viewed by a
pinhole camera is invariant to the harmonic homology with an
axis given by the image of the rotation axis of the surface of
revolution and center given by the image of the point at
infinity in a direction orthogonal to a plane that contains the
rotation axis and the camera center.

The following lemma will be used in the proof of Theorem 1.

Lemma 1. Let T : ÿ0 7!ÿ0 be a harmonic homology with axis l0

and center v0 on the plane ÿ0 and let H : ÿ0 7!ÿ be a bijective
2D homography between the planes ÿ0 and ÿ. Then, the
transformation W � HTHÿ1 : ÿ7!ÿ is a harmonic homology
with axis l � HÿTl0 and center v � Hv0.
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Fig. 1. (a) Profile of a surface of revolution under general viewing conditions. The symmetry of the profile is represented by a harmonic homology
defined by the image of the rotation axis and the pole. (b) When the camera is pointing toward the axis of rotation, the transformation reduces to a
skewed symmetry which is a particular case of the harmonic homology with the pole at infinity. (c) If, additionally, the camera has zero skew and
aspect ratio one, the transformation becomes a bilateral symmetry in which the lines of symmetry are perpendicular to the image of the rotation axis.



Proof. Since H is bijective, Hÿ1 exists. Then,

W � H IIÿ 2
v0l0T

v0Tl

� �
Hÿ1

� IIÿ 2
vlT

vTl
;

�2�

since vTl � v0Tl
0 tu

The following corollary is a trivial consequence of Lemma 1.

Corollary 1. Let T, H, W, ÿ0, and ÿ be defined as in Lemma 1.
The transformation H is an isomorphism between the
structures �T;ÿ0� and �W;ÿ�, i.e, 8

 2 ÿ0, HT

 �WH

.

An important consequence of Lemma 1 and Corollary 2 is

that, if a set of points ŝ, e.g., the profile of a surface of

revolution, is invariant to a harmonic homology T, the set s

obtained by transforming ŝ by a 2D projective transforma-

tion H is invariant to the harmonic homology W � HTHÿ1.

Without loss of generality, assume that the axis of

rotation of the surface of revolution S is coincident with the

y-axis of a right-handed orthogonal coordinate system.

Considering a particular case of Theorem 1 in which the

pinhole camera P̂ [13] is given by P̂ � �II tj �, where

t � �0 0 ��T, for any � > 0, symmetry considerations show

that the profile ŝ of S will be bilaterally symmetric with

respect to the image of the y-axis [28], [26], which

corresponds to the line qs � �1 0 0�T in (homogeneous)

image coordinates.

Proof of Theorem 1 (particular case). Since ŝ is bilaterally

symmetric about qs, there is a transformation T that maps

each point of ŝ onto its symmetric counterpart, given by

T �
ÿ1 0 0
0 1 0
0 0 1

24 35: �3�

However, as any bilateral symmetry transformation, T is

also a harmonic homology, with axis qs and center ux �
�1 0 0�T since

T � IIÿ 2
uxq

T
s

uT
xqs

: �4�

The transformation T maps the set ŝ onto itself (although

the points of ŝ are not mapped onto themselves by T, but

onto their symmetric counterparts) and, thus, ŝ is invariant

to the harmonic homology T. Since the camera center lies

on the z-axis of the coordinate system, the plane that

contains the camera center and the axis of rotation is, in

fact, the yz-plane and the point at infinity orthogonal to this

plane is Ux � �1 0 0 0�T, whose image is ux. tu
Let P be an arbitrary pinhole camera. The camera P can be

obtained by rotating P̂ about its optical center by a rotation

R and transforming the image coordinate system of P̂ by

introducing the intrinsic parameters represented by the

calibration matrix K [13]. Let KR � H. Thus, P � H�II tj �
and the point Ux in space with image ux in P̂ will project to

a point vx � Hux in P. Analogously, the line qs in P̂ will

correspond to a line ls � HÿTqs in P. In the general case, it

is now possible to derive the proof of Theorem 1.

Proof of Theorem 1 (general case). Let s be the profile of the

surface of revolution S obtained from the camera P.

Thus, the counterdomain of the bijection H acting on the

profile ŝ is s (or Hŝ � s), and using Lemma 1, the

transformation W � HTHÿ1 is a harmonic homology

with center vxx � Huxx and axis ls � HÿTqs. Moreover,

from Corollary 1, WHŝ � HTŝ or Ws � HTŝ. From the

particular case of the Theorem1, it is known that the

profile ŝ will be invariant to the harmonic homology T,

so Ws � Hŝ � s. tu
When the camera is pointing directly toward the axis of

rotation, the transformation that maps s onto its symmetric

counterpart will be reduced to a skewed symmetry [20], [27],

[5], which corresponds to a particular case of the harmonic

homology in which the pole is at infinity. It is given by

S � 1

cos ��ÿ ��
ÿ cos ��� �� ÿ2 sin� cos � 2d cos�
ÿ2 sin� cos � cos ��� �� 2d sin�

0 0 cos ��ÿ ��

24 35;
�5�

where ls � � cos � sin � ÿd �T is the image of the rotation

axis, with d � u0 cos �� v0 sin �, where �u0; v0� is camera

principal point. The angle� gives the orientation of the lines of

symmetry, which are the lines joining each point to its skew-

symmetric counterpart (see Fig. 1b). The transformation S has

3 degrees of freedom (dof).

If the camera also has zero skew and aspect ratio 1, the

transformation is further reduced to a bilateral symmetry,

given by

B �
ÿ cos 2� ÿ sin 2� 2d cos �
ÿ sin 2� cos 2� 2d sin �

0 0 1

24 35: �6�

The transformation now has only 2 dof since the lines of
symmetry are orthogonal to ls. A graphical representation
of the bilateral symmetry, skewed symmetry, and harmonic
homology is shown in Fig. 1.

3 PARAMETERIZATIONS OF THE FUNDAMENTAL

MATRIX

3.1 Fundamental Matrix under Circular Motion

The fundamental matrix corresponding to a pair of cameras

related by a rotation around a fixed axis has a very special

parameterization, as shown in [38], [14], which can be

expressed explicitly in terms of fixed image features under

circular motion (image of rotation axis, pole, and horizon,

jointly holding 5 dof) and the relative angle of rotation

(1 dof). A simpler derivation of this result will be shown

here. Moreover, a novel parameterization based on the

harmonic homology will be introduced, providing a

connection between the geometry of the complete sequence

(harmonic homology) with the geometry of a single pair of

images (fundamental matrix).
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Consider the pair of camera matrices P̂1 and P̂2, given by

P̂1 � II� jt�
P̂2 � Ry���

� ��t�; �7�
where

t � 0 0 1� �T and

Ry��� �
cos � 0 sin �

0 1 0

ÿ sin � 0 cos �

264
375; �8�

for � 6� 0. Let F̂ be the fundamental matrix relating P̂1 and

P̂2. From (7) and (8), it is easy to see that

F̂ �
0 cos �ÿ 1 0

cos �ÿ 1 0 sin �

0 ÿ sin � 0

264
375 �9�

� ÿ sin �

1

0

0

264
375
�

��cos �ÿ 1�

1

0

0

264
375 �0 1 0� �

0

1

0

264
375 �1 0 0�

0B@
1CA: �10�

Let Ux, Uy, and Uz be the points at infinity in the x, y, and z

direction, respectively, in world coordinates. Projecting

these points using the camera P̂1, we obtain the vanishing

points ux, uy, and uz given by

ux �
1
0
0

24 35;uy � 0
1
0

24 35; and uz �
0
0
1

24 35: �11�

The image of the horizon is the line qh, and the image of the

rotation axis is the line qs, where

qs �
1
0
0

24 35 and qh �
0
1
0

24 35: �12�

Substituting (11) and (12) into (10), the desired parameter-

ization is obtained:

F̂ � ÿ sin � �ux�� � tan
�

2
qsq

T
h � qhqT

s

ÿ �� �
: �13�

The factor ªÿ sin �º can be eliminated since the fundamental
matrix is defined only up to an arbitrary scale. Assume now
that the cameras P̂1 and P̂2 are transformed by a rotation R

about their optical centers and the introduction of a set of
intrinsic parameters represented by the calibration matrix K.
The new pair of cameras, P1 and P2, is related to P̂1 and P̂2 by

P1 � HP̂1 and

P2 � HP̂2; �14�
where H � KR. The fundamental matrix F of the new pair
of cameras P1 and P2 is given by

F � HÿTF̂Hÿ1

� det�H��vx�� � tan
�

2
�lslTh � lhlTs �; �15�

where vx � Hux, lh � HÿTqh, and ls � HÿTqs. Since the
fundamental matrix is defined only up to a scale factor, (15)
can be rewritten as

F��� � �vx�� � � tan
�

2
�lslTh � lhlTs �; �16�

where � � 1=det�H�. The notation F��� was used in (16) to
emphasize that, for a given circular motion sequence, the
parameters vx, ls, lh, and � are fixed and the fundamental
matrices associated with any pair of cameras in the
sequence differs only in the value of �.

3.2 Parameterization via Planar Harmonic
Homology

The images of a rotating object are the same as the images of
a fixed object taken by a camera rotating around the same
axis, or by multiple cameras along that circular trajectory.
Consider any two of such cameras, denoted by P1 and P2. If
P1 and P2 point toward the axis of rotation and have zero
skew and aspect ratio 1, their epipoles e1 and e2 will be
symmetric with respect to the image of the rotation axis, or
e2 � Be1, according to Fig. 2. In a general situation, the
epipoles will simply be related by the transformation
e2 �We1. It is then straightforward to show that the
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Fig. 2. If the cameras are pointing toward the axis of rotation and their skew is zero and aspect ratio is 1, the epipoles e1 and e2 are symmetric with

respect to the image of the rotation axis.



corresponding epipolar lines l1 and l2 are related by
l2 �WÿTl1. This means that the pair of epipoles can be
represented with only two parameters once W is known.
From (1), it can be seen that W has only 4 dof.

In [25], [40], it has been shown that any fundamental

matrix ~F can be parameterized as ~F � �~e0�� ~M in a plane

plus parallax parameterization, where ~MÿT is any matrix

that maps the epipolar lines from one image to the other

and ~e0 is the epipole in the second image. It follows that

F � �e2��W; �17�
where, from (16), e2 � vx ÿ � tan �

2 �ls��lh. Therefore, F has

only 6 dof: Four to determine W and two to fix e2, in

agreement with [38]. Note that, in the case of skewed

symmetry and bilateral symmetry, the dof of the funda-

mental matrix will be reduced to five and four, respectively,

corresponding to the decrease in the dof of the symmetry

transformation. A full account of the dof of the fundamental

matrix under different configurations is given in Table 1.
From (17), it can be seen that the transformation W

corresponds to a plane induced homography (see [18]). This

means that the registration of the images can be done by

using W instead of a planar contour as proposed in [2], [11].

It is known that different choices of the plane that induces

the homography in a plane plus parallax parameterization

of the fundamental matrix, such as the one in (17), will

result in different homographies, although they will all

generate the same fundamental matrix since

F � �e2��W � �e2���W� e2b
T� 8b 2 IR3: �18�

The three-parameter family of homographies �W� e2b
T�

parameterized in b has a one-to-one correspondence with
the set of planes in IR3. The particular plane that induces the
planar homology W is given in the next theorem:

Theorem 2. The planar homology W relating the cameras P1

and P2 is induced by the plane � that contains the axis of
rotation and bisects the segment joining the optical centers of
the cameras.

Proof. The existence and uniqueness of � satisfying the

hypothesis of the theorem are trivial. Let x1 � �1 0 0�T,

x2 � �0 1 0�T, and x3 � �0 0 1�T. Without loss of general-

ity, let

P1 � KR�II j x3� and

P2 � KR�R�
y j x3�; �19�

where K is the matrix of intrinsic parameters of P1 and

P2, R is the rotation matrix relating the orientation of the

coordinate system of P1 to the world coordinate system,

and R�
y is a rotation by � about the y-axis of the world

coordinate system, i.e.,

R�
y �

cos � 0 sin �
0 1 0

ÿ sin � 0 cos �

24 35: �20�

Therefore, 8�; � 2 IR, the point

X � �ÿ�sin��=2�; �; �cos��=2��T

lies on �. Projecting X using P1 and P2, one obtains

u1 � KR�X� x3� and u2 � KR�R�
yX� x3�. Since

R�
yX �

� sin � cos��=2� ÿ � cos � sin��=2�
�

� sin � sin��=2� � � cos � cos��=2�

264
375

�
� sin��=2�

�

� cos��=2�

264
375 � ÿ1 0 0

0 1 0

0 0 1

264
375X;

�21�

or R�
yX � �IIÿ 2x1x

T
1 �X, we have

u2 � KR��IIÿ 2x1x
T
1 �X� x3�;

or

u2 � �IIÿ 2KRx1x
T
1 Rÿ1Kÿ1�u1:

It can be shown [26] that KRx1 � vx and xT
1 Rÿ1Kÿ1 � lTs

and, thus, u2 �Wu1. tu
A graphical representation of the result in Theorem 2 is

shown in Fig. 3.
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TABLE 1
Analysis of the DOF of the Fundamental Matrix for Different

Types of Motion with Fixed Intrinsic Parameters

Fig. 3. The harmonic homology is a homography induced by the plane

that contains the axis of rotation and bisects the segment joining the

camera centers.



3.3 Epipolar Geometry and Profiles of Surfaces

So far, the discussion of epipolar geometry and parameter-

izations of the fundamental matrix under circular motion is

applicable to arbitrary image features, such as points or

profiles, as it does not consider particular aspects of the

issue when the only image features available are profiles.

This section briefly reviews some of the main geometric

components of epipolar geometry from profiles.
Consider a surface S of type C1 viewed by two pinhole

cameras P1 and P2. The following definitions apply [8]:

. A contour generator associated with the surface S and
the camera P1 corresponds to the space curve C � S
such that for all points C 2 C the line passing
through the optical center of P1 and C is tangent
to S at C.

. The image of the contour generator associated with
the camera P1 is a profile or apparent contour.

. If two contour generators associated with the surface
S and the cameras P1 and P2 intersect, the points of
intersection are denoted frontier points.

. The epipolar plane � defined by the optical centers
of the two cameras P1 and P2 and an associated
frontier point Xf is tangent to the surface S at Xf .

. The epipolar lines corresponding to the epipolar
plane � are tangent to their associated profiles and
are called epipolar tangents.

The tangency points of corresponding epipolar tangents

are the images of the same point on the surface S, namely,

the frontier point. The above definitions are illustrated in

Fig. 4.

4 MOTION ESTIMATION

4.1 Estimation of the Harmonic Homology

Consider an object that undergoes a full rotation around a

fixed axis. The envelope � of its profiles is found by

overlapping the images of the sequence and applying a

Canny edge detector [4] to the resultant image. This

envelope corresponds to the image of a surface of

revolution and, thus, it is harmonically symmetric. The

homography W related to � is then found by sampling N

points xi along � and optimizing the cost function

fW�vx; ls� �
XN
i�1

dist��;W�vx; ls�xi�2; �22�

where dist��;W�vx; ls�xi� is the orthogonal distance be-

tween the curve � and the transformed sample point

W�vx; ls�xi. The estimation of W is summarized in

Algorithm 1.

The initialization of the line ls and the point vx can be

made very close to the global minimum by automatically

locating one or more pairs of corresponding bitangents on

the envelope. Given two bitangents l�p1;p2� and l�q1;q2� on

the two sides of the profile � with bitangent points p1;p2

and q1;q2, respectively (see Fig. 5), the intersection of the

two bitangents (l�p1;p2�; l�q1;q2�) and the intersection of

the diagonals (l�p1;q2�; l�q1;p2�) give two points defining a

line that can be used as an estimate of ls. An estimate for the

vanishing point vx is given by the point of intersection of

the lines l�p1;q1� and l�p2;q2�. The initialization of ls and vx
from bitangents often provides an excellent initial guess for

the optimization problem. This is generally good enough to
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Fig. 4. The frontier point is a fixed point on the surface, corresponding to the intersection of two contour generators. The epipolar plane at the frontier

point is tangent to the surface and, therefore, corresponding epipolar lines are tangent to the profiles.



avoid any local minimum and allows convergence to the

global minimum in a small number of iterations.

4.2 Estimation of the Horizon
After obtaining a good estimation of W, one can then search

for epipolar tangencies between pairs of images in the

sequence using the parameterization given by (17). To

obtain a pair of corresponding epipolar tangents in two

images, it is necessary to find a line tangent to one profile

which is transformed by WÿT to a line tangent to the profile

in the other image (see Fig. 6). The search for corresponding

tangents may be carried out as a one-dimensional optimiza-

tion problem. The single parameter is the angle � that

defines the orientation of the epipolar line l1 in the first

image and the cost function is given by

fl1��� � dist�WÿTl1���; lk2����; �23�
where dist�WÿTl1���; lk2���� is the distance between the

transferred line l2 �WÿTl1 and a line l
k
2 parallel to l2 and

tangent to the profile in the second image. Typical values of

� lie between -0.5 rad and 0.5 rad or ÿ30� and 30�. The

shape of the cost function (23) for the profiles in Fig. 6 can

be seen in Fig. 7.
The epipoles can then be computed as the intersection of

epipolar lines in the same image. After obtaining this first

estimate for the epipoles, the image of the horizon can then be

found by robustly fitting a line lh to the initial set of epipoles,

such that lTh vx � 0. Fig. 11 showsatypical outputof Algorithm

2, together with the horizon lh fitted to the epipoles.

An alternative method to compute the epipoles is to

register the profiles using the homology W, eliminating the

effects of rotation on the images and, then, apply any of the

methods in [2], [31], [11], in a plane plus parallax approach.

However, no advantage has been obtained by doing so

since to use this method it is necessary to find a common

tangent between two profiles, which involves a search at

least as complex as the one in Algorithm 2.

4.3 Estimation of the Epipoles Constrained to the
Horizon

After estimating the horizon, the only missing term in the

parameterization of the fundamental matrix shown in (16)

is the scale factor

� � � tan �=2: �24�
This parameter can be found, again, by a one-dimensional

search that minimizes the geometric error of transferred
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Fig. 6. The line l1 tangent to the bottom of the profile in the first image is transferred to the line l2 in the second image by the harmonic homology. A

line l
k
2 parallel to l2 and tangent to the bottom of the profile is located and the distance between l2 and l

k
2 drives the search for the orientation of l1,

which upon convergence will correspond to an epipolar tangent. An epipolar tangent at the top of the profile is obtained in the same way.

Fig. 5. Initialization of the optimization parameters ls and vx from the bitangents and lines formed by bitangent points.



epipolar lines, as shown in Fig. 8. Therefore, two distinct

parameterizations of the fundamental matrix are used:

Equation (17) to obtain the cloud of epipoles and the

horizon and (16) to recompute the position of the epipoles

constrained to lie on the horizon.

4.4 Limitations of the Algorithm

There are some limitations on the applicability of the

algorithms presented here:

. Density of the sequence of images. If the number of
images in the sequence is too small or the angle of
rotation between successive snapshots is too large, the
envelope of the profiles no longer approximates the
profile of a surface of revolution and, therefore,
Algorithm 1 will fail to correctly estimate the image

of the rotation axis and the pole. In practice, this
problem does not arise if the angles of rotation in a
closed sequence are below 20�. This problem can be
overcome by performing a simultaneous search for the
harmonic homology and the rotation angles, at the
expenseof increasingthenumberofsearchparameters
and therefore the complexity of the optimization.

. Symmetry of the object. If the object placed on the
turntable is rotationally symmetric and its axis of
symmetry coincides with the axis of rotation of the
turntable, Algorithm 2 will fail. To understand this
problem, consider the alternative formulation of
Algorithm 2 in which the epipoles are computed by
first registering the images by using the harmonic
homology and then computing the epipoles as the
intersection of common tangents to the profiles.
Under the conditions described above, the registra-
tion of the profiles will not produce any effect since the
image of a surface of revolution with the same rotation
axis as the turntable is invariant to the harmonic
homology. Moreover, the profiles will coincide and
any tangent to one of the profiles will be a common
tangent to the pair of profiles. Therefore, the position
of the epipole will be undetermined. To avoid this
problem, it is enough to reposition the symmetric
object over the turntable so that its symmetry axis does
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Fig. 7. Plot of the cost function (23) for corresponding epipolar tangents near the top (a) an bottom (b) of the profiles in Fig. 6.

Fig. 8. Once the horizon is computed, the location of the epipoles along this line can be refined by using (16). This figure shows the geometric error
for transferred epipolar lines. The terms vx, ls, and lh were obtained from Algorithm 1 and Algorithm 2. The solid lines in each correspond to tangents
to the profile passing through the putative epipoles, and the dashed lines correspond to lines transferred from one image to the other by applying the
harmonic homology W. The sum of the distances between transferred lines and the corresponding tangent points is the geometric error that drives
the search for the scale factor � � � tan �=2 in (16).



not coincide anymore with the turntable axis. The
further the two axes are, the better. Of course, the
placement of the object must not be so distant from the
center of the turntable as to remove it from the field of
view. In the experiments shown in this paper using a
vase and a head model, which are nearly rotationally
symmetric in the regions of interest (the top and the
bottom of the objects), it was verified that the problem
disappears if the axes are separated by a distance of
about 50 pixels.

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

The algorithms described in the previous section were

tested using two sets of images from a vase and a head

model, respectively (see Fig. 9). Both sets consisted of

36 images, with the turntable rotated by an angle of 10�

between successive snapshots. The fact that the angle was

fixed was not used either in the estimation of the epipolar
geometry or in the reconstruction to be shown in Section 6.
For the vase sequence, the symmetry transformation
associated to the envelope of its profiles was assumed to
be a harmonic homology W, whereas, for the head
sequence, the transformation was modeled as a skewed
symmetry S. The choice of the simpler model for the head
sequence was motivated by the fact that the camera was
nearly pointing toward the axis of the turntable and,
therefore, the skewed symmetry transformation could be
used. Of course, there would have been no problem in
adopting the more complex model. To obtain W and S,
Algorithm 1 was implemented with 100 evenly spaced
sample points along each envelope (N � 100). Initializa-
tions were done by using bitangents. Less than 10 iterations
of the Levenberg-Marquardt algorithm were necessary,
with derivatives computed by finite differences. The final
positions of the rotation axes can be seen in Fig. 10.

612 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, JUNE 2001

Fig. 9. Top row shows four images of the vase. Bottom row shows four images of the head.

Fig. 10. Final configurations for the estimate of the images of the rotation axes for the vase and head sequences.

Fig. 11. Epipoles estimated by Algorithm 2. The horizon was found by doing a robust fit to the cloud of epipoles. Inliers are shown as circles (�) and

outliers as crosses (�).



In the implementation of Algorithm 2, 70 pairs of images

were selected by uniformly sampling the indexes of the

images in each sequence and the resultant estimate of the

epipoles for the vase sequence is shown in Fig. 11, which

also shows the horizon lh found by a robust fit. To get lh, a

minimization of the median of the squares of the residuals

was used, followed by removal of outliers and orthogonal

least-squares regression using the remaining points

(inliers). The epipolar geometry was then reestimated with

the epipoles constrained to lie on lh. Once the epipolar

geometry was obtained, precomputed intrinsic parameters

were used to convert the fundamental matrices into

essential matrices [13] and these were then decomposed to

provide the camera motion and orientation. The resulting

camera configurations are presented in Fig. 12.
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Fig. 12. Camera configurations for the vase (left) and head (right) sequences.

Fig. 13. Estimated angles of rotation between successive views for the vase (left) and head (right) sequences, with RMS errors 0:19� and 0:23�,
respectively.



The object was rotated on a manual turntable with
resolution of 0:01�, but the real precision achieved is highly
dependent on the skill of the operator. The RMS errors in

the estimated angles were 0:19� and 0:23� for the vase and
head sequence, respectively (see Fig. 13), demonstrating the
accuracy of the estimation.
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Fig. 14. Details of the reconstruction of the vase by triangulating the profiles, using the method described in [39]. The model was built using 1,224

triangles.

Fig. 15. Details of the reconstruction of the vase by voxel carving, using the method described in [33], showing the triangular mesh and texture

mapping. The model was built using 23,144 triangles.



It is interesting to compare this result with the ones shown
in [14, p. 166] for the ªHead,º ªFreiburg,º and ªDinosaurº
sequences, where the average number of point matches per
image pair varies from 137 to 399, depending on the sequence.
It should be stressed that only two epipolar tangents were
used for each pair of images in the experiments presented in
this paper, with comparable results.

6 RECONSTRUCTION FROM IMAGE PROFILES

The algorithm for motion estimation introduced here can

be used even when point correspondences can be

established. On the other hand, methods as the ones in

[35], [14], and [21] cannot deal with situations where

profiles are the only available features in the scene.

Earlier attempts to solve the problem of reconstruction

from image profiles under known motion include [16],

[37], [7], and state of the art algorithms can be found in

[34], [3], [39]. We use a simple method based on

triangulation to reconstruct the model using the estimated

motion. Examples using voxel-carving [33], [23] are also

shown.
Details of the 3D reconstruction of the objects are shown

in Fig. 14, Fig. 15, and Fig. 16. Although no ground truth is

available for a quantitative evaluation, it can be seen that

the reconstructions are faithful to the images of the objects.

As reported in [7], errors in the camera orientation of a few

mrad can render the reconstruction useless, therefore

confirming the accuracy of the technique introduced here.

7 SUMMARY AND CONCLUSIONS

This paper introduced a novel technique for motion

estimation from image profiles. It does not make use of

expensive search procedures, such as bundle adjustment,

although it naturally integrates data from multiple images.

The method is mathematically sound, practical, and highly

accurate. From the motion estimation to the model

reconstruction, no point tracking is required and it does

not depend on having point correspondences beforehand.
The convergence to local minima, a critical issue in most

nonlinear optimization problems, is avoided by a divide-
and-conquer approach which keeps the size of the problem
manageable. Moreover, a search space with lower dimen-
sion results in fewer iterations before convergence. The
quality of model reconstructed is remarkable, in particular,
if one considers that only the least possible amount of
information has been used. Since then the method has been
applied to a large number of sequences, including human
heads and sculptures.

7.1 Future Work

An interesting problem is the development of an optimal
solution for the problem of structure and motion from
profilesÐso far, there is no equivalent of a bundle
adjustment algorithm capable of dealing with profiles. An
important step in filling this gap is to develop a model for
the effect that image noise has on the detection of profiles,
and only when such error model becomes available can a
maximum-likelihood estimator for structure and motion from
profiles be developed.
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