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Real-Time Fundamental Frequency
Estimation by Least-Square Fitting

Andrew Choi

Abstract—For real-time applications, a fundamental frequency estima-
tion algorithm must be able to obtain accurate estimates from short signal
segments. Characterization of the error function of fitting a sinusoid to
the signal segment allows its spectrum to be deduced and the algorithm
to be implemented efficiently.

Index Terms—Fundamental frequency estimation, least-square meth-
ods, rectangular window, pitch detection, pitch-to-MIDI converters.

I. INTRODUCTION

A pseudoperiodic sound produced by a musical instrument is
composed chiefly of harmonic components whose frequencies are
integer multiples of afundamental frequency. The problem of funda-
mental frequency estimation (FFE) is central to the automatic analysis
of musical signals.Pitch-to-MIDI convertersare devices through
which conventional musical instruments can be attached to digital
synthesizers as controllers. The sound from the musical instrument is
analyzed to determine the notes played on it and MIDI1 messages
are generated and sent to cause these notes to be played on the
synthesizer. In the application of FFE algorithms to pitch-to-MIDI
converters, the fundamental frequencies must be estimated in real
time. This paper will focus on FFE for monophonic signals.

A number of performance measures affect the suitability of an
FFE algorithm for use in real time. Theresponse timeis the delay
between the instant a note is played on the instrument and the
instant the synthesizer begins to generate the corresponding sound.
Assuming that the delay due to the synthesizer is negligible, the
response time is equal to the sum of the length of the initial signal
segment analyzed and the computation time of the FFE algorithm.
Ideally, the response time must be so short that the player of the
instrument does not perceive the delay. A response time longer than
35 ms will make playing the instrument unnatural for the performer
[1]. To illustrate the difficulty of this problem and the scale of the
involved quantities, consider the note E2—the lowest note that can
be played on the guitar—which has a fundamental frequency of 82.4
Hz. A 15-ms segment of this note contains only a little more than a
complete cycle of the waveform. A computation time of 15 ms for
the FFE algorithm will result in a response time of 30 ms. An FFE
algorithm for this application must therefore correctly determine the
fundamental frequency from such a short initial signal segment and
have a small computational requirement. Economic and engineering
constraints have resulted in commercial pitch-to-MIDI converters
whose response times are well over 30 ms for notes with low pitches
[1]. Delays on these converters are very noticeable to the player of
the instrument.

Another important performance measure of an FFE algorithm for
the type of applications being considered is the resolution at which it
can distinguish neighboring frequencies. For instruments that produce
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1MIDI is a standard protocol for communication among synthesizers.

notes with discrete fundamental frequencies, the resolution only needs
to be 12 notes per octave, i.e., an error tolerance of�0:5 (12

p
2�1),

or� 3%. A higher resolution is necessary when small and continuous
changes of pitch in time, such as that resulting from the execution of
vibrato, glissando, and pitch bends, need to be detected. Some FFE
algorithms have lower recognition resolution inherently because they
subdivide the frequency range into bins at linear intervals.

II. PREVIOUS WORK

Many existing FFE algorithms for musical signals generate esti-
mates reliably when the signal segment analyzed is sufficiently long.
Frequency-domainFFE algorithms operate by performing spectral
analysis on sequential segments of the signal and applying a pattern
matching technique to the spectrum to determine each segment’s
fundamental frequency. Brown [2] computes the cross-correlation of
the constant-Q transform of a segment of the signal with a fixed
comb pattern. The calculation of the constant-Q transform and a
fast algorithm for approximating it are considered in [3] and [4],
respectively.

The accuracy of a frequency-domain FFE algorithm depends on the
quality of its spectral analysis step. Since the constant-Q transform
and the Fourier transform actually compute the spectrum of the
periodic extensionof a signal segment, a window function must first
be applied to minimize spectral leakage due to discontinuity at the
ends of the observation interval (see, for example, [5]). Applying
such a window function to a signal segment with low fundamental
frequency that already contains very few samples removes much
information at the two ends of the window which is useful in
determining its spectrum. The FFE algorithm described in this paper
avoids this problem by using a rectangular window function.

An alternative approach for designing FFE algorithms is based on
computing an autocorrelation between the waveform and a delayed
version of itself and determining the fundamental frequency by
maximizing the degree of their similarity. Cooket al.[1] use a least
mean square adaptive algorithm to determine the coefficients of a
filter that predicts a segment of a signal from an earlier segment. The
phase of the filter is computed from these coefficients, which is then
used to estimate the period.

A hybrid technique, described in [6], first determines a coarse
estimate of the fundamental frequency using a frequency-domain
algorithm. The phase change of the component closest in frequency
to the coarse estimate between two segments of the signal separated
by one sample is then used to estimate the fundamental frequency
accurately.

The effect of segment lengths of signals on the accuracy of FFE
algorithms is studied in [7]. A dynamic programming algorithm
is described for matching harmonics to peaks in the constant-Q
transform of the signal. The result is an FFE algorithm capable of
correctly handling short signal segments. However, since it uses the
constant-Q transform, it has the same disadvantages of frequency-
domain algorithms described above, namely, that much information
about the spectrum is discarded by the application of the window
function. A modification to the autocorrelation-based algorithm in [1]
that enhances its performance in real time is also considered in [7].

Central to the FFE algorithm introduced in this paper is a spectral
analysis method based on least-square fitting. It will be described in
the next section. Two properties of the least-square fitting are crucial
for the spectral analysis algorithm: one that allows the sinusoidal
components of the input signal to be identified and one that allows
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the algorithm to be implemented efficiently. Section IV describes the
FFE algorithm and analyzes its computation time. The experimental
results of its application to real signals are presented in Section V.

III. A L EAST-SQUARE SPECTRAL ANALYSIS ALGORITHM

Let the discrete signal segment to be analyzed be denoted by
x(n); n = 1; � � � ; N . In general, this signal can be composed of
a number of harmonic components. Suppose a sinusoidal function of
the form x̂(n) = a sin(!n) + b cos(!n) is to be matched tox(n).
The frequency of the sinusoid is!, given in radians per sample,
i.e., ! = 2�f=s, wheref and s are the frequency of the sinusoid
in Hz and the sampling frequency ofx(n) in samples per second,
respectively. The values ofa andb determine the amplitude and phase
of x̂(n). The square error of the match, a function of!; a, andb, is
given bye = N

n=1
(x̂(n)� x(n))2. For a given value of!, a pair

of values can be chosen fora andb to minimize the square error of
the match by setting

@e

@a
= a

N

n=1

sin(!n) sin(!n) + b

N

n=1

cos(!n) sin(!n)

�

N

n=1

x(n) sin(!n) = 0

@e

@b
= a

N

n=1

sin(!n) cos(!n) + b

N

n=1

cos(!n) cos(!n)

�

N

n=1

x(n) cos(!n) = 0:

The solution to this pair of equations is given bya� = (QX �
RW )=(PR �Q2) andb� = (QW � PX)=(PR�Q2), where

P =

N

n=1

sin(!n) sin(!n)

Q =

N

n=1

cos(!n) sin(!n)

R =

N

n=1

cos(!n) cos(!n)

W = �

N

n=1

x(n) sin(!n)

X = �

N

n=1

x(n) cos(!n):

Let e�(!) be the value ofe when a and b are set toa� and b�,
respectively, for a given value of!. In other words,e�(!) is the
minimum square error of matching a sinusoid of frequency! to
the signal segmentx(n) over all possible amplitudes and phases for
such sinusoids.

The problem can be restated in vector form as one of minimizing
e = kx � Ax0k2 over all possible values of the complex variable
A, wherex0(k) = exp(j!k). The value ofe is minimized when
A = hx;x0ikx0k2, and this minimum value is given bye�(!) =
kxk2 � jAj2kx0k2. Thus, the value ofe�(w) depends inversely on
the square of the magnitude ofA, which is related by a constant to
hx; x0i, the discrete time Fourier transform (DTFT) ofx. A more
exact characterization of the shape ofe�(w) allows the frequencies
of the sinusoidal components of the signal segment to be computed

Fig. 1. Plot ofe�(!) for a 300-sample segment of a C4 note for 0� ! �

0. 5.

more efficiently and accurately than using the fast Fourier transform
(FFT) algorithm alone.

Fig. 1 shows a plot of the functione�(!) for a typical 300-sample
signal segment of a C4 note sampled from an electric guitar in the
range 0� ! � 0.5; the function is relatively flat for! > 0.5. This
figure illustrates two properties of the shape of this function, which
will be stated without proof since they are needed in the description
of the spectral analysis algorithm. Their proofs can be found in [8].

A. Property 1

Each “significant” trough in the functione�(!) corresponds to a
sinusoidal component of the signal segmentx(n). The value of! of
the minimum point at the bottom of a trough is equal to the frequency
of the corresponding sinusoidal component.

In Fig. 1, the three deepest troughs reach their minimum values
at ! = 0.074,! = 0.147, and! = 0.224, respectively. Since the
sampling frequency is 22 255 samples per second, these correspond
to sinusoidal components with frequencies 262.10 Hz, 520.67 Hz,
and 793.41 Hz, respectively. The frequency of C4 is 261.63 Hz, and
these are therefore approximately the fundamental, second harmonic,
and third harmonic of the C4 note, respectively.

B. Property 2

The “width” of each significant trough in the functione�(!) is at
least2�=N , and this width is independent of the frequencies of the
sinusoidal components of the input signal, provided that these are
located sufficiently far apart from each other.

The value of2�=N is not surprising since it is the bin width
for an FFT of lengthN . In the example, since the value ofN
is 300, the width of each significant trough will be greater than
0.0209. Since musical signals contain harmonic components whose
frequencies are integer multiples of the fundamental frequency, the
troughs corresponding to them are regularly spaced in!. Troughs
will be separated from each other if the fundamental frequency is
somewhat larger than2�=N , which corresponds to 74.18 Hz for
N = 300 providedS = 22 255 samples per second.

Since the fundamental frequency can occur at any value of!, it
is impractical to evaluate the functione�(!) at a large number of
values of! in order to identify the troughs. However, Property 2
makes it necessary to computee�(!) only at values of! that are
evenly spaced at a distance of2�=(3N) apart. Doing so guarantees
that at least three consecutive values of! will “fall into” each trough,
where the function value in the middle is smaller than those of its
two neighbors. An additional test is used to eliminate troughs that
are too shallow: a simple test is to admit only troughs corresponding
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Fig. 2. The least-square spectral analysis algorithm.

Fig. 3. Fundamental frequency estimates for a G2 note.

to points whose function values are less than 90% of those of their
two neighbors. For our application the highest note to be recognized
is G5 (784Hz). Experiments show that accurate estimates can still be
obtained if the calculations are limited to the range 0� ! � 0.5,
corresponding to 0 to 1771 Hz. ForN =300,e�(!) must therefore
be evaluated at 0.5=(2�=(3N)) � 72 points.

Since the value ofe�(!) within each trough is unimodal, once a
trough is detected, the golden ratio search or the successive parabolic
interpolation [9] can be used to obtain the value of! at which
the minimum occurs. Either technique converges on the minimum
value by successively reducing the interval in which it is known to
lie. Although they are not necessary in the FFE algorithm below,
the amplitudes of the sinusoidal components can be obtained at this
time by solving a linear optimization problem. The resulting spectral
analysis algorithm, based on least-square fitting, will be referred to
as Algorithm 1 below and is summarized in Fig. 2.

IV. COMPUTATION TIME ANALYSIS

After the frequencies of the minimum points of the deepest troughs
in the error functione�(!) have been obtained, the fundamental
frequency is estimated as follows. Let!1, !2; � � � ; !k be these
frequencies, where!1 < !2 < � � � < !k. In our experiments, only
the three deepest troughs are used (these are identified by the three
smallest values ofe�(!)). Therefore,k � 3. When the fundamental
frequency of the signal is low, the trough ine�(!) that corresponds
to the fundamental may be distorted near! = 0 and Algorithm
1 may fail to detect it. Assuming that the harmonic components
corresponding to the fundamental may or may not be detected, two
cases must be distinguished: that!1; !2; � � � ; !k correspond to i)

Fig. 4. Fundamental frequency estimates for a G3 note.

the fundamental, second, third,. . ., andkth harmonics of the signal,
respectively; or ii) the second, third,. . . ; kth, and(k+1)th harmonics
of the signal, respectively. In the first case, the estimate of the
fundamental frequency is the average of!i=i over i =1, 2,� � � ; k
and in the second case, it is the average of!i=(i + 1) over i =

1, 2, � � � ; k: The estimate corresponding to the set of values with a
smaller standard deviation is reported by the FFE algorithm, since
the standard deviation measures the consistency among the troughs
in estimating the fundamental frequency. This scheme avoids octave
errors for input signal segments with simple frequency spectrums, as
for those used in the experiement.

The response time of the FFE algorithm is the sum of the length of
the initial signal segment analyzed and its computation time. Since it
uses the simple algorithm described above for estimating fundamental
frequencies, it spends the majority of its computation time on spectral
analysis. The spectral analysis algorithm (Algorithm 1 in Fig. 2) in
turn spends most of its time on computinge�(!) for the different
values of! in Steps 2 and 4. Instructions for implementing the loops
and tests in Algorithm 1 and for generating the fundamental frequency
estimates require a negligible amount of time relative to that for
evaluatinge�(!) and will be ignored in the following analysis. For a
given value of!, the steps for computinge�(!) require the numbers
of instruction cycles tabulated in Table I.

In the table,t denotes the number of instruction cycles needed
for computing the sine or cosine function andd denotes that for
a division. The formulas given in the table assume that the target
DSP processor is capable of single-cycle multiply-and-accumulate
operations. An example of such a processor is the Analog Devices
ADSP-2100. For this processor,t = 25 andd = 33.

Since the values ofsin(!n) andcos(!n), for k =1, 2, � � � ; N and
P; Q, andR depend only on! and not onx(n), Step 2 of Algorithm
1 evaluatese�(!) for the sameM values of! for any signal segment
analyzed. These values can thus be precomputed and stored in a table.
The evaluation ofe�(!) for each value of! then requires only the
computation of (iii), (iv), and (v) in Table I, which takes8N+2d+9

instruction cycles. Therefore the entire Step 2 of Algorithm 1 requires
M(8N + 2d + 9) instruction cycles. Alternatively, Step 2 can be
computed using an FFT algorithm.

In Step 4 of Algorithm 1,e�(!) is evaluated for different values
of ! that depend on the fundamental frequency of the givenx(n).
Therefore, the evaluation ofe�(!) for a single value of! requires
all five steps in Table I, or2Nt+ 11N + 2d+ 9 instruction cycles.
An iterative algorithm such as the golden ratio search or successive
parabolic interpolation is used to find the minimums of the troughs.
Since the troughs of the functione�(!) can be closely approximated
by quadratic curves, the successive parabolic interpolation technique
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TABLE I
INSTRUCTION CYCLES REQUIRED BY ALGORITHM 1 FOR EACH VALUE OF f

can locate the minimum value of a trough with high accuracy in
only a few iterations. The computation ofe�(!) in Step 4 for all the
different values of! requires a total ofL(2Nt + 11N + 2d + 9)
instruction cycles, whereL is the product of the number of troughs
examined and the number of iterations for each trough. A typical
value for L is 12.

The total number of instruction cycles required for the evaluation
of e�(!) for all the different values of! in Algorithm 1 is therefore
M(8N + 2d + 9) + L(2Nt + 11N + 2d + 9). WhenN =300,
M =72, d =33, t = 25, andL = 12, a total of 398 700 instruction
cycles are needed. A 30-MIPS DSP processor will require 13.29 ms
to process such a signal segment. IfN is reduced to 200, the same
processor requires 7.59 ms to process each signal segment. Note that
this estimate does not take into account the instructions necessary for
loop maintainance. The actual running time will be somewhat longer.

V. EXPERIMENTS

A set of experiments was performed to study the real-time perfor-
mance of the new FFE algorithm. The test inputs were sampled from
an electric guitar at a sampling rate of 22 255 samples per second
and the notes G2 (98.1 Hz), G3 (196.0 Hz), G4 (392.0 Hz), and G5
(784.0 Hz) were used. These notes range over most of the playing
range of the guitar and have lower frequencies than test inputs used
by previous papers on FFE. The results shown are representative of
the results of repeated runs of the experiment and for notes with
different fundamental frequencies.

Three FFE algorithms were tested: algorithm CQCC, which is
based on the constant-Q transform and cross-correlation [2], al-
gorithm CQDP, which is based on the constant-Q transform and
dynamic programming [7], and algorithm LS, the FFE algorithm in-
troduced in this paper, which performs spectral analysis by Algorithm
1 in Fig. 2 and FFE by the simple decision algorithm described in
the previous section. The “comb” pattern for CQCC consists of eight
components, which was chosen to optimize its performance.

These algorithms were implemented in C++ in UNIX and did
not run in real time. The beginning of the signal was identified
automatically by a simple threshold algorithm on the power in an
initial segment of the signal.

The three FFE algorithms were applied to the initial segments of
the sampled notes with lengths between 5 and 30 ms, in increments of
1.25 ms. Figs. 3, 4, 5, and 6 plot the fundamental frequency estimates
reported by these algorithms as functions of the lengths of the initial
segments analyzed, for notes G2, G3, G4, and G5, respectively.

For notes with low fundamental frequencies, represented by G2,
algorithm LS performs better than algorithm CQDP by requiring a
slightly shorter initial segment to achieve an accurate estimate. Its
accuracy for segments that are even shorter is also higher and it is
more stable than algorithm CQDP (i. e., the estimates do not fluctuate
as much). Both algorithm LS and algorithm CQDP require a much
shorter initial segment (by 15 ms) than algorithm CQCC to obtain
accurate estimates.

Fig. 5. Fundamental frequency estimates for a G4 note.

Fig. 6. Fundamental frequency estimates for a G5 note.

For notes with intermediate fundamental frequencies, represented
by G3, both algorithm LS and algorithm CQDP converge to correct
estimates of the fundamental frequency when the length of the initial
signal segment is greater than 7.5 ms. In fact, algorithm CQDP
produces an estimate with a slightly smaller absolute error than that
produced by algorithm LS for the 6.25-ms initial signal segment.
However, the absolute errors of algorithm LS are much smaller than
those of algorithm CQDP for initial signal segment lengths of 5 ms
or smaller. Also, a fluctuation of the estimate occurs at 16.25 ms
for algorithm CQDP, due to its less stable nature. Both algorithms
require initial signal segments that are about 5 ms shorter than those
required by algorithm CQCC to obtain accurate estimates.

The plots for G4 and G5, representative of notes with higher
fundamental frequencies, show that algorithm LS converges some-
what more quickly than algorithm CQDP as the length of the signal
segment increases. All three FFE algorithms perform well when the
initial signal segments are longer than 10 ms in length for these notes
with high fundamental frequencies.

VI. SUMMARY

A spectral analysis algorithm based on least-square fitting was
described. It performs its function by applying a rectangular window
function so that it is capable of correctly analyzing relatively shorter
signal segments. The algorithm minimizes the square error of fitting
a sinusoid to the signal segment. Two properties of the error function
of the least-square fitting allow the frequencies of the sinusoidal
components of the signal segment to be determined and the troughs
to be detected by evaluating the error function at a small, evenly-
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spaced set of frequencies. An FFE algorithm based on this spectral
analysis algorithm was also described. Since it has higher accuracy
than previous FFE algorithms for short signal segments, it is more
suitable for use in real time. The computation time for this FFE
algorithm was analyzed. Experimental results that demonstrate the
real-time performance of the algorithm were also described.
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