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Online Adaptive Learning of Continuous-Density
Hidden Markov Models Based on Multiple-Stream

Prior Evolution and Posterior Pooling
Qiang Huo, Member, IEEE,and Bin Ma

Abstract—We introduce a new adaptive Bayesian learning
framework, called multiple-stream prior evolution and posterior
pooling, for online adaptation of the continuous density hidden
Markov model (CDHMM) parameters. Among three architectures
we proposed for this framework, we study in detail a specific
two-stream system where linear transformations are applied
to the mean vectors of CDHMMs to control the evolution of
their prior distribution. This new stream of prior distribution
can be combined with another stream of prior distribution
evolved without any constraints applied. In a series of speaker
adaptation experiments on the task of continuous Mandarin
speech recognition, we show that the new adaptation algorithm
achieves a similar fast-adaptation performance as that of the
incremental maximum likelihood linear regression (MLLR) in
the case of small amount of adaptation data, while maintains the
good asymptotic convergence property as that of our previously
proposed quasi-Bayes adaptation algorithms.

Index Terms—Bayesian approach, hidden Markov model, online
adaptive learning, prior evolution, speaker adaptation.

I. INTRODUCTION

I T is now well-known that the performance of an automatic
speech recognition (ASR) system often degrades drastically

when there exist some acoustic mismatches between the training
and testing conditions. For a Gaussian mixture continuous den-
sity hidden Markov model (CDHMM) based ASR system, adap-
tive learning of CDHMM parameters from adaptation/testing
data provides a good way to reduce the possible acoustic mis-
matches between the training and testing conditions and thus
to enhance the system performance robustness. Some desirable
characteristics for a “good” adaptation algorithm include the
following.

• Incremental: The model parameters can be continuously
adapted to the new adaptation data (possibly derived from
actual test utterances) without the requirement of storing
a large set of previously used training/adaptation data. In
comparison with thebatch modealgorithm, the incremental
algorithm has the advantage of the increased computational
efficiency and reduced storage requirements.
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• Adaptive:So as to continuously track the variations of the
model parameters corresponding to the varying observation
data, someforgetting mechanismis needed to reduce the ef-
fect of past observations relative to the new input data.

• Efficient:The adaptation algorithm will hold and/or improve
performance with a small amount of adaptation data, and
approach asymptotically to the matched-condition perfor-
mance with the increasing amount of adaptation data.
In the past few years, there are many research efforts in con-

structing online adaptation algorithms for CDHMM parame-
ters (e.g., [3], [7], [12]–[15], [18], [22], [26], [28], [30], [32],
[33]). With the above considerations in mind, among many pos-
sibilities, our online adaptive learning algorithms [12]–[15], and
the ones in [3] and [18], are developed consistently under a
Bayesian inference framework based on a concept calledprior
evolution. The general methodology of our approach can be out-
lined as follows.

Suppose there are speech units in a speech recognizer,
each being modeled by a Gaussian mixture CDHMM. Consider
a collection of such CDHMMs ,
where denotes the set of parameters of
the th -state CDHMM used to characterize theth speech
unit. In this compact notation, is the initial state distri-
bution, is the transition probability matrix, and

is the parameter vector composed of mixture parameters
for each state with the state obser-

vation probability density function (pdf) being a mixture of mul-
tivariate Gaussian pdfs

where the mixture coefficients ’s satisfy the constraint
, and is the th normal mixand

with being the -dimensional mean vector and being
the covariance matrix with its th diagonal element
being . For notational convenience, it is assumed that
all the state observation pdfs have the same number of mixture
components.

In a Bayesian framework, we intend to consider the uncer-
tainty of the HMM parameters by treating them as if they were
random. Our prior knowledge aboutis assumed to be summa-
rized in a known jointa priori pdf with parameters

(sometimes referred to ashyperparameters), where ,
denotes an admissible region of the HMM parameter space.
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Such prior information may come from subject matter consid-
erations. It can also be derived from previous experiences, e.g.,
training data . Let be independent
sets of observation samples which are incrementally obtained
and used to update our knowledge about. Depending on dif-
ferent assumptions to make, constraints to apply, and knowledge
sources to use, there are many ways toevolve . One way is
to adopt the recursive Bayesian learning framework

(1)

Starting the calculation of posterior pdf from , a re-
peated use of (1) produces a sequence of densities ,

, and so forth. Because of themissing-dataproblem of
CDHMM, there are some serious computational difficulties to
directly implement this learning procedure [13]. Consequently,
some approximations are needed in practice.

One such approach called quasi-Bayes (QB) learning was
developed in [13], [14]. Based on the concept ofdensity
approximation, the QB algorithm is designed to incrementally
update the hyperparameters on the approximate posterior
distribution. Actually, thedensity approximationalso opens
up the opportunity of appropriately manipulating the posterior
distribution as we intend. For example, in order to make our
Bayesian learning algorithms truly adaptive, we can introduce
some forgetting mechanisms, namely exponential forgetting
and hyperparameter refreshingas discussed in [13], [14]
to adjust the contribution of previously observed sample
utterances. Consequently, we will get a posterior distribution

which is different from the true posterior distri-
bution , but includes the appropriate information
we want to learn from the observation data. Both algorithms
in [13] and [14] have the characteristics of being incremental
and adaptive. The difference between them lies mainly in the
facts of that different constraints on HMM parameters are ap-
plied, different forms for the prior pdf are assumed,
and thus different prior evolution algorithms are derived.

In [13], we assume ’s are independent, i.e.,
, where is the prior pdf of with

the hyperparameters . Under the above independence as-
sumption, each model can only be adapted if the corresponding
speech unit has been observed in the current adaptation data.
Consequently, only after all units have been observed enough
times can all of the HMM parameters be effectively adapted. To
enhance the efficiency and the effectiveness of the Bayes adap-
tive learning, in [14], we assume that the covariance matrices of
HMMs, , are known. The initial prior pdf of (excluding

) is assumed to be ,

where is the prior pdf of , and
has a joint normal pdf with a mean vector

vec and a covariance matrix . Here, we define
vec to be the collection of the mean vectors of all

the Gaussian mixture components of CDHMMs and denoted
simply by an operator “vec.” In this way, we can adapt not
only the CDHMM parameters of theobservedspeech units,
but also themean vectorsof unseenspeech units by exploiting

Fig. 1. Single-stream prior evolution and online adaptation.

correlations between different mean vectors. In practice, in
order to avoid the over-smoothing and to reduce the memory
requirement for storing all of the correlation coefficients, we
usually disregard the weakly correlated means. More recently,
inspired by the above general QB framework, a sequential
learning method of mean vectors of CDHMM based on a finite
mixture approximation of their prior/posterior densities has
also been investigated [18].

In addition to the above method of prior evolution, we can
also, for example, assume to evolve in a moreconstrained
way as where represents a mapping from

to and can beincrementallylearned from the observa-
tion data . Then from , we can derive a new poste-
rior distribution as the result of prior
evolution.

Of course, there are other ways to evolve . Each leads
to a different online adaptive learning algorithm. The central
idea of the above approaches is that the evolving prior pdf

summarizes, in a way specified by each specific
prior evolution scheme, the information inherited from the
prior knowledge and learned from the observation data.
From the evolving prior distribution, the intended inference
and/or decision can be made. For example, we can derive a
point estimate from (e.g., MAP (maximum
a posteriori) estimate [20], [10], [11]) and then use the con-
ventional plug-in MAP decision rule(see the discussion in
[16]) for recognition. This type of updating and use ofis
known as online Bayesian adaptation in speech recognition
community [12]–[15]. Alternatively, can also be
used directly in a Bayesian predictive classification approach
[16], [17]. The concept of such type ofsingle-stream prior
evolutionand its relation to the online adaptation of CDHMM
parameters is illustrated in Fig. 1.

In this paper, we extend the concept of single-stream prior
evolution to a new framework which is calledmultiple-stream
prior evolution and posterior pooling. The rest of the paper is
organized as follows. In Section II, we introduce the motiva-
tion of developing this new framework, the mechanism of the
posterior pooling, and the architecture of the multiple-stream
prior evolution. In Section III, we show an example of how to
use this new framework to derive a new adaptation algorithm
aimed to further increase the efficiency of the algorithms in [13],
[14] in terms of both performance improvement and memory re-
quirement. In Section IV, we apply the above new algorithm to
a speaker adaptation application to illustrate its usefulness. Fi-
nally, we summarize our findings in Section V.
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II. M ULTIPLE-STREAM PRIOR EVOLUTION AND POSTERIOR

POOLING

A. Motivation

We have discussed above that there are many ways to evolve
prior pdf. Each leads to a different online adaptive learning
algorithm. Moreover, the prior evolution can start from either
a single prior pdf, or more generally, different prior pdfs for
different schemes. Depending on the specific meaning of the
prior pdf and the way of prior evolution, different schemes
might reflect different aspects of the learning and have their
own strength and weakness. A natural way of obtaining an
enhanced learning algorithm is to simultaneously maintain
multiple streams of prior evolution. During the process of the
prior evolution, we can design aposterior pooling mechanism
which combines the different streams of evolved pdfs to derive
an intended pdf for further inference or decision-making. This
explains the first motivation of our new framework.

Another motivation of developing this new framework is
related to the concepts of the decomposition of the signal
variability sources, the modeling of the signal with the partial
variability, and the composition of the model parameters for
target signal model from individual pretrained models of sig-
nals with the partial variability. For example, the speech signal
is very rich which includes the desirable linguistic information
for recognition as well as many other undesirable information.
A multi-facet learningalgorithm can thus be designed to elicit
from a rich set of training data a set of prior distributions,

. Each reflects how
HMM parameters varies according to one type of variability
factors (e.g., speakers, speaking styles, data capturing and
transmission conditions, etc.). We can treat each
as aknowledge sourcewhich reflects one aspect of the speech
signal. After we have prepared the set of from
training data , we can then use them tocomposeandderive
a condition-dependent distribution guided by
task specifications and a small amount ofcondition-dependent
adaptation data (possibly derived from test data) . We
can view this as a kind ofadaptive information fusionfrom
different knowledge sources .
Alternatively, we can first evolve by using the
adaptation data and an appropriate prior evolution method
to obtain a set of intended distributions .
Then the appropriate information fusion technique can be used
to derive . This explains the second motivation
of our new framework.

Apparently, for the above two types of applications, they re-
quest a common mathematical tool of summarizing a useful pdf
from several pdfs. In the following, we propose one possible so-
lution for this type of information fusion.

B. Fusion Mechanism

Given a set of prior pdfs
(or evolved pdfs, i.e., posterior pdfs

), we can first compose an intended distribution

(2)

where and is the fusion weight
to control therelative importanceof the different knowledge
sources . The ’s can either be automatically
trained from the adaptation data , or just be specified
according to task specifications and modeling intention. Then
we can use a manageable distribution to approximate

by minimizing theKullback-Leibler directed
divergence[19] as follows:

(3)

With , we can derive a point estimate (e.g., taking a
mode) of and then to use the plug-in MAP decision rule to
construct a speech recognizer.

Alternatively, we can first evolve by using the
adaptation data and an appropriate prior evolution method
to obtain a set of intended distributions .
Then the above information fusion technique can be used to de-
rive and to construct the speech recognizer accordingly.

Apparently, if the application involves many utter-
ances during the real use of the ASR system (i.e.,

become available incrementally), the
above discussed scheme can then be operated in an incremental
mode. Consequently, there are several possible architectures
for multiple stream prior evolution. In the following, we use
two-stream prior evolution as an example to illustrate three
different architectures of this new framework.

C. Architectures

The first architecture is shown in Fig. 2(a). Each stream of
prior evolution starts from a single prior pdf which in the first
evolution step, is the initial prior pdf, and afterwards, is the
intended pdf pooled appropriately from previously evolved
multiple streams of priors. The second architecture is shown
in Fig. 2(b). Each stream of prior evolution starts from an
independent prior pdf which in the first evolution step, is the
initial prior pdf, and afterwards, is the previously evolved
prior pdf in this stream. The third architecture is shown in
Fig. 2(c) and is a hybrid one. One stream of prior evolves as in
architecture (b) and another stream evolves as in architecture
(a). All of the above three architectures can find their usages in
different scenarios and applications. What is common among
three architectures is theposterior poolingpart: Given two
evolved pdfs and , we can define
the intended posterior distribution as

(4)

By using the information fusion technique discussed above, we
can derive a to approximate . Then
we can treat as , and continue the
prior evolution process as described in one of the above three
architectures. The MAP estimate of the CDHMM parameters
derived from the evolving prior distribution can be
used to update the speech recognition system. This technique
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Fig. 2. Architectures for multiple-stream prior evolution and posterior pooling framework: (a) each stream evolves from a single (pooled) prior, (b) each stream
evolves independently from different priors, and (c) hybrid, i.e., one stream evolves independently, and another stream evolves from the pooled prior.

of multiple-stream prior evolution and posterior pooling
thus provides a good tool to exploit respectively the different
knowledge sourcesin an appropriate way. Such information
can be incorporated into the existing system so that the system
can be continuously adapted to the new condition-dependent
speech data and/or evolve in a desired way.

In the next section, as a case study, we consider a specific
two-stream prior-evolution and posterior pooling system with
the architecture (a), where one stream is the QB evolution of
the CDHMM parameters as described in [13], [14], and another
stream is governed by applying linear transformations to the
mean vectors of CDHMM to control their evolution.
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III. CASE STUDY: QB PLUS TRANSFORMATION CONSTRAINED

PRIOR EVOLUTION

A. Method

In this study, we only consider the case of CDHMMs in which
the covariance matrices are specified (i.e., fixed without adapta-
tion). In addition to the notations described in the introduction
section, we further define another operator “bdiag” to denote a
block diagonal matrix, e.g., bdiag , with each di-
agonal block element to be also a matrix, e.g., . The ini-
tial prior pdf of is assumed to be ,
where takes the special form of a matrix beta pdf with

sets of positive hyperparameters of , and
has a joint normal pdf with a mean

vector vec and a covariance matrix [13],
[14]. This class of prior distributions actually constitutes a con-
jugate family of the complete-data density and is denoted as.
In this study, we only consider the case of multiple stream prior
evolution for mean vectors of CDHMMs. All of the other HMM
parameters will evolve in the QB stream as described in [13],
[14].

In the new stream of prior evolution, at time instant, we
assume that mean vectors ’s have been evolved from
the original mean vectors ’s by linear transformations
as follows:

where is a matrix and is a -di-
mensional bias vector. These transformations can be shared by
different mean vectors in a very flexible way. and

represent the class indexs which are the results of two
mappings from distinct mixture component labels to the shared
transformation class labels. For simplicity, we only study the
case of here. Following
the practice in [22], we use a hierarchical tree to define the
above mappings by attaching to each node of the tree a dis-
tinct transformation. The transformation corresponding to an
internal node closer to the root node represents a higher de-
gree of sharing of the transformation among Gaussian com-
ponents. These transformations can be incrementally estimated
from by using an approximate maximum likelihood ap-
proach described in [22], [7]. Following the practice in [22]
again, in order to check if a transformation can be estimated
reliably, we maintain, for each transformation, an accumulated
“EM-count,” count , of the number of feature vectors
from . If count exceeds a pre-specified threshold,
the transformation will be viewed as being

reliably estimated. In evolving ’s, the transformation
will be chosen by traversing the above map-

ping tree to make sure the most detailed yet reliably estimated
transformation be used [22]. With the above constraints applied
to the ’s, the new stream of prior pdf will evolve as follows:

where

with bdiag and vec . Note
that in this paper, we use to denote the transpose of a vector
or a matrix.

Another stream of prior pdf will evolve as described in [13],
[14] as follows:

By pooling and together as de-
scribed in (4), we obtain a mixture of Gaussian pdfs

We can now use another Gaussian pdf to
approximate the above pdf under the criterion
of minimizing the Kullback-Leibler directed divergence of

from . It can be derived that

A block diagram of the above two-stream prior-evolution and
posterior pooling system is shown in Fig. 3. In the following
subsection, we discuss two implementation issues, namely 1)
how to construct the mapping tree for CDHMM Gaussian com-
ponents to share the linear transformations and 2) how to specify
the fusion weight .

B. Implementation Issues

Construction of Mapping Tree:For notational simplicity,
in this subsection, let us use

to denote Gaussian components of the
initial CDHMMs, where . We intend to build
a binary tree with a specifiedheight such that the set ofleaf
nodesof the tree represents a partition of the set of the above
Gaussians. We adopt adivisive clusteringmethod similar to the
so-called LBG algorithm described in [23] to construct such a
tree with the required modifications detailed as follows.

• We use the following symmetricdivergencemeasure be-
tweentwoGaussians,say, and ,
to serve as the distortion measure [19] (this distortion
measure is also used in, e.g., [22], [3])

where tr denotes the trace of a matrix.
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Fig. 3. Two-stream prior-evolution and posterior pooling system: QB plus linear transformation constrained prior evolution.

• The centroid Gaussian pdf, , for a set of
Gaussians, say, , is cal-
culated as follows:

This can be derived by minimizing the Kullback-Leibler
directed divergence of any approximating normal pdf from
the Gaussian mixture .

• The binary “splitting” of a centroid Gaussian pdf
is conducted by splitting the mean vector

into two new mean vectors ,
, where denotes a small perturbation factor.

The above constructed tree defines a one-to-many mapping
from each distinct Gaussian component in CDHMMs to a set of
nodes on the path from the leaf node to which the Gaussian com-
ponent belongs, to the root of the tree. So, this tree can be used
to supply the required mapping as discussed in the previous sub-
section. It is noted that the abovedivisive clusteringmethod is
different from the hierarchical regression class tree construction
method in [22] which adopts anagglomerative clusteringproce-
dure. Both methods have been found work well in practice. The
abovedivisive clusteringprocedure is more computationally ef-
ficient than theagglomerative clusteringprocedure in [22]. This
issue becomes important when one want to dynamically change
the tree structure based on adapted CDHMM means in the on-
line adaptation process.

Specification of Fusion Weight:In the current two-stream
prior evolution scheme, one is the QB evolution which is known
to have a good asympototic convergence property [13], [14].
Another is the linear transformation constrained prior evolution
which because of the sharing of the transformations, is more
efficient when the amount of adaptation data is small. To
take advantage of the strengths of the both streams, thefusion
weight can be designed to be a monotonically
increasing function of the amount of available adaptation data.

Fig. 4. Plots of the sigmoid functions for different values of� and�.

In this way, when the amount of adaptation data is small, the
constrained prior evolution stream will have a bigger influence,
while a good asymptotic convergence can be achieved with an
increasing influence from QB evolution stream.

In the following experiments, as a first step, we ignore the
correlations between ’s, i.e., is assumed to be a di-
agonal covariance matrix. Then, the formulas in the previous
subsections can be greatly simplified by treating the evolution
of the individual separately. After is calculated,
we set all off-diagonal elements to beso that the QB evolu-
tion will be started again from a new prior in a consistent way.
In this case, we can also use a different for each . In
this study, the following sigmoid function is adopted:

if

otherwise
(5)

where is the related accumulated “EM count” of the number
of feature vectors from , and are two pa-
rameters to control the shape and the location of the sigmoid
function. In Fig. 4, we plot the above sigmoid functions for

and . The value of (denoted
as ’beta’ in Fig. 4) determines the boundary, , for the
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fusion weight. If we set , this means that once a frame
of feature vector is observed for a CDHMM mixture compo-
nent, the QB stream starts playing a bigger role in the posterior
pooling. The value of (denoted as “alpha” in Fig. 4) indicates
the slope of the sigmoid function near the boundary .
Bigger the value of , faster the QB stream takes over the linear
transformation constrained stream. In our experiments reported
in the next section, we choose, after some preliminary exper-
iments, . We found that the value of is
relatively less sensitive for the performance improvement (we
tried and , both work well), while the value of

should not be set too big.

C. Discussion

Our choice of using linear transformation constraint to control
the prior evolution for CDHMM means is apparently inspired
by the success of using the linear transformations for the adap-
tation of CDHMM parameters in a maximum likelihood (ML)
estimation framework, now known as the MLLR (ML linear re-
gression) inspeech recognitioncommunity (e.g., [2], [5], [8], [9],
[21], and [25]). In literature, there are also other efforts (e.g., [1],
[4], [6], [27]–[29]) in combining different adaptation algorithms
to derive an enhanced algorithm. Most of them are developed in
a heuristic way and/or only for batch-mode adaptation. The first
motivation of our new framework as we described in Section II-A
is similar to the aforementioned works. However, our approach
has been developed consistently under a unified Bayesian frame-
work. Each step of approximation can be theoretically justified.
Our prior evolution framework is also flexible enough to include
the batch-mode MAP estimation as a special case, which can be
viewed asa one-step prior evolution, followedbya pointestimate
(taking a mode) from the evolved prior. Furthermore, as we de-
scribed in Section II-A as the second motivation, the same frame-
work can also be used to address other robust speech recognition
problems which will be reported elsewhere. In the following sec-
tion, we apply the above new algorithm to a speaker adaptation
application to illustrate its usefulness.

IV. SPEAKER ADAPTATION EXPERIMENTS

A. Experimental Setup and Baseline System

To examine the viability and the efficacy of the proposed
method, a series of experiments for continuous speech recogni-
tion of Putonghua (Mandarin Chinese) are performed. The first
database we used is the HKU96 Putonghua Corpus developed
in our laboratory [34]. The HKU96 corpus consists of a total of
20 native Putonghua speakers, ten females and ten males, each
speaking

1) all Putonghua syllables in all tones at least once;
2) 11 words of two to four syllables;
3) 16 digit strings of four to seven digits;
4) three sentences of seven rhymed syllables with /a/, /i/, and

/u/ endings, respectively;
5) hundreds of sentences with verbalized punctuation from

newspaper text.

All speech recordings were made in a quite room with a single
National Cardioid Dynamic microphone. Speech was digitized

using a Sound Blaster 16 ASP A/D card plugged into a 486
PC at 16-bit accuracy and with a sampling rate of 16 KHz. We
used 18 224 sentences (about 15.5 h of raw speech) from 18
speakers (nine females and nine males) for training. Other two
speakers (one female and one male) are used for speaker-inde-
pendent (SI) testing and speaker adaptation. For testing data, we
randomly choose 378 sentences (about 25 min of raw speech
which includes 4122 syllables or 10 351 phones) from the fe-
male speaker, and 215 sentences (about 12 min of raw speech
which includes 2362 syllables or 5788 phones) from the male
speaker. The remaining sentences from those two speakers are
used for adaptation.

The second database we used is the 863 Putonghua Corpus
[35] acquired from mainland China. We randomly choose 12
speakers (six males and six females) from this corpus to serve
as another set of SI testing speakers. All speech recordings were
made in a quite office environment with several close-talking
microphones of the same type by asking speaker to read a
preprepared script of sentences from newspaper text. Speech
was also digitized using Sound Blaster cards at 16-bit accuracy
and with a sampling rate of 16 KHz. For each speaker, there
are in total 519 sentences. Among them, 100 sentences are
reserved for testing, and the remaining ones for adaptation.

Input speech was first pre-emphasized by a fixed first-order
system, , and then grouped into frames of 25 ms with
a frame shift of 10 ms. For each frame, a Hamming window
was applied followed by the computation of 12 MFCCs. The
39-dimensional feature vector used in this study consists of 12
MFCCs and log-scaled energy normalized by the peak of the
individual sentence, plus their first and second-order derivatives.
Sentence-based cepstral mean subtraction is applied for acoustic
normalization both in training and testing.

The baseline system is a speaker independent, deci-
sion-tree-based mixture-Gaussian tied-state HMM system.
The basic speech unit is the triphones considering both the
within-syllable and cross-syllable contextual dependencies.
The acoustic models are trained by using the HTK2.1 toolkit
[31]. The adopted context-independent (CI) phone set consists
of 36 phones plus silence. With this phone set definition, there
are 8022 triphones in Putonghua by assuming that each syllable
can be followed by any syllables. Among them, 5594 triphones
are observed in our training data set, with only 4760 triphones
each appearing at least three times. Each phone is modeled by
a left-to-right three-emitting-state Gaussian-mixture CDHMM
without state skipping. Each state has four Gaussian mixture
components with each component having a diagonal covariance
matrix. A special three-state CDHMM is also used for silence
modeling.

The recognition task is the recognition of 410 Putonghuabase
syllablesdisregarding tones. The recognition network enforces
silence at the start and end of sentences and allows optional
silences between syllables. As for syllable language model, a
uniform grammar with a syllable perplexity of 411 (i.e., each
syllable can be followed by any of the 410 base syllables and
silence) is used. All the recognition experiments are performed
with the search engine provided by HTK2.1 toolkit.

In building the baseline system, about 150 linguistic ques-
tions are used in decision-tree construction and the relevant
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thresholds for stopping criterion are adjusted to generate 3019
tied states. For this system, the averaged syllable accuracies of
75.8% and 60.7% are achieved respectively over two testing
speakers on HKU96 corpus, and over 12 speakers on 863
corpus. The big performance difference indicates clearly the
existence of mismatches between the two corpora.

B. Comparison of Speaker Adaptation Results

Starting from the above baseline system, we performed super-
vised incremental speaker adaptation experiments on 14 testing
speakers by using four different methods as follows:

1) incremental MLLR adaptation method in [22], [7];
2) incremental QB adaptation method without correlation

in [13];
3) incremental QB adaptation method with correlation in

[14];
4) new adaptation method which includes the evolution of

two streams of prior pdfs, i.e., QB without correlation
and linear transformation constrained prior.

In the experiments for MLLR and new hybrid adaptation
methods, the required mapping tree is built and then fixed for
all of the Gaussian mixture components of the CDHMMs in
the baseline recognition system by using the tree construction
method described in the previous section. During the adaptation
process, different number (utmost 256) of linear transformations
are adaptively chosen based on the amount of available adap-
tation data. In a preliminary study reported in [15], full affine
transformations are used. In this study, an improved performance
is achieved by using block-diagonal transformations of each
having three blocks corresponding to static features, their delta,
and delta-delta versions. This is consistent with the findings
in many MLLR-based adaptation results (e.g., [9] and [24]).
In QB adaptation, the prior is evolved sentence by sentence.
However, in MLLR estimation of the linear transformations,
an updating interval of 30 s of speech is used. This means that
in the new hybrid approach, for each given block of adaptation
data, although the QB stream evolves sentence by sentence, the
posterior pooling occurs every 30 s. As for the QB adaptation
of correlated CDHMMs, the correlation neighborhood size is
chosen to be eight (see explanation in [14]). Readers are referred
to [13], [14] for more details about how to specify the initial
prior from SI training data. In all of the above four adaptation
algorithms, one EM iteration is performed.

Fig. 5 shows the performance (syllable accuracy in percent)
comparison averaged over two testing speakers on HKU96
corpus as a function of amount of available adaptation data
(in terms of minutes of raw speech) among the above four
adaptation methods. We also list the averaged performance for
speaker-dependent (SD) testing with the means of CDHMMs
trained from 40 min of raw speech for each speaker while other
CDHMM parameters kept the same as the SI-trained ones in
our baseline system. The experimental results confirm our
expectation, i.e., the new hybrid algorithm achieves a similar
fast-adaptation performance as that of the incremental MLLR
in the case of small amount of adaptation data, while maintains
the good asymptotic convergence property as that of the
original QB algorithm. In this set of experiments, we observed

Fig. 5. Performance (syllable accuracy in percent) comparison averaged over
two testing speakers on HKU96 Corpus as a function of amount (in minutes) of
available adaptation data per speaker for four online adaptation methods: new
hybrid method (Hybrid), QB with correlation (QB-Cor), MLLR, QB without
correlation (QB-Ncor). SD recognition accuracy is 84.7%.

TABLE I
COVERAGE (IN %) OF TRIPHONES ANDTIED STATES AS A FUNCTION OF

THE AMOUNT OF ADAPTATION DATA FOR TWO TESTING SPEAKERS ON

HKU96 CORPUS

that the QB adaptation method with correlation achieves the
best overall performance. The adaptation performance will also
depend on the richness of the basic units (here the triphones and
more accurately tied states) in the adaptation data. To put the
above performance comparison in perspective, we list in Table I
the coverage of the above units as a function of the amount of
adaptation data for two testing speakers on HKU96 corpus.

Fig. 6 shows a similar performance comparison as in Fig. 5
by running the above four adaptation algorithms on 12 testing
speakers from 863 corpus. Note that the SD performance is
based on the models trained from 20 min raw speech for each
speaker. This time, our new hybrid algorithm achieves consis-
tently the best performance among the algorithms compared and
over the different amount of adaptation data. It is interesting to
recall that the QB algorithm with correlation performs better
than the new hybrid algorithm on HKU96 corpus. One possible
explanation is that the correlation coefficients estimated from 18
training speakers on HKU96 corpus are not reliable enough to
generalize well for an acoustically mismatched corpus, namely
863 corpus. This also suggests that in order to make the QB al-
gorithm with correlation work well, we need to have a rich set
of training data to reliably estimate the correlation coefficients.
Otherwise, their effectiveness for the prediction of the correlated
means will be reduced.

Fig. 7 shows a similar performance comparison as in Fig. 6
by running the above four adaptation algorithms in batch mode.
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Fig. 6. Similar performance comparison as in Fig. 5 by running the online
adaptation algorithms on 12 testing speakers from 863 Corpus. SD recognition
accuracy is 78.2%.

Fig. 7. Similar performance comparison as in Fig. 6 by running the adaptation
algorithms in batch mode. SD recognition accuracy is 78.2%.

Three EM iterations are performed in all the experiments. The
similar observations are made and the same conclusion as above
can be drawn from the results. Furthermore, by comparing
the results in Fig. 7 with that in Fig. 6, we observed that for
QB algorithms (both with and without correlation), online and
batch-mode adaptation performs equally well. However, for
MLLR, we observed that online adaptation performs better
than batch-mode adaptation. The benefit of online MLLR is
maintained in the hybrid online adaptation algorithm too. This
can be clearly observed by reproducing the results for MLLR
and Hybrid algorithms as shown in Fig. 8.

C. Discussion

In addition to the desired characteristics we discussed in the
introduction section, another two aspects, namely memory re-
quirement and computational complexity are also important for
comparing different adaptation algorithms. For the above four
adaptation algorithms we compared, the additional memory re-
quirement is roughly as follows:

1) for QB adaptation algorithm without correlation, it is sim-
ilar to that of storing the CDHMM parameters;

Fig. 8. Performance comparison between online and batch-mode adaptation
for hybrid and MLLR algorithms.

TABLE II
COMPARISON OFUSERCPU TIME (IN SECONDS) BY RUNNING FOUR ONLINE

ADAPTATION ALGORITHMS ON A BLOCK OF 30 s SPEECH(IN MLLR AND

HYBRID ALGORITHMS, 115 TRANSFORMATIONSARE USED. IN QB-COR, THE

CORRELATION NEIGHBORHOODSIZE IS EIGHT )

2) for QB adaptation algorithm with correlation, in addition
to what is required as in the above QB without correlation
algorithm, storing the correlation coefficients accounts
for a big memory overhead which is the main drawback
of this algorithm;

3) for MLLR, the memory overhead comes from storing the
linear transformations and the relevant statistics needed
to derive these transformations. It depends on the number
of transformations used;

4) for the new hybrid algorithm, the memory required is
roughly the sum of those in 1) and 3).

For a detailed analysis of the memory requirement of the rele-
vant algorithms, readers are referred to [8], [9], and [21] for the
MLLR algorithm, and to [13] and [14] for the QB algorithms.

As for the comparison of the computational complexity of
the above four adaptation algorithms, we tabulate in Table II
the user CPU timerequired for running a single online adap-
tation step with a block of 30 s speech. The timing results are
obtained on a Sun UltraSPARC-II with a 248 MHz clock. In the
MLLR and Hybrid algorithms, 115 transformations are used.
In QB-Cor, the correlation neighborhood size is eight. Except
for QB-Cor, all of the other three algorithms can complete the
online adaptation step in real time (i.e., within 30 s) on this
machine. Apparently, the better performance of the new hybrid
algorithm is achieved with the cost of a moderate increase of
memory requirement and a slight computational overhead in
comparison with either MLLR or QB without correlation.

One of the important research topics concerns about the ef-
ficient adaptation with only a couple of minutes of adaptation
speech data. In this case, the form of linear transformations we
used in the above hybrid algorithm is still too complicated to
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estimate reliably the required transformation parameters. Re-
cently, by adopting a simple transformation (i.e., bias for mean
vector and scaling for variance of CDHMM [24], [25]) and as-
suming a specific prior pdf for these transformation parame-
ters, such a “transformation-based” QB adaptation algorithm
has been developed in [3] by using the general QB framework in
[13]. This algorithm can be viewed as another way of prior evo-
lution with the abovementioned linear constraints imposed. By
combining this stream of prior evolution with the one in [13], we
have developed another powerful algorithm which is expected
to achieve a better performance for small amount of adaptation
data. We will report this result elsewhere.

V. SUMMARY

In this study, we propose a new incremental adaptive
Bayesian learning framework for online adaptation of the
CDHMM parameters. In a series of comparative experiments,
we show that the new method has a better learning behavior as
desired for a good adaptation algorithm than the methods of
online MLLR and QB adaptation without correlation. The QB
adaptation algorithm with correlation and the new adaptation
method proposed in this paper are good candidates for both
short-term and long-term adaptation of CDHMM parameters.
The former usually requires more memory than the latter and
is computationally more expensive. In conclusion, we recom-
mend the user to use the new hybrid algorithm for adaptation
purpose. If short-term adaptation is the only concern of the
application, then MLLR is also a good tool to use. For many
real-world applications, unsupervised online adaptation (OLA)
is usually more realistic and desirable. One of the remaining
research issues is how to guide the unsupervised OLA when the
recognition rate is initially low. Different degrees of parameter
tying and/or smoothing might be helpful. Incorporating some
data validation mechanism will also be useful. More theoretical
works are needed to develop a better verification paradigm.
The new framework ofmultiple-stream prior evolution and
posterior poolingopens up many research opportunities. By
using multiple-stream framework, we can always exploit
multiple sources of knowledge and/or apply different kinds of
constraints to facilitate learning. The key to the success of these
approaches depends on whether the imposed constraints really
exist in the entities under investigation. It is believed that the
best setup will depend on the purpose of modeling and learning
as well as the nature of the specific applications. Intelligent
use of these flexible tools for different purposes in different
applications will be an important part of the future research.
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