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Online Adaptive Learning of Continuous-Density
Hidden Markov Models Based on Multiple-Stream
Prior Evolution and Posterior Pooling

Qiang Hug Member, IEEEand Bin Ma

Abstract—We introduce a new adaptive Bayesian learning ¢ Adaptive:So as to continuously track the variations of the
framework, called multiple-stream prior evolution and posterior model parameters corresponding to the varying observation

pooling, for online adaptation of the continuous density hidden ; fen -
Markov model (CDHMM) parameters. Among three architectures ?at?’ fsomforgettmgtme(:harlﬁm ?eter:jed to r.edU(t:Z tf;e ef
we proposed for this framework, we study in detail a specific ec_ 9 past observa '9”5 rea_lve 0 ’ € new npu _a a.

two-stream system where linear transformations are applied °© Efficient: The adaptation algorithm will hold and/or improve

to the mean vectors of CDHMMs to control the evolution of performance with a small amount of adaptation data, and
their prior distribution. This new stream of prior distribution approach asymptotically to the matched-condition perfor-
can be combined with another stream of prior distribution mance with the increasing amount of adaptation data

evolved without any constraints applied. In a series of speaker Inth tf th h efforts i
adaptation experiments on the task of continuous Mandarin nihe pastiew years, there are many résearch efiorts in con-

speech recognition, we show that the new adaptation algorithm Structing online adaptation algorithms for CDHMM parame-
achieves a similar fast-adaptation performance as that of the ters (e.g., [3], [7], [12]-[15], [18], [22], [26], [28], [30], [32],
incremental maximum likelihood linear regression (MLLR) in  [33]). With the above considerations in mind, among many pos-
the case of small amount of adaptation data, while maintains the giy,jjities, our online adaptive learning algorithms [12]-[15], and
good asymptotic convergence property as that of our previously the ones in [3] and [18], are developed consistently under a
proposed quasi-Bayes adaptation algorithms. N ' p y
Bayesian inference framework based on a concept cplied

evolution The general methodology of our approach can be out-
lined as follows.

Suppose there ar®f speech units in a speech recognizer,
I. INTRODUCTION each being modeled by a Gaussian mixture CDHMM. Consider

T is now well-known that the performance of an automatic collection of (SL)JCH\(/‘[)CEE%'MMS A=iA:g=1,..., M},
Dere)\q = (n\¥, A9 69) denotes the set of parameters of

speech recognition (ASR) system often degrades drasticéprlr .
when there exist some acoustic mismatches between the trai gth N-_state CDHMM us_ed to c_haract_er_lge thth spe_ec_h
. In this compact notation;® is the initial state distri-

and testing conditions. For a Gaussian mixture continuous déW—, @ (@ : . - .
sity hidden Markov model (CDHMM) based ASR system, adapution, 4 = [a;;’] is the transition probability matrix, and
tive learning of CDHMM parameters from adaptation/testiz%(q) 1S the( g)ara(rr;ete(r )vector composed Pf mixture parameters
data provides a good way to reduce the possible acoustic nfis- = {w;i.’» ;i » X3 t for each staté with the state obser-
matches between the training and testing conditions and ti¥géion probability density function (pdf) being a mixture of mul-
to enhance the system performance robustness. Some desififfigate Gaussian pdfs
characteristics for a “good” adaptation algorithm include the K
following. p(xl0;) = 3 WP N Gelmil, 5iY)
 Incremental: The model parameters can be continuously k=1
adapted to the new adaptation data (possibly derived from ere the mixture coefficients @’ satisfy the constraint
actual test utterances) without the requirement of stori%} (@ (@ (7(113 ) )
a large set of previously used training/adaptation data. Yar—1 @i’ = L andV(x|m;;’, X;;”) is thekth normal mixand
comparison with théatch modelgorithm, the incremental With m\? being theD-dimensional mean vector atf’ being
algorithm has the advantage of the increased computatiot¥@ 2 x D covariance matrix with itsith diagonal element

Index Terms—Bayesian approach, hidden Markov model, online
adaptive learning, prior evolution, speaker adaptation.

efficiency and reduced storage requirements. beingo—g,’gp(d). For notational convenience, it is assumed that
all the state observation pdfs have the same number of mixture
components.
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Such prior information may come from subject matter consid

n+1

erations. It can also be derived from previous experiences, e.( prior for A o oA
training datat’. Let A7 = {X}, X>, ..., &, } ben independent
sets of observation samples which are incrementally obtaine Pinteng (A1 X 11) Pinteng (A1 XJ) )—e
and used to update our knowledge abAduDepending on dif-
ferent assumptions to make, constraints to apply, and knowled point estimate, Constraint or point estimate,
sources to use, there are many waysuolvep(A). One way is 5% Awap 55 Awar
to adopt the recursive Bayesian learning framework
New Recognizer New Recognizer
n—1
p(A|ATY) = (A |A) - p(AJAT) 1) Fig. 1. Single-stream prior evolution and online adaptation.

 Jop(Xa]A) - p(A|A] A

Starting the calculation of posterior pdf fropiA|o(?), a re- correlations between different mean vectors. In practice, in
peated use of (1) produces a sequence of dengifiest}), order to avoid the over-smoothing and to reduce the memory
p(A|x2), and so forth. Because of theissing-datgproblem of requirement for storing all of the correlation coefficients, we
CDHMM, there are some serious computational difficulties tgsually disregard the weakly correlated means. More recently,
directly implement this learning procedure [13]. Consequentiispired by the above general QB framework, a sequential
some approximations are needed in practice. Iearning method of mean vectors of CDHMM based on a finite

One such approach called quasi-Bayes (QB) learning wadéxture approximation of their prior/posterior densities has
developed in [13], [14]. Based on the concept density also been investigated [18].
approximation the QB algorithm is designed to incrementally In addition to the above method of prior evolution, we can
update the hyperparameters on the approximate postefidso, for example, assume to evolve in a moreconstrained
distribution. Actually, thedensity approximatioralso opens way asA(™ = H,(A®)) whereH,, represents a mapping from
up the opportunity of appropriately manipulating the posterig® to At and can béncrementallylearned from the observa-
distribution as we intend. For example, in order to make otipn dataX;. Then fromp(A|¢(?)), we can derive a new poste-
Bayesian learning algorithms truly adaptive, we can introdu@®r distributionpincena(A|AT") = p(A(™) as the result of prior
some forgetting mechanismsnamely exponential forgetting €evolution.
and hyperparameter refreshings discussed in [13], [14] Of course, there are other ways to evopfey). Each leads
to adjust the contribution of previously observed sampte a different online adaptive learning algorithm. The central
utterances. Consequently, we will get a posterior distributiotlea of the above approaches is that the evolving prior pdf
Dintend (A|X]) which is different from the true posterior distri- pintena (A|X]") SUMmarizes, in a way specified by each specific
bution pi 4. (A|XT), but includes the appropriate informatiorprior evolution scheme, the information inherited from the
we want to learn from the observation dafg. Both algorithms prior knowledge and learned from the observation d&fa
in [13] and [14] have the characteristics of being increment&lrom the evolving prior distribution, the intended inference
and adaptive. The difference between them lies mainly in ted/or decision can be made. For example, we can derive a
facts of that different constraints on HMM parameters are apeint estimateA from Pintend(A|AT) (€.9., MAP (maximum
plied, different forms for the prior pdf(A|o(?)) are assumed, a posterior) estimate [20], [10], [11]) and then use the con-
and thus different prior evolution algorithms are derived. ventional plug-in MAP decision rule(see the discussion in

In [13], we assume\,’s are independent, i.ep(A|p(®) = [16]) for recognition. This type of updating and use Mofis
Hfl‘ilg()\qwgo))' Whereg()\q|<pg0)) is the prior pdf ofA, with ~known as online Bayesian adaptation in speech recognition

the hyperparametergsflo). Under the above independence asc_ommqnity [1?]_[15]' AIte_rnativerph_ltend(A|X_{L_) can also be
sumption, each model can only be adapted if the correspond d directly in a Bayesian predictive classification approach
speech unit has been observed in the current adaptation d ] [,17]' Th? CO”C?Pt of such type cnﬁngle?stream prior
Consequently, only after all units have been observed eno Iut|onanc_i 't_S relation t_o th_e online adaptation of CDHMM
times can all of the HMM parameters be effectively adapted. @ramgters is illustrated in Fig. 1. . .
enhance the efficiency and the effectiveness of the Bayes adad-n this paper, we extend the concept of single-stream prior

tive learning, in [14], we assume that the covariance matrices%‘([’OIUtion tq anew frameV\_/ork Whi,Ch Is calledultiple-stream
HMMs, {E(Z)}v are known. The initial prior pdf af (excluding prior evolution and posterior poolingrhe rest of the paper is

@Dy o _ M , organized as follows. In Section Il, we introduce the motiva-
{Zi'}) is assumed to be(Ae™) = g(m) Hq:lg()‘q)’ tion of developing this new framework, the mechanism of the

where g(X,) is the prior pdf ofA; = (7r§q),a53)7w§;3)), and posterior pooling, and the architecture of the multiple-stream
g(m) = N(m|u, U) has a joint normal pdf with a mean vectomyior evolution. In Section I1I, we show an example of how to
po= VeC{uEZ)} and a covariance matrikl. Here, we define yse this new framework to derive a new adaptation algorithm
m = vec{mgz)} to be the collection of the mean vectors of aldimed to further increase the efficiency of the algorithms in [13],
the Gaussian mixture components of CDHMMs and denot&#] in terms of both performance improvement and memory re-
simply by an operator “vec.” In this way, we can adapt najuirement. In Section IV, we apply the above new algorithm to
only the CDHMM parameters of thebservedspeech units, a speaker adaptation application to illustrate its usefulness. Fi-
but also themean vectoref unseerspeech units by exploiting nally, we summarize our findings in Section V.
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[l. MULTIPLE-STREAM PRIOR EVOLUTION AND POSTERIOR ~ where¢;(0 < ¢; < 1 and >, ¢ = 1) is thefusion weight
PoOLING to control therelative importanceof the different knowledge
sources{p®(A|¢”)}. The¢;’s can either be automatically

] trained from the adaptation datd,..,, or just be specified
We have discussed above that there are many ways t0 eVQ{¥Rording to task specifications and modeling intention. Then

prior pdf. Each leads to a different online adaptive learninge can use a manageable distributih ) to approximate

algorithm. Moreover, the prior evolution can start from eitheﬁimend(Aanew) by minimizing theKullback-Leibler directed
a single prior pdf, or more generally, different prior pdfs foﬁivergence[l9] as follows:

different schemes. Depending on the specific meaning of the
prior pdf and the way of prior evolution, different schemes =

. . . oA . ~ ‘pmtend(A|XneW)
might reflect different aspects of the learning and have their$ = arg min / Dintend (A Xnew ) log A—dl\-
own strength and weakness. A natural way of obtaining an v p(Ale) 3)
enhanced learning algorithm is to simultaneously maintain
multiple streams of prior evolution. During the process of the/ith p(A|#), we can derive a point estimate (e.g., taking a
prior evolution, we can designposterior pooling mechanism mode) of A and then to use the plug-in MAP decision rule to
which combines the different streams of evolved pdfs to derieenstruct a speech recognizer.
an intended pdf for further inference or decision-making. This Alternatively, we can first evolve(® (A|<p§°)) by using the

A. Motivation

explains the first motivation of our new framework. adaptation data’,,, and an appropriate prior evolution method
Another motivation of developing this new framework iso obtain a set of intended distributior{$i(;)tend(A|Xnew)}.

related to the concepts of the decomposition of the sigrehen the above information fusion technique can be used to de-
variability sources, the modeling of the signal with the partialve p(A|¢) and to construct the speech recognizer accordingly.
variability, and the composition of the model parameters for Apparently, if the application involves many utter-
target signal model from individual pretrained models of sigances during the real use of the ASR system (i.e.,
nals with the partial variability. For example, the speech signal® = {x; A5, ..., &, } become available incrementally), the

is very rich which includes the desirable linguistic informatiombove discussed scheme can then be operated in an incrementall
for recognition as well as many other undesirable informatiomode. Consequently, there are several possible architectures
A multi-facet learningalgorithm can thus be designed to elicifor multiple stream prior evolution. In the following, we use
from a rich set of training data” a set of prior distributions, two-stream prior evolution as an example to illustrate three
{pD(Alpl?),i = 1,2,... I} Eachp®(A|'”) reflects how different architectures of this new framework.

HMM parameters\ varies according to one type of variability

factors (e.g., speakers, speaking styles, data capturing &hdArchitectures

transmission conditions, etc.). We can treat e Aly(”) The first architecture is shown in Fig. 2(a). Each stream of
as aknowledge sourcerhich reflects one aspect Og the speecRyrior evolution starts from a single prior pdf which in the first
signal. After we have prepared the set{pf)(A|¢{”)} from  evolution step, is the initial prior pdf, and afterwards, is the
training datat’, we can then use them tmmposeandderive intended pdf pooled appropriately from previously evolved
a condition-dependent distributignyena(A|Xnew) guided by  multiple streams of priors. The second architecture is shown
task specifications and a small amountohdition-dependent jn Fig. 2(b). Each stream of prior evolution starts from an
adaptation data (possibly derived from test data).. We independent prior pdf which in the first evolution step, is the
can view this as a kind oadaptive information fusiorfrom initial prior pdf, and afterwards, is the previously evolved
different knowledge source®™(Al{”), i = 1,2,....I}. prior pdf in this stream. The third architecture is shown in
Alternatively, we can first evoIVQJ(i)(A|<p§0)) by using the Fig. 2(c) and is a hybrid one. One stream of prior evolves as in
adaptation dat&’,.., and an appropriate prior evolution methodarchitecture (b) and another stream evolves as in architecture
to obtain a set of intended distributior{ﬁi{emd(A|Xnew)}. (a). All of the above three architectures can find their usages in
Then the appropriate information fusion technique can be usdifferent scenarios and applications. What is common among
to derivepiniend (Al Xnew). This explains the second motivationthree architectures is theosterior poolingpart: Given two
of our new framework. evolved pdfg;i(rllt)end(A|X{l) andpi(it)end(AM’{l), we can define
Apparently, for the above two types of applications, they rehe intended posterior distribution as
guest a common mathematical tool of summarizing a useful pdf

fro.m severa}l pdfs. In t.he foIIovying, we propose one possible S end (A| A7) = ¢ 'Pi(xln)end(AWf) +(1-¢ 'pi(it)end(A|Xln)'

lution for this type of information fusion. (4)

B. Fusion Mechanism By using the information fusion technique discussed above, we
Given a set of prior pdfdp( (Alp(”), i = 1,2,...,1} can derive ap(Ap™) to approximatepiniend (A|X). Then

(or evolved ps, 1., posterior Pl (Altu).i = W€ CaN Hea(Alp) as piucna(Ay), and continue the
L mtend b UEV S rior evolution process as described in one of the above three
1,2,...,1}), we can first compose an intended distribution prior )
architectures. The MAP estimate of the CDHMM parameters
Bintena(AlXuew) = 3 & x p@ (A1) (2) derived from the evolving prior distribution(A|¢(™)) can be
’ used to update the speech recognition system. This technique

%
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Fig. 2. Architectures for multiple-stream prior evolution and posterior pooling

point estimate,
o9+ Amap

New Recognizer

framework: (a) each stream evolves from a single (pooled)eadbrsteam

evolves independently from different priors, and (c) hybrid, i.e., one stream evolves independently, and another stream evolves from therpooled pri

of multiple-stream prior evolution and posterior pooling
thus provides a good tool to exploit respectively the differemiv

In the next section, as a case study, we consider a specific
o-stream prior-evolution and posterior pooling system with

knowledge sources an appropriate way. Such informationthe architecture (a), where one stream is the QB evolution of
can be incorporated into the existing system so that the systdra CDHMM parameters as described in [13], [14], and another
can be continuously adapted to the new condition-dependstream is governed by applying linear transformations to the

speech data and/or evolve in a desired way.

mean vectors of CDHMM to control their evolution.
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lll. CASE StuDY: QB PLUS TRANSFORMATION CONSTRAINED  Where

PRIOR EvOLUTION

A. Method Il'new(n) IA(TL) ) ”(0) + B(TL)
| | - U (n) =A(n) - U(0) - [A()]"

In this study, we only consider the case of CDHMMSs in which
the covariance matrices are specified (i.e., fixed without adap%\i-th An) = bdiag{A("l) }andB(n) = vec{b("’? 1. Note
tion). In addition to the notations described in the introduction _, . . S Telikg)- - elikag)-

. i et that in this paper, we uge)’ to denote the transpose of a vector
section, we further define another operator “bdiag” to denote a .
block diagonal matrix, e.gZ = bdiag{x!?'}, with each di- o a mairix. : : T

P ik S ) o Another stream of prior pdf will evolve as described in [13],
agonal block element to be also a matrix, e§g§.§§ - The ini- 1141 as follows:
tial prior p/df of Ais assumet_j to bg(A) = g(m)_HfI\il a(\,), _
Whereg()\q). .takes the special form o;‘ a m(at)rlx be(ti'):l pdf with pop(m|A7) = N(mlugp(n), Ugs(n)).
sets of positive hyperparameters{of,*’}, {n;’}, {~;s'}, and
g(m) = N(m|u(0),(I)J(O)) has a joint qormal pdf with a mean By pooling pos(m|A7) and pue.(m|A7) together as de-
vectorp(0) = vec{; (0)} and a covariance matd(0) [13],  scribed in (4), we obtain a mixture of Gaussian pdfs
[14]. This class of prior distributions actually constitutes a con-
jugate family of the complete-data density and is denotel.as - mlxm™) = ¢ m|A™) + (1 — ) - mlany.
In this study, we only consider the case of multiple stream prio]r)mte“‘l( A1) = € peB(m|AT") + (1 — €) - pnew (m| A7)
evolution for mean vectors of CDHMMs. All of the other HMM
parameters will evolve in the QB stream as described in [1
[14].

In the new stream of prior evolution, at time instantwe
assume that mean vectovsg%) (n)'s have been evolved from
the original mean vectormgz (0)’s by linear transformations
as follows:

e can now use another Gaussian pdfm|u(n), U(n)) to
pproximate the above p@f,iena(m|A*) under the criterion
of minimizing the Kullback-Leibler directed divergence of
N(m|p(n), U(n)) from pigiena(m|X7). It can be derived that

[I,(TL) :ep'QB (ﬂ) + (1 - 6)I"’new(n)
U(TL) :GUQB (71) + (1 - E)Unew(n)
mP(n) = AT, m$P(0) + 600, + (1= )(gp(n)

¢y (i,k,q) " “ik t

= Hew () (BB (1) = Pew (1))

WhereAfff()i kg 1S @D x D matrix andbf::)i kg 1S @D-di- A block diagram of the above two-stream prior-evolution and
mensional bias vector. These transformations can be sharegbsterior pooling system is shown in Fig. 3. In the following
different mean vectors in a very flexible waw. (¢, k,¢) and subsection, we discuss two implementation issues, namely 1)
ea(4, k, q) represent the class indexs which are the results of tWiow to construct the mapping tree for CDHMM Gaussian com-
mappings from distinct mixture component labels to the sharpdnents to share the linear transformations and 2) how to specify
transformation class labels. For simplicity, we only study thie fusion weight.

case ofcy(i,k,q) = ea(i, k,q) = (i, k,q) here. Following

the practice in [22], we use a hierarchical tree to define tie Implementation Issues

above mappings by attaching to each node of the tree a disconstruction of Mapping TreeFor notational simplicity,
tinct transformation. The transformation corresponding to gf this subsection, let us ust/ (x|mq, 1), N (x|mz, £2),
internal node closer to the root node represents a higher d?.‘,N(x|mL,EL) to denotel. Gaussian components of the
gree of sharing of the transformation among Gaussian coffitial CDHMMs, wherel = M - N - K. We intend to build
ponents. These transformations can be incrementally estimaéeginary tree with a specifietleightsuch that the set deaf

from A7* by using an approximate maximum likelihood apnodesof the tree represents a partition of the set of the above
proach described in [22], [7]. Following the practice in [22}5aussians. We adoptivisive clusteringnethod similar to the
again, in order to check if a transformation can be estimatgg-called LBG algorithm described in [23] to construct such a
reliably, we maintain, for each transformation, an accumulatg@e with the required modifications detailed as follows.
“EM-count,” countc(é, k, ¢)), of the number of feature vectors |, \va use the following symmetridivergencemeasure be-
from X7, If countc(z, k, q)) exceeds a pre-specified threshold, tween two Gaussians, say(x|m;, ;) andV (x|m;, 3;),

; (n) (n ; ; i . . A .
the tra”Sformat'Or{Ac(i,k,q)vbc(i,k,q;}W'" be viewed as being to serve as the distortion measure [19] (this distortion
reliably estimated. In evolvin@;ngz (n)’s, the transformation measure is also used in, e.qg., [22], [3])

{Af:?i)k o bf:?i)k o} Willbe chosen by traversing the above map-
ping tree to make sure the most detailed yet reliably estimated J(i,5) zltr[(Ei _ Ej)(ztl _ Efl)]+
transformation be used [22]. With the above constraints applied | 2 ’ ’

to themgz)’s, the new stream of prior pdf will evolve as follows: %tr[(&fl + E;l)(mi —my)(m; —m;)t

Pnew(M|XT) = N(m|p,. (7), Upew(n)) where tf-] denotes the trace of a matrix.
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Fig. 3. Two-stream prior-evolution and posterior pooling system: QB plus linear transformation constrained prior evolution.

¢ The centroid Gaussian pdf N (x|m.,%.), for a set of
Gaussians, say,V(x|m;,%;), ¢ = 1,2,...,L}, is cal-
culated as follows:

Curves of Sigmoid Function

or et =

my;

N
Il
=

g

[
M=
S

alpha=1.0, beta=1.0 —
alpha=2.0, beta=1.0 -~
alpha=3.0, beta=1.0 -~
alpha=1.0, beta=2.0 -~
alpha=2.0, beta=2.0 ----
aipha=3.0, beta=2.0 ----

. [Zi + (me — my)(me —my)'].

I
M-
Sl

=1

Weight for QB Stream

This can be derived by minimizing the Kullback-Leibler
directed divergence of any approximating normal pdf from
the Gaussian mixturg ., (1/L)N (x|m;, 3;).

» The binary “splitting” of a centroid Gaussian pdf 0 1 2 3 4 5 6 7
./\/(x|mc, Ec) is conducted by splitting the mean vector Accumulated EM Count of the Observed Frames
i (1) _ (2 _
m. into two new mean vectors: * = me(1+9), me” = Fig. 4. Plots of the sigmoid functions for different valuesofnd3.

m.(1 — ), whered denotes a small perturbation factor.

The above constructed tree defines a one-to-many mappjRghis way, when the amount of adaptation data is small, the
from each distinct Gaussian component in CDHMM s to a set gbnstrained prior evolution stream will have a bigger influence,
nodes on the path from the leaf node to which the Gaussian cafhile a good asymptotic convergence can be achieved with an
ponent belongs, to the root of the tree. So, this tree can be ugteasing influence from QB evolution stream.
to supply the required mapping as discussed in the previous subm the following experiments, as a first step, we ignore the
section. It is noted that the abodevisive Clusteringnethod is Corre|ations betweemgz)’S, i_e_, U(O) is assumed to be a d|_
different from the hierarchical regression class tree constructiggonal covariance matrix. Then, the formulas in the previous
;netho; iPh[ZZ]Q/k\]/hLChr?dOPES aIg?Iom(jerativl(e cIL:IS.teringr(t)'ce- lesbgbsections can b(e)greatly simplified be/)treating the evolution

ure. Both methods have been found work well in practice. indivi (g (g ;
abovedivisive clusteringrrocedure is more computationally efWetzztlgﬂ“gf?_Lé?;géﬁ a?i?:r;a;ﬁg tﬁf:jegéktﬁg ;ﬁeczélguleavtgﬂ,_
ficientghan theaggIomerativiclusteringroced(ljjre in [22]|-| Thri]s tion will be started again from a new prior in a consistent way.
issue becomes important when one want to dynamically cha ; ; (@)
the tree structure based on adapted CDHMM means in the %%ye;hslfufji,sfhgv %f:\;i:és;;;iig ?Jfrii[%%fi;o;deoa;zzz;k I
line adaptation process.

Specification of Fusion Weighttn the current two-stream @ _ ) ——L 05— if cg,’i) >0

. . . . L € = 1—|—exp[—a(cgk>—,ﬁ)1 (5)
prior evolution scheme, one is the QB evolution which is known 0 otherwise
to have a good asympototic convergence property [13], [14].

Another is the linear transformation constrained prior evolutiomherecgz) is the related accumulated “EM count” of the number
which because of the sharing of the transformations, is mavéfeature vectors fromt]*, « > 0 andg > 0 are two pa-
efficient when the amount of adaptation datd is small. To rameters to control the shape and the location of the sigmoid
take advantage of the strengths of the both streamdugiien function. In Fig. 4, we plot the above sigmoid functions for
weighte (0 < e < 1) can be designed to be a monotonicallyr = 1.0,2.0,3.0 and5 = 1.0,2.0. The value of3 (denoted
increasing function of the amount of available adaptation dats 'beta’ in Fig. 4) determines the boundasfﬁ,) = 0.5, for the
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fusion weight. If we seff = 1.0, this means that once a frameusing a Sound Blaster 16 ASP A/D card plugged into a 486
of feature vector is observed for a CDHMM mixture compoPC at 16-bit accuracy and with a sampling rate of 16 KHz. We
nent, the QB stream starts playing a bigger role in the posteriged 18 224 sentences (about 15.5 h of raw speech) from 18
pooling. The value ofy (denoted as “alpha” in Fig. 4) indicatesspeakers (nine females and nine males) for training. Other two
the slope of the sigmoid function near the boundéﬂ/— 3 =0. speakers (one female and one male) are used for speaker-inde-
Bigger the value ofy, faster the QB stream takes over the linegsendent (SI) testing and speaker adaptation. For testing data, we
transformation constrained stream. In our experiments reportagidomly choose 378 sentences (about 25 min of raw speech
in the next section, we choose, after some preliminary expavhich includes 4122 syllables or 10 351 phones) from the fe-
iments,ac = 1.0, 8 = 1.0. We found that the value gf is male speaker, and 215 sentences (about 12 min of raw speech
relatively less sensitive for the performance improvement (wéhich includes 2362 syllables or 5788 phones) from the male
tried 3 = 1.0 andj = 2.0, both work well), while the value of speaker. The remaining sentences from those two speakers are

« should not be set too big. used for adaptation.
The second database we used is the 863 Putonghua Corpus
C. Discussion [35] acquired from mainland China. We randomly choose 12

sPeakers (six males and six females) from this corpus to serve

Q : :

s another set of Sl testing speakers. All speech recordings were

%qde in a quite office environment with several close-talking

tation of CDHMM parameters in a maximum likelihood (ML) icrophones of.the same type by asking speaker to read a
preprepared script of sentences from newspaper text. Speech

estimation framework, now known as the MLLR (ML linear re- L : .
S ” : as also digitized using Sound Blaster cards at 16-bit accuracy
gression) in speech recognition community (e.g., [2], [5], [8], [95/

[21], and [25]). In literature, there are also other efforts (e.g., [1 nd with a sampling rate of 16 KHz. For each speaker, there

[4]. [6], [27][29]) in combining different adaptation algorithms re in total 519 sentences. Among them, 100 sentences are

to derive an enhanced algorithm. Most of them are developeJ?r?erved for testing, a_nd the remaining ones for_adapftatlon.
nput speech was first pre-emphasized by a fixed first-order

a he_uns_tlc way and/or only for batch-mode a_dapt_amon. The f'rsg[/stem,l—0.97;:—1 , and then grouped into frames of 25 ms with
motivation of our new framework as we described in Section I1- : ; .
L : frame shift of 10 ms. For each frame, a Hamming window
is similar to the aforementioned works. However, our approac . A
. o . Wwas applied followed by the computation of 12 MFCCs. The
has been developed consistently under a unified Bayesian framgg- . : o .
S . .. 39-dimensional feature vector used in this study consists of 12
work. Each step of approximation can be theoretically justifie .
. X . . . FCCs and log-scaled energy normalized by the peak of the
Our prior evolution framework is also flexible enough toinclude_.". i .
ihdividual sentence, plus their first and second-order derivatives.

the batch-mode MAP estimation as a special case, which canbe L : :
. ) . : . ehtence-based cepstral mean subtraction is applied for acoustic
viewed as aone-step prior evolution, followed by a point estima]

Our choice of using linear transformation constraint to contr
the prior evolution for CDHMM means is apparently inspire

ormalization both in training and testing.

(taking a mode) from the evolved prior. Furthermore, as we de-.l.he baseline svstem is a speaker independent. deci-
scribed in Section II-A as the second motivation, the same frame- Y P P '

work can also be used to address other robust speech reco msi}oH-tree-based mixture-Gaussian tied-state HMM system.
P 9NHRR basic speech unit is the triphones considering both the

problems which will be reported elsewhere. In the following Se9\7ithin-syllable and cross-syllable contextual dependencies.

tloni.we_applylltlhe aboye newfallgorlthm to a speaker adaptatLPHe acoustic models are trained by using the HTK2.1 toolkit
application to illustrate its usefulness. [31]. The adopted context-independent (Cl) phone set consists
of 36 phones plus silence. With this phone set definition, there
IV. SPEAKER ADAPTATION EXPERIMENTS are 8022 triphones in Putonghua by assuming that each syllable
A. Experimental Setup and Baseline System can be foIIowgd by any_syllables. Among them, 5594 tri_phones
, N X are observed in our training data set, with only 4760 triphones
To examine the V|ab|I|t_y and the eff"?acy of the proposegach appearing at least three times. Each phone is modeled by
method, a series of experlments_for continuous speech reco_gﬂ'eft-to-right three-emitting-state Gaussian-mixture CDHMM
tion of Putonghua (Mandarin Chinese) are performed. The figgi, ot state skipping. Each state has four Gaussian mixture
database we used is the HKU96 Putonghua Corpus developgd,,,nents with each component having a diagonal covariance

in our laboratory [34]. The HKU96 corpus consists of a total Qf,ayrix. A special three-state CDHMM is also used for silence
20 native Putonghua speakers, ten females and ten males, ‘?ﬁ‘GBeling.

speaking The recognition task is the recognition of 410 Putongbase

1) all Putonghua syllables in all tones at least once; syllablesdisregarding tones. The recognition network enforces

2) 11 words of two to four syllables; silence at the start and end of sentences and allows optional

3) 16 digit strings of four to seven digits; silences between syllables. As for syllable language model, a

4) three sentences of seven rhymed syllables with /a/, /i/, agiiform grammar with a syllable perplexity of 411 (i.e., each
/ul endings, respectively; syllable can be followed by any of the 410 base syllables and

5) hundreds of sentences with verbalized punctuation frogflence) is used. All the recognition experiments are performed
newspaper text. with the search engine provided by HTK2.1 toolkit.

All speech recordings were made in a quite room with a singleln building the baseline system, about 150 linguistic ques-
National Cardioid Dynamic microphone. Speech was digitizathns are used in decision-tree construction and the relevant
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thresholds for stopping criterion are adjusted to generate 3019
tied states. For this system, the averaged syllable accuracies of
75.8% and 60.7% are achieved respectively over two testing 86 |
speakers on HKU96 corpus, and over 12 speakers on 863 &
corpus. The big performance difference indicates clearly the
existence of mismatches between the two corpora.

Performance comparison averaged over 2 speakers
88 T T r

84

82 t

recognition accuracy (%

i i 80 f Hybrid ——
B. Comparison of Speaker Adaptation Results ‘i QI%&% e
Starting from the above baseline system, we performed super- 8 78 ¥ QB-Ncor -
vised incremental speaker adaptation experiments on 14 testing ok sD -
speakers by using four different methods as follows:
1) incremental MLLR adaptation method in [22], [7]; 4 12 . 1‘0 2-0 3‘0 20
2) incremental QB adaptation method without correlation 0 asmofm of adaptation data (in minutes) per speaker
in [13];
3) incremental QB adaptation method with correlation ifig. 5. Performance (syllable accuracy in percent) comparison averaged over
[14]; two testing speakers on HKU96 Corpus as a function of amount (in minutes) of

. L . available adaptation data per speaker for four online adaptation methods: new
4) new adaptation method which includes the evolution @{brid method (Hybrid), QB with correlation (QB-Cor), MLLR, QB without

two streams of prior pdfs, i.e., QB without correlatiorsorrelation (QB-Ncor). SD recognition accuracy is 84.7%.
and linear transformation constrained prior.
In the experiments for MLLR and new hybrid adaptation TABLE |

methods, the required mapping tree is built and then fixed for COVERAGE (IN %) OF TRIPHONES ANDTIED STATES AS A FUNCTION OF
THE AMOUNT OF ADAPTATION DATA FOR TWO TESTING SPEAKERS ON

all of the Gaussian mixture components of the CDHMMs in HKU96 CORPUS

the baseline recognition system by using the tree construction

method described in the previous section. During the adaptati ~ Speaker & Amount of Adaptation Data in Minutes
process, different number (utmost 256) of linear transformatio Units 1 2 | 3 [ 6 | 10| 2 | 30|40

are adaptively chosen based on the amount of available ad Male, Triphone | 3.5 | 6.3 | 85 |12.9 | 16.9 | 24.2 | 29.2 | 32.5
tation data. In a preliminary study reported in [15], full affine Male, Tied-State | 24.3 | 39.6 | 50.0 | 67.8 | 77.4 | 87.9 | 92.3 | 04.1
transformations are used. In this study, animproved performar gepaie Triphone | 4.1 | 6.7 | 8.6 | 13.5 | 17.5 | 24.4 | 28.4 | 31.5
is achieved by using block-diagonal transformations of €&t 1"y Siate | 28.3 | 43.1 | 51.3 | 68.4 | 77.8 | 88.3 | 92.4 | 944
having three blocks corresponding to static features, their delws;
and delta-delta versions. This is consistent with the findings
in many MLLR-based adaptation results (e.g., [9] and [24])hat the QB adaptation method with correlation achieves the
In QB adaptation, the prior is evolved sentence by senten@est overall performance. The adaptation performance will also
However, in MLLR estimation of the linear transformationsgepend on the richness of the basic units (here the triphones and
an updating interval of 30 s of speech is used. This means thaire accurately tied states) in the adaptation data. To put the
in the new hybrid approach, for each given block of adaptati@bove performance comparison in perspective, we listin Table |
data, although the QB stream evolves sentence by sentencetlibecoverage of the above units as a function of the amount of
posterior pooling occurs every 30 s. As for the QB adaptati@mlaptation data for two testing speakers on HKU96 corpus.
of correlated CDHMMSs, the correlation neighborhood size is Fig. 6 shows a similar performance comparison as in Fig. 5
chosento be eight (see explanation in [14]). Readers are refefsgdunning the above four adaptation algorithms on 12 testing
to [13], [14] for more details about how to specify the initiakpeakers from 863 corpus. Note that the SD performance is
prior from Sl training data. In all of the above four adaptatiobased on the models trained from 20 min raw speech for each
algorithms, one EM iteration is performed. speaker. This time, our new hybrid algorithm achieves consis-
Fig. 5 shows the performance (syllable accuracy in percetgntly the best performance among the algorithms compared and
comparison averaged over two testing speakers on HKUB¥®er the different amount of adaptation data. It is interesting to
corpus as a function of amount of available adaptation datecall that the QB algorithm with correlation performs better
(in terms of minutes of raw speech) among the above fotitan the new hybrid algorithm on HKU96 corpus. One possible
adaptation methods. We also list the averaged performancedgplanation is that the correlation coefficients estimated from 18
speaker-dependent (SD) testing with the means of CDHMNIsining speakers on HKU96 corpus are not reliable enough to
trained from 40 min of raw speech for each speaker while othgeneralize well for an acoustically mismatched corpus, namely
CDHMM parameters kept the same as the Sl-trained ones863 corpus. This also suggests that in order to make the QB al-
our baseline system. The experimental results confirm ogorithm with correlation work well, we need to have a rich set
expectation, i.e., the new hybrid algorithm achieves a similaf training data to reliably estimate the correlation coefficients.
fast-adaptation performance as that of the incremental MLL&herwise, their effectiveness for the prediction of the correlated
in the case of small amount of adaptation data, while maintaimeans will be reduced.
the good asymptotic convergence property as that of theFig. 7 shows a similar performance comparison as in Fig. 6
original QB algorithm. In this set of experiments, we observday running the above four adaptation algorithms in batch mode.
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Performance comparison averaged over 12 speakers Performance comparison averaged over 12 speakers

82 ——— T T T 82 ———— T T
80 80 |
. 78 |+ _ 78 |
g 76} e 76t
> >
8 74} 8 741
=] >
§ 72 § 72 |
c 70} Hybrid —— 5 70 + Hybrid-OL ——
= QB-Cor -+ S Hybrid-Batch -+
g 68 MLLR -e-- 1 g 68 MLLR-OL -s--
S 66|/ QB-Ncor —— | 8 66 MLLR-Batch -~
@ SD - 8 SD -
64 1 64
62 It/ 1 62
60 L 1 1 L L Il L I 60 I 1 1 I 1 L 1 1
01234 6 8 10 15 20 01234 6 8 10 15 20
amount of adaptation data (in minutes) per speaker amount of adaptation data (in minutes) per speaker

Fig. 6. Similar performance comparison as in Fig. 5 by running the onliréig. 8. Performance comparison between online and batch-mode adaptation
adaptation algorithms on 12 testing speakers from 863 Corpus. SD recognitionhybrid and MLLR algorithms.
accuracy is 78.2%.

Pertf ce comparison averaged over 12 speakers TABLE I
82 ,e ,o",na? r i r r 9 r P COMPARISON OFUSERCPU TIME (IN SECOND$ BY RUNNING FOUR ONLINE
| ADAPTATION ALGORITHMS ON A BLOCK OF 30 s $EECH(IN MLLR AND
80 HYBRID ALGORITHMS, 115 TRANSFORMATIONSARE USED. IN QB-COR, THE
78 CORRELATION NEIGHBORHOOD SIZE IS EIGHT )
& 76t
§‘ 74| Algorithm Hybrid | QB-Cor | MLLR | QB-NCor
§ 72 | User CPU Time | 25.52 67.35 21.85 13.58
c 70} Hybrid ~—
£ QB-Cor -+
c 68 MLLR -&-- 1 . . . . . ..
=g 66 QB-NGor - 2) for QB adaptation algorithm with correlation, in addition
Q 1 . . . . .
@ . SD - to what is required as in the above QB without correlation
6 algorithm, storing the correlation coefficients accounts
62 1/ for a big memory overhead which is the main drawback
O 1234 6 & 10 = 20 of this algorithm; _
amount of adaptation data (in minutes) per speaker 3) for MLLR, the memory overhead comes from storing the

7 Simil . _ o Eio 6 i the adabiati linear transformations and the relevant statistics needed

ig. 7. Similar performance comparison as in Fig. 6 by running the adaptation ; ;

algorithms in batch mode. SD recognition accuracy is 78.2%. to derive thesg transformations. It depends on the number
of transformations used;

) _ _ ) 4) for the new hybrid algorithm, the memory required is
Three EM iterations are performed in all the experiments. The roughly the sum of those in 1) and 3).
similar observations are made and the same conclusion as aqpve . : .

-Fora detailed analysis of the memory requirement of the rele-
can be drawn from the results. Furthermore, by comparing

the results in Fig. 7 with that in Fig. 6, we observed that fqf nt algorithms, readers are referred to 8], [9], and [21] for the

QB algorithms (both with and without correlation), online anfj}/lLLR algorithm, and.to [13] and [14] for th_e QB algorlthms.
As for the comparison of the computational complexity of

batch-mode adaptation perfofms equally_ well. However, f%e above four adaptation algorithms, we tabulate in Table I
MLLR, we observed that online adaptation performs bett%e user CPU timerequired for running a single online adap-
than batch-mode adaptation. The benefit of online MLLR iation step with a block of 30 s speech. The timing results are
maintained in the hybrid online adaptation algorithm too. Thi '

. tained on a Sun UltraSPARC-II with a 248 MHz clock. In the
can be clearly observed by reproducing the results for MLL . : .
. : - LLR and Hybrid algorithms, 115 transformations are used.
and Hybrid algorithms as shown in Fig. 8.

In QB-Cor, the correlation neighborhood size is eight. Except
. . for QB-Cor, all of the other three algorithms can complete the
C. Discussion : . : : : L .
online adaptation step in real time (i.e., within 30 s) on this
In addition to the desired characteristics we discussed in tﬁﬁchine_ Apparenﬂy, the better performance of the new hybnd
introduction section, another two aspects, namely memory ggorithm is achieved with the cost of a moderate increase of
quirement and computational complexity are also important fefemory requirement and a slight computational overhead in
comparing different adaptation algorithms. For the above fodpmparison with either MLLR or QB without correlation.
adaptation algorithms we compared, the additional memory re-One of the important research topics concerns about the ef-
quirement is roughly as follows: ficient adaptation with only a couple of minutes of adaptation
1) for QB adaptation algorithm without correlation, itis simspeech data. In this case, the form of linear transformations we
ilar to that of storing the CDHMM parameters; used in the above hybrid algorithm is still too complicated to
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estimate reliably the required transformation parameters. Reis]
cently, by adopting a simple transformation (i.e., bias for mean
vector and scaling for variance of CDHMM [24], [25]) and as- [g]
suming a specific prior pdf for these transformation parame-
ters, such a “transformation-based” QB adaptation algorithm,
has been developed in [3] by using the general QB framework in
[13]. This algorithm can be viewed as another way of prior evo-
lution with the abovementioned linear constraints imposed. By
combining this stream of prior evolution with the one in [13], we
have developed another powerful algorithm which is expected!®]
to achieve a better performance for small amount of adaptation
data. We will report this result elsewhere. [10]

(8]

V. SUMMARY [11]

In this study, we propose a new incremental adaptive
Bayesian learning framework for online adaptation of thelt?
CDHMM parameters. In a series of comparative experiments,
we show that the new method has a better learning behavior &
desired for a good adaptation algorithm than the methods of
online MLLR and QB adaptation without correlation. The QB
adaptation algorithm with correlation and the new adaptatioft4]
method proposed in this paper are good candidates for both
short-term and long-term adaptation of CDHMM parameters|[15]
The former usually requires more memory than the latter and
is computationally more expensive. In conclusion, we recoms g
mend the user to use the new hybrid algorithm for adaptation
purpose. If short-term adaptation is the only concern of the, ,
application, then MLLR is also a good tool to use. For many
real-world applications, unsupervised online adaptation (OLA
is usually more realistic and desirable. One of the remainini; |
research issues is how to guide the unsupervised OLA when the
recognition rate is initially low. Different degrees of parameter(19]
tying and/or smoothing might be helpful. Incorporating somey,,
data validation mechanism will also be useful. More theoretical
works are needed to develop a better verification paradignhl]
The new framework ofmultiple-stream prior evolution and
posterior poolingopens up many research opportunities. By
using multiple-stream framework, we can always exploit[22
multiple sources of knowledge and/or apply different kinds ofj23]
constraints to facilitate learning. The key to the success of these
approaches depends on whether the imposed constraints reéﬁf/]
exist in the entities under investigation. It is believed that the
best setup will depend on the purpose of modeling and learning®]
as well as the nature of the specific applications. Intelligent
use of these flexible tools for different purposes in different[26]
applications will be an important part of the future research.

[27]
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