
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 5, MAY 1996 537

Efficient Termination Detection for Loosely
Sync hi ro n o us A p p I i cat i o n s i n M u It i co m p ut e rs

Chengzhong Xu, Member, /E€€, and Francis C.M. Lau, Member, /€E€

Abstract-We propose a simple algorithm which is based on edge-coloring of system graphs for termination detection of loosely
synchronous computations. The proposed algorithm is fully symmetric in that all processors run syntactically identical code and can
detect global termination at the same time. Under the 1-port communication model, the algorithm is optimal in terms of termination
delay, the difference between the time when a global termination occurs and the time it is detected, in a number of structures-
chain, ring of even number of nodes, k-ary n-cube and k-ary n-mesh of low degree, where k is even; and near-optimal for other
cases. The optirnality analysis is based on results from a related problem, periodic gossiping in edge-colored graphs. This algorithm
has been applied to some practical cases in which the overhead due to its execution is found to be insignificant.

Index Terms-Data parallelism, distributed algorithms, interconnection networks, multicomputers, parallel and distributed systems,
synchronous computations, termination detection.

4

1 INTRODUCTION
E:RMINATION detection is a fundamental operation in T parallel and distributed computations. It has been

heaviily studied in the past for efficient and readily imple-
mentable solutions. One important area in which termina-
tion detection has EI major role to play is data-parallel com-
putations [5]. These computations generally follow the so-
called Single-Program-Multiple-Data (SPMD) paradigm in
which each processor executes the same program but on a
different portion of the problem domain. The computation
proceeds in steps which are separated by synchronization
points. During each step, the processors operate independ-
ently on their own data, and then communicate with their
data-dependent, usually directly connected, peers. These
processors are loosely synchronized in that a processor
need:$ to synchronize only with its data-dependent peers,
and can proceed into the next step once it is sure that it has
received/sent all the information it needs to receive/send
in this step. For this computational model, even though a
processor interacts only with a subset of other processors,
global termination detection is still needed to confirm the
permanence of idleness because an idle peer may get acti-
vated again by other processors. Clearly, because of this
elusive nature of processors’ idleness, the problem of dis-
tributed detection of global termination is a nontrivial one.

A termination detection algorithm in this context should
have the following three desirable properties.

1) The algorithm should minimize the termination de-
lay-the difference between the time when global
termination occurs and the time it is detected;

C. Xu is with the Depavtment of Electrical and Compute? Engineering,
Wayne State University, Detroit, MI 48202.
E-mail: czxu@ece.eng.zoayne.edu.
F.C.M. Lau is with the Department of Compute? Science, the University of
Huna? Kong, Hung Kong. E-mail: fcmlau@cs.hku.hk.

Manuscript received Mar. 22,1994; revised Feb. 22,1995.
Fur information on obtaining reprints of this article, please send e-mail to:
transpds@cumputer,or~, and reference I E E E C S Log Number D95137.

2) The algorithm should be symmetric in that all proces-
sors execute the same syntactically identical code, and
detect global termination at the same time;

3) The algorithm should incur as few extra control mes-
sages as possible.

The termination delay translates into the message com-
plexity of the algorithm. The symmetry feature makes the
algorithm easy to be incorporated in the SPMD paradigm.
It also ensures simultaneous termination of all processors,
which is most desirable in applications that consist of a se-
quence of tasks (or phases). Minimiziing the termination
delay of a phase enables the next phase to be issued earlier,
and consequently reduces the overall processing time. Such
multiphase computations are frequently found in advanced
image and vision processing systems.

Loosely synchronous computations have a number of
characteristics that can facilihte the termination detection
process. First, processes are statically created and assigned
to processors in the SPMD fashion. Second, the computa-
tion proceeds in steps; and the predicate for termination is
evaluated periodically, instead of at arbitrary times in gen-
eral models. Third, the data dependency between a pair of
processors is usually mutual-a send operation in one
processor is matched by a receive operation in another
processor; therefore, message passing can be treated as in-
stantaneous. Lastly, processors communicate with each
other periodically according to a fixed communication pat-
tern; as such, the state of a processor can be piggy-backed
on data messages.

For the termination detection problem as described
above, many of the existing algorithms, such as those for
asynchronous communication models [l], 1131 and for
dynamic process models [ll] are too general to meet our
requirements. For the model that assumes instantaneous
communications, there are a number of algorithms based
on probing techniques [6], 1161, 1151, [191. They use a to-
ken to keep track of the number of idle processors, which

1045-9219/96$05.00 01996 IEEE

mailto:czxu@ece.eng.zoayne.edu

538 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 5, MAY 1996

is passed along a Hamiltonian circuit or a spanning tree.
These algorithms are nonsymmetric, and their termination
delay is N in the case of Hamiltonian circuit or larger than
2 0 in the case of spanning tree (one for the expanding
wave and another for the contracting wave), where N is
the number of processors and 0 is the diameter of the
system graph.

For the instantaneous communication model, there is
another class of algorithms which are based on counting
techniques [8] , [16], [17], [18]. These algorithms are based
on the idea of keeping a counter in every processor to tell
how far the nearest non-idle node might be. They are all
fully distributed, symmetric, and require knowledge of
the diameter of the graph, but do not impose a spanning
tree or cycle on the graph. In particular, the algorithm by
Szymanski et al. has a delay of D + 1 [18]. The extra one
step is for confirmation of global termination. Our algo-
rithm borrows this idea of using a simple integer counter
to keep track of the distance of the nearest busy processor.
We find however that these four algorithms rely on a
powerful communication primitive which allows a node
to broadcast to or exchange information with all of its di-
rect neighbors in one time step. We call these algorithms
”broadcast-based” in the rest of this paper. This primitive
is possible only with idealized models such as the all-port
communication model [lo]. The more realistic models are
those that are based on 1-port communications, with
which a node can complete at most one communication
transaction (half- or full-duplex) along one of its edges in
one time step. Such a model is assumed in many instances
of recent research in multicomputer algorithms [12]. The
understanding is that in a multicomputer, the time to
complete a broadcast to or a complete exchange of infor-
mation with all of a node’s neighbors is a function of the
number of neighbors. This is supported by Valiant’s
rather popular BSP model [20]. In practice, machines like
iPSC/2 and iPSC/860 and the Connection Machine are
basically of the 1-port type. Even though some of the lat-
est designs of message-passing processors have incorpo-
rated multiple on-chip communication modules which
can operate simultaneously, because of the fixed cost of
setting up a communication, the total time of sending k
messages, assuming the best possible overlapping in time,
is still largely determined by h unless the messages are
overly long. Therefore we consider the 1-port communi-
cation model a more reasonable and realistic one than the
all-port model. The communication model assumed in
this paper is the 1-port, full-duplex model in which a
processor can exchange a message with at most one direct
neighbor in a time step.

If we adopt the 1-port model, one step in a broadcast-
based algorithm must now be counted as d steps, where d is
the degree of the network. Referring to the 0 lower bound,
this makes the broadcast-based algorithms far from opti-
mal. Our algorithm, to be presented in the ensuing sections,
performs much better with the 1-port model; its delay is
6 + 1 iteration steps, where fi is called the color diameter of
the network and an iteration step is equal to d + 1 commu-
nication steps between processors in the worst case. For
most regular topologies such as the mesh and the torus
with even nodes in each dimension, an iteration step equals

exactly d communication steps, and 6 = Did , and hence the
delay is D + d communication steps which is optimal for
reasonably large networks or networks with a small degree.
For other common topologies, it is near optimal. If instead
the idealized all-port communication model is assumed,
our algorithm is still comparable to the broadcast-based
algorithms for most of the popular topologies.

The optimality analysis of the termination delay is based
on the insight that the lower bound of the termination delay
in communication steps should be the minimum time re-
quired by every processor to learn the state of every other
processor. The latter is exactly the lower bound of the time
for gossiping [9] in the given system graph. Recently, Liest-
man and Richards proposed a novel periodic gossiping
technique for edge-colored system graphs [121. Their algo-
rithm bears much resemblance to our termination detection
algorithm’ in terms of the communication pattern. There-
fore, some of the analysis techniques for periodic gossiping
used in their paper are applicable in our optimality analysis
of termination delay.

In addition to being fully distributed and time efficient,
our algorithm is totally symmetric. Like those broadcast-
based algorithms, the only limitation of our algorithm is
that it requires each processor to know the color diameter
of the network, which however can be easily calculated
once a coloring scheme is chosen. We present in Sections 2
and 3 the computation model, the idea and intuition behind
the algorithm, and the basic definitions. Section 4 gives the
algorithm and proofs of its major properties. An equiva-
lence between the communication part of our algorithm
and the gossiping problem for edge-colored graphs is es-
tablished in Section 5, based on which we prove the opti-
mality of our algorithm for some popular topologies.

2 COMPUTATION
We consider loosely synchronous computations in multi-
computers. The multicomputer is assumed to consist of n
autonomous processors connected by a point-to-point
communication network. We represent the network by a
simple connected graph G = (V, E) , where V denotes the set
of processors labeled from 1 to N and E c V x V is a set of
bidirectional edges. Each edge 4, j > E E corresponds to the
bidirectional communication link between processor i and
processor j. Let D(G) be the diameter of G. Let d (i) denote
the degree of a node pi in G, and d(G) denote the maximum
of the degrees of G‘s nodes.

A loosely synchronous computation in multicomputer
proceeds in calculation-communication steps. Termination
condition is evaluated at the end of each step. The scenario
in which termination detection is to operate is as follows.
At the point of termination evaluation, we distinguish be-
tween Busy and Idle states of a processor. A processor is in
Idle state when its local computation is finished; Busy oth-
erwise. An Idle state is one in which the problem state value
remains unchanged after an iteration phase. A Busy proces-
sor would communicate its newly computed result in a
data message to its dependent processors and an Idle proc-

1. A preliminary version was presented in 1211

XU AND LAU: EFFICIENT TERMINATION DETECTION FOR LOOSELY SYNCHI

essor would wait for data messages from its Busy neighbors
in the iteration. A Busy processor can become Idle for the next
iteration, and an Idle processor may return to Busy on receipt
of a data message firom a Busy processor during the commu-
nication phase. Global termination occurs when all proces-
sors become Idle. Apart from these data messages of the un-
derlying computation, control messages are used to pass in-
form3tion about termination around, which can emanate
from both Busy and Idle processors. Processors would not
change their stares on receipt of control messages.

Normally, the data dependency between a pair of proc-
essors in the loosely synchronous computations is mutual.
A send operation in one processor is matched by a receive
operation in anothier one. We therefore assume the data
exchmge to be instantaneous, which simplifies the termi-
nation detection problem because there won't be false de-
tection due to messages in transition. Nevertheless, termi-
nation detection in the present model is still a nontrivial
problem as processors could change from Idle to Busy when
they receive data messages from a Busy processor.

Suppose the computation being observed will terminate
in finite time with a global termination condition being
true; then the task IS to devise a termination detection algo-
rithm that would allow every processor to detect this con-
dition within the shortest time after it becomes true. Our
principal objective is to minimize the difference between
the time when global termination occurs and the time when
it is detected by processors/ which is defined as the termina-
tion delay.

The broadcast-based algorithms are based on a model
similx to the above. They use an integer counter S to main-
tain the control information about termination. S = 0 if and
only if the processor is in the Busy state. During the commu-
nicatiion phase of an iteration step, the processor exchanges
its counter value with those of neighboring processors. Then
in the computation phase of the iteration step, each Idle proc-
essor updates its counter to be 1 + min(S, Inputs) , where
Inpu t s is the set of all received counter values. It is easy to
see that the counter in a processor actually corresponds to
the dlistance between this processor and the nearest Busy
processor, and sincle the control information of a Busy proc-
essor can propagate over at most one edge (but reaching
one or more neighbors) in an iteration step, a processor that
just ihrned Idle (oiily Idle processors would try to detect
global termination) requires at least D (G) + 1 steps to confirm
global termination. Hence, the delay for termination detec-
tion using the broadcast-based algorithm is equal to D(G) + 1.

Notice that the change of the counter values in a broad-
cast-based algorithm behaves in a fashion similar to Jacobi
relaxation for solving equations: In the communication
phase of an iteration, a processor updates its counter only
after having collected all the counter values of the neigh-
boring processors. This may cause unnecessary delays in
prop3gating individual counter values within the processor
structure. An alternative is to follow the Gauss-Seidel way
of solving equations: during the communication phase of
an iteration, a processor updates its counter immediately
after its every exchange with a neighboring processor; this
way, counter value:; could get propagated a lot faster.

Generally, a processor having more than one neighbor

3ONOUS APPLICATIONS IN MULTICOMPUTERS 539

can interact with only one of its neighbors at a time in the
synchronous communication model, vvhich fits well with
the 1-port physical model discussed previously. The inter-
action order can be determined by edge-coloring of the
system graph. The edge-coloring technique allows efficient
communication while avoiding the polssibility of message
collisions and congestion. In order to shorten the time
needed to complete the communication phase, the edge-
coloring algorithm must assign the minimum number of
colors to a given graph. Our algorithm is therefore based on
edge-coloring using the minimum numlber of colors.

3 EDGE-COLORING OF THE SYSTEM GRAPH
Given the system graph G, we color the edges of G with the
minimum number of colors, denoted by K, such that no two
adjoining edges are assigned the same color. We index the
colors with integers from 1 to K, and represent the K-color
graph as G , = (V, E,), of which E, is a set of 3-tuples of the
form (i, j ; c), (i, j ; c) E E , if and only if c is the chromatic in-
dex of the edge (i, j) E E. It is known that the minimum
number of colors lcis strictly bounded by d(G), and d(G) I IC

I d (G) + 1 [4]. Fig. 1 shows two 3-color graphs derived from
a 2 x 4 mesh.

Fig. 1 . Examples of two 3-color meshes.

We next introduce some essential concepts that are nec-
essary for the subsequent presentation and analysis of our
algorithm based on edge-coloring.

DEFINITION 3.1. Let G , be a K-color graph of G. A sequence of

(i = io, i,; cl) , (i,, i,; c,)/ . . ., (i,-], i, = j; c,)

edges in G, of the form

is called a color-path of length 1 from i to j if all intermedi-
ate vertices i,(l 5 s 5 1 - 1) are distinct and K 2 c1 > c2 > . . .
> c, 2 1.

From this definition, a color-path is a path in the graph
with decreasing color numbers along the edges that make
up the path. In Fig. l a for example, there are several ways
of going from vertex 1 to vertex 5, including this one which
comprises two color paths: (1, 8; 3), (8, 7; 1) and then
(7,6; 21, (6,5; 1).

DEFINITION 3.2. In a K-color graph G , a node j is said to be
reachable from node i in one trip if there exists a color path
from i to j . The color-distance from nodes i to j , denoted
by 6(i, j) , is the minimum number of trips required for
going from i to j . The greatest color-distance among the

color-distances of all the node pairs in G , is called the

color-diameter of G , denoted by 6 (G K) .

As an example, let us re-examine the 3-color mesh in
Fig. la. It is clear that node 7 fs reachable from 1 in one trip

540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 5, MAY 1996

because of the color path (1, 8; 3), (8, 7; l), and that node 5 is
reachable from node 2 in one trip because of the color path (2,
7; 31, (7,6; 21, (6,5; 1). Hence, 60, 7) = 6(2, 5) = 1; similarly,
we have 6(1, 5) = 6(1, 6) = 2, and thus, 6(G,) = 2. Gener-
ally, the color-diameter of an edge-colored graph is
equivalent to the diameter of an extension of the graph,
each edge of which corresponding to a color-path.

Within an iteration step in the termination detection al-
gorithm, to be discussed next, each color is activated once,
in the order of increasing color numbers. When a particular
color is activated, all edges of this color become active and
information would flow through or be exchanged over
them. Therefore, information at one end of a color path will
propagate to the other end within an iteration step of the
algorithm. Note that some processors may have fewer
neighbors than the others, but since communications are
synchronous and every color must be considered once in an
iteration step, the time complexity of the communication
phase is a function of the number of colors.

HE MI

The control information for termination detection is ab-
stracted as a local integer counter S maintained in every
processor. This counter's value changes as the iterative ter-
mination detection algorithm proceeds. We serialize the
communication phase of an iteration step into a number of
consecutive exchange operations, one for each color. An
exchange operation for color c causes two neighboring
processors connected by an edge of color c to exchange
their counter values. After each of these little exchanges
with a neighbor, a processor would update its counter im-
mediately with the value received from the other processor
if the latter is smaller than this processor' current counter
value. And at the end of each iteration step, the processor
sets the counter to 0 if the node is still a Busy node (not lo-
cally terminated); otherwise, it increments the counter
value by 1. When S reaches a predefined value, the proces-
sor stops with the sure knowledge that the computation has
reached global termination.

Our algorithm bears certain resemblance to the broad-
cast-based algorithm, but the updating of the counter S
follows a different protocol as has been explained. The al-
gorithm follows. The variable Inputs temporarily stores the
neighboring counter value received in the current exchange
operation.

1
2
3
4
5
6
7
8
9
10
11
12
13

Algorithm for Processor i (1 5 i 5 N):
s = 0;
while (S < PredefinedValue) {

for (c = 1; c 5 IC, e++)
if (an incident edge colored c exists) {

Inputs = Exchange(c);
S = min{S, Inputs};

I
if (LocalTerminated)/" Idle "/

s = s + 1 ;
else/" Busy */

s = 0;
I

For each color (each iteration of the for-loop), the procedure
Exckange(c1 is executed which causes the counter values of
the this processor and a neighboring processor connected
by the edge colored c to exchange their counter values,
where c is the current color (loop index). If the processor
has no incident edge colored c, it skips this one and goes on
to the next color. Note that unlike the broadcast-based algo-
rithms in which the counter is not updated until all the
neighboring counter values are received, our algorithm
compares the local counter with a neighbor's counter value
as soon as the latter comes in through the exchange.

This algorithm is fully symmetric in that it is syntacti-
cally identical for each processor, and there is no central
control. Below, we give an example to illustrate how the
counter S gets updated. Then, based on S, we show how
PredefinedValue in the algorithm above is determined.

Let S!'(t) denote the counter value of processor i after the
exchange (after line 7) over the edge colored c (if there is one)
has taken place within iteration step t , SL(t) the counter value
of processor i at the end of the for loop (after line 8 before line
9), and S,(f) the counter value at the end of the iteration step f

(after line 12). Clearly, S [(t) < S,c(t) for all c. Table 1 gives a
partial trace of the counter distribution when we apply the
algorithm to the processor structure of Fig. la. The counter
distribution is assumed to be (0, 1, 1, 1, 1, 1, 1, 1) at to, the
instant at which our tracing begins; processor 0 becomes
Idle at step to + 2; processor 1 returns to Busy at step to + 2
and becomes Idle again at t , + 4; processor 2 returns to Busy
at t , + 4 and becomes Idle again at f, + 5, and global termi-
nation occurs at this point since all eight processors are Idle.
All the counter values reach 3 at to + 7, which is the
(earliest) point at which every processor is sure of the
global termination-the detection delay is three iteration
steps. This implies that PredefinedValue has been set to 3 in
the algorithm. The following analysis on the global termi-
nation condition tells us how this number comes about.

The presentation of the analysis is similar to that in [SI.
First, we derive a recursive expression of S from the above
algorithm.

PROPOSITION 1. For any node i, 1 5 i 5 N,

where l+(i) = I (i) U {i}, and I(i) is the set of nodes that i can
reach in one trip.

PROOF. If j E I(i), then there exists a color path from i to j .
Suppose this color path has the form (i, i,; c,), (i,, i,; c,),

..., (il-,, j; CJ, where c1 > c2 > ... > cI. Then, it is clear
that S % (t + 1) $'(t + 1) <...< S,":(t + 1) 5 S j (t) . Since

Si(f + 1) 5 S,'l(t + l), it follows that S,(f + 1) < Sj(t) . In

addition, if there exists a processor j E I (i) and j + i,
S , (t + 1) will not be influenced by S,(f). Thus, the
proposition is proved. 0

XU AND LAU: EFFICIENT TERMINATION DETECTION FOR LOOSELY SYNCHRONOUS APPLICATIONS IN MULTICOMPUTERS

~

54 1

TABLE 1
A TRACE OF THE COUNTER DISTRIBUTION OF PROCESSORS IN A 4 X 2 MESH S'TRUCTURE

1 Processor p, p2 p3

S,{fo + 6)

p4
1

1

2
-

3

2

2

3
--

The numbers in parentheses aye the counter values veceived in the cuvrent exchange

The above proposition reveals that a nonzero counter
value of a processor contains more information than just its
own current state (which is Idle). The historical states of
processors from which processor i is reachable may be de-
duceld from s,. In the most trivial case, if the counter value
of a processor i equals 1 at the end of an iteration step, then
the processor can infer that there exists at least one Busy
processor within I'-(i) at the end of the last iteration step.
Generally, if S,(t) = Y > 0, then the following properties con-
cerning historical state information can be derived.

PROPOSITION 2. Suppose at some iteration step t, there is a stable
processor i with S,(t) = a > 0. Then

1) there exists a processor j satisfying E(i, j) I a , Sj(t - a)

2) for any processor j satisfying D(i, j) 5 a , s,(t - t') > 0,
= 0

where E(i,,i) 5 t' < a .

PROO'F. Part 1) can be proved by induction on the integer a. The
statement trivially holds for SJt) = a = 1. Now suppose it
holds for Si(t) := a = b > 1. If Si@) = b + 1, then according to
Proposition 1, there exists at least one processor j E T(i)
with counter value Sj(t - 1) = b. From the hypothesis,
there exists a :processor k satisfying fi(j , k) < b with the

counter value Sk(t - b - 1) = 0. Since the processor k also
satisfies f i (i , k) < b + 1, Part 1) is proved. The proof of

Part 2) proceeds in a similar way. 0
Part 1) of the proposition says that if an Idle processor finds
its counter value to be r > 0 at the end of some iteration
step, then there exists a processor which is at most r color
paths away from this processor and whose state was Busy r
iterations ago. That is, the counter value (= 0) of this Busy
processor got propagated to the Idle processor within r it-
erations; while on the way, this value got incremented by
one at each iteration. Part 2) says that if this value did get
propagated all the way to the Idle processor in question,
then there must not have been any Busy processors that
were within r color paths from this processor during the
period of the propagation.

On the basis of the properties of S, we are now in the po-
sition to establish the condition for global termination in
terms of S .

THEOREM 4.1. For any processor i in the color or graph G, it
detects global termination when S, = D(GK) + 1.

PROOF. In order to be certain about global termination when
a processor satisfies this condition S,(t) = B(GK) + 1, it
suffices to show that at time t , all other processors p,,
j # i, have the same counter value, i.e.,
~ , (t) = IS(G,) + 1. Suppose at time t, s,(t) = E (G ~) + I,
but there exists a processor pi such that
S,(t) = a < E (G K) + 1. According to Part 1) of Proposi-

542 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 5, MAY 1996

tion 2, there exists a processor, say pk, with S,(t - a) =
0. On the other hand, from Part 2) of Proposition 2, all
the counter values at time t - a must be positive. We
conclude from the contradiction that S,(t) = 6(G,) + 1
if and only if S,(t) = 6 (G K) + 1. Thus, the theorem is

In summary, for any given processor structure, the global
termination condition is dependent on a single v a l u e t h e
structure’s color-diameter, 6, (G) . The processors exit the it-
eration loop simultaneously (i.e., at the same iteration step)
with the same counter value 6 (G) + 1. Hence, the constant
PredefinedValue in the algorithm should be set to E (G) + 1. The
delay of the algorithm is D(G) + 1 iteration steps which is
measured from the instant the last Busy processor twns Idle.

proved. U

We have shown that for a given edge-colored system graph

G , the termination delay of the algorithm is equal to its
color diameter 6 (G K) + l which is in terms of number of
iteration steps. Referring to the termination detection code
in the algorithm, we note that one iterative step comprises IC
communication operations, K being the number of colors.
Hence, the termination delay in communication operations
is equal to (6 (G K) + 1) ~ . Since the edges of a graph G can
usually be colored in more than one way, as illustrated in
Fig. 1, and that different ways of coloring may result in dif-
ferent color diameters, and hence different termination de-
lays, we would like to determine the best coloring scheme
for a given structure G so that the minimum termination
delay can be achieved.

5.1 Lower Bound of Termination Delay
The termination delay of the algorithm, as we have defined
before, is the time span from the occurrence of a global ter-
mination till the termination is detected by each processor.
Clearly, the lower bound of the termination delay (in com-
munication steps) should be the minimum time required by
every processor to learn the state of every other processor.
It is the lower bound of the time for gossiping [9] in the
given graph.

The gossiping problem has been studied by a number of
researchers under various communication models. Under
the same 1-port, full-duplex communication model, Farley
and Proskurowski analyzed the problem for the ring, the
mesh, and the torus [3]. Their results, which can serve as
the lower bounds of the termination delay, are summarized
in Table 2.

TABLE 2
LOWER BOUNDS OF TERMINATION DELAY (GOSSIPING) IN

COMMUNICATION STEPS

k - 1 if k is even; k otherwise

5.2 Termination Delay in
We now present the optimality analysis of the termination
delay of our algorithm in the structures of n-dimensional
torus and mesh (n 2 l), and their special cases, the ring, the
chain, and the k-ary n-cube. An n-dimensional torus is a
variant of the mesh with end-round connections. A k-ary n-
cube is a network with n dimensions, k nodes in each di-
mension [2], [14]; it is a special case of the n-dimensional
torus which allows different numbers of nodes in different
dimensions. The hypercube is a special case of both the n-
dimensional mesh and the k-ary n-cube. A hypercube is an
n-dimensional mesh with the same number of nodes (of 2)
in each dimension-that is, a 2-ary n-cube. We limit our
scope to these structures because they are the most popular
choices of topologies in commercial parallel computers [141.

Instead of directly working out the appropriate coloring
schemes for the structures, measuring their color diameters, and
comparing with the above lower bounds, we make use of existing
results from a version of the gossiping problem which is equiva-
lent to our termination detection problem to argue about opti-
mality. h version of the gossiping problem, by Liestman and
Richards, uses exactly the same edge-coloring technique as we
have used here for the chain, the ring, and the mesh [12]. It is easy
to see that the two problems-to find a coloring that would yield
the shortest color diameter and to find a coloring that would lead
to the mini” gossiping t imeare equivalent. Therefore, we
can use the gossiping results for edge-colored graphs to compare
with the above lower bounds. In the following, if the gossiping
time in some colored graph is optimal with respect to the corre-
sponding lower bound in Table 2, then the termination delay due
to our algorithm using the same coloring scheme is optimal or
near optimal. Precisely, if we let g to be the gossiping time, then
the termination delay is less than g + 2 x K communication steps.
The coloring scheme that is used to arrive at the optimal gossiping
time is exactly the optimal coloring scheme we need for om ter-
mination detection. Note that ”gossiping time” in the following
refers to that from using edge-coloring.

Liestman and Richards derived, among their many results,
the following minimum gossiping times which are of rele-
vance here. We use g(G) to denote the minimum gossiping
time for the structure G, and g(G7 the gossiping time for G
with coloring c.

THEOREM 5.1 [12]. For a chain of k nodes, C,, g(C,) = 2L(k - 1)/21
i 1 ; f o r a ring of k nodes (k even), R,, g(R,) = k / 2 ; for a
two-dimensional 2 x k mesh M2,b g(M,,,) = 3L(k - 1)/21+ 1.

Note that in proving the above, Liestman and Richards
gave an actual coloring scheme for each case (using two
colors for the chain and the ring, and three colors for the
mesh). They also showed that the minimum gossiping time
is no larger than 2 x max{k,, k,] for a two-dimensional k, x k2
mesh by using an ”alternate” coloring scheme with 4 colors.
In the following, we sharpen the bound and show its op-
timality for the even square mesh. We also present a tight
bound of gossiping time for the square torus.

THEOREM 5.2. For a two-dimensional k, x k, mesh Mkl ,k2 , k,, k, 2
3, the minimum gossiping time is bounded as
g4(Mk,,k, 5 4L(k - 11/21 + 2, where k = max{k,, k2]; it is

optimal when k, = k,.

XU AND LAU: EFFICIENT TERMINATION DETECTION FOR LOOSELY SYNCHRONOUS APPLICATIONS IN MULTICOMF'UTERS 543

PROOF. Suppose in a 4-color situation we color a chain with
the sequence "... 1313 ...''; then it is easy to verify that
the gossiping; time of such a chain matches the result
of Theorem Ei of [12]-i.e., its gossiping time is equal
to 4 L(k - 1)/21+ 1, where k is the number of nodes in
the chain. If instead we color the chain by the se-
quence ''." 2424 ".," then its gossiping time becomes
one unit more than the above-i.e., 4 L(k - 1)/21 + 2-
since the two colors 2,4 are exactly one time step be-
hind the colors l, 3. Now the two-dimensional mesh
in question is' basically an assembly of horizontal and
vertical chains, and its gossiping time is equal to the
maximum of the gossiping times of these chains.
Therefore, if we always color the longer dimension
with ''." 1313 ..." and the shorter dimension by ''...
2424 ".," then g4(Mi, ,k2) 5 4L(k - 1)/2] + 2, where k =

max{k,, k,) and c denotes the alternate coloring scheme.
When k, = k2 == k, g4(Mi,k) = 4L(k - 1)/2] + 2 = 2k - 2 is
optimal since it matches the corresponding lower
bound in Table 2. 0

Fi,g. 2a shows an example of 4-color mesh using alternate
coloring, and a trace of the propagation of information from
one node to another.

The upper bound of gossiping time for a two-
dimensional mesh can be generalized to an n-dimensional
kl kn mesh, Mk,,k2,,,,,kn ' We label the edges in the

ith dimension of thle mesh, i = 1,2, . . ., n, with alternating i's
and (n + i - 1)s. Based on this kind of colored meshes, we
obtain the following results.

THEOREM 5.3. For an n-dimensional k, x k,, ..., k, mesh
Mk,,k2 ,,,,, k , , k,, k2, ..., k, 2 3, the minimum gossiping time
is bounded as g (M k , , k 2 ,..., k ,) < 2nl(k - 11/21 + n , where k

= max {kl, k,,, ..., k,,]; it is optimal when all the kis are
equal to the same even number.

Next, the torus structure. We consider even tori of which
the rmmber of nodes in each dimension is even. Such a
torus can be colored with 2n colors using the alternate col-
oring, scheme as above, where n is the number of dimen-
sions. Fig. 2b shows a 6 x 8 colored torus using alternate
coloring, and a trace of information propagation from one
node to another.

THEOREM 5.4. For a two-dimensional k, x k2 torus Tk,,k2, k,, k, > 2
and are even, the minimum gossiping time is bounded as
g(Tk,,k2) 5 k, where k = maxlk,, k2); it is optimal when

k, = k,.

" '

PROOF. From Theorem 5.1, a 2-color ring with even k nodes
completes gossiping in k/2 time units. In our 4-color
torus here, wlhich is an assembly of even rings, infor-
mation advances one step in every two time units;
hence, for a ring of k nodes colored with 1 . 1 1313
the gossiping time is 2k/2 - 1 = k - 1, where the -1 is
due to the fact that the last step (a 1 or a 3) takes only
one time unit; correspondingly, for a ring of k nodes

1 3 5 11 13

2 f

4 f

10 f

12 f
f -

14

(a) Mesh 8 x 8

3 5 7 7 5 3
J J J J J J

f

f

f

f

f

2

4

6

6

4

3

3

3

2 4

32 6

3' 4
3

5 I 7 5 4

(b) TONS: 6 x 8

Fig. 2. Examples of a 4-color mesh and a 4-color torus using alternate
coloring. The corner node with double circles corresponds to the node
whose information will take the longest time to propagate to all other
nodes. Using dashed ovals, we trace the propagation of information
from this node to other nodes against time step numbers in the figure.

colored with ... 2424 I . . , the gossiping time is k.
Therefore, if we always color the rings of the longer
dimension with ... 1313 . . I , WE' have g(T,") 5 k,

where k = max{k,, k,] and c denotes this way of alter-
nate coloring. When k, = k, (Le., a k-ary 2-cube),
g(T,",,k2) = k is optimal since it matches the lower
bound in Table 2. 0

1, 2

Generalizing, we have the following.

THEOREM 5.5. For an n-dimensional kl :< k, x ... x k, torus
whew k,, k,, ..., k, aye even, the minimum gos-

siping time is bounded as g(Tk,,k2, , k n) 2 nk/2; it is opti-

mal when k, = k, = ... = k, (i.e., a k-a y n-cube).

Tkl,k2, &'

With all the necessary gossiping results in place, we can
now comment on the optimality of ouir termination detec-
tion algorithm. By comparing Theorem 5.1 and Table 2, we

544 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 5, MAY 1996

find that our termination detection algorithm is optimal for
the chain and the even ring (d - g is a constant two to four
time steps). From Theorems 5.3 and 5.5, our termination
detection algorithm is near-optimal for even square meshes,
and near-optimal for the k-ary n-cube, where k is even. All
of the above are valid by applying the alternate coloring
scheme using the appropriate number of colors, and the
near-optimality would tend to optimal if the graphs degree
(and hence the number of colors) is small.

We have shown that our simple termination detection algo-
rithm based on edge-coloring is time-optimal in terms of
termination delay for the chain, the even ring, the even
square mesh of low degree, and the k-ary n-cube (k even) of
low degree under the 1-port, full-duplex communication
model. It is near-optimal for the other cases. The time opti-
mality also implies message optimality because the termi-
nation delay determines the number of extra communica-
tion operations needed after a global termination state has
emerged. Moreover, the edge-coloring technique used in
the algorithm allows efficient communication while avoid-
ing the possibility of message collisions and congestions.

From Table 2, we note that the numbers of time steps for
the optimal cases under the 1-port model is actually equal to
the respective absolute lower bounds for information dis-
semination in these structures regardless of the communica-
tion model. Therefore, if we use the all-port communication
model, our algorithm performs as well as the broadcast-
based algorithm or any other algorithm in these structures.

We implemented our termination detection algorithm in
two major applications of iterative data-parallel computa-
tions (WaTor simulation and parallel image thinning) [22],
[23] and found the overhead due to the execution of this
algorithm to be minimal. In [22], we also experimented
with periodic distributed remapping which helped to
achieve better efficiency of the computations. The remap-
ping mechanism, which is based on some nearest-neighbor
load balancing algorithms [23], [24], had to incorporate our
termination detection algorithm in implementation.

S. Chandrasekaran and S. Venkatesan, ”A Message-Optimal Algo-
rithm for Distributed Termination Detection,” 1. Parallel and Distrib-
uted Computing, vol. 8, pp. 245-252,1990.
W.J. Dally, ”Performance Analysis of k-ary n-cube Interconnection
Networks,” IEEE Trans. Computers, vol. 39, no. 6, pp, 775-785, June
1990.
A.M. Farley and A. Proskurowski, ”Gossiping in Grid Graphs,” 1.
Combinatorics, Infomation, and System Sciences, vol. 5, no. 2, pp. 161-
172,1980.
S. Fiorini and R.J. Wilson, ”Edge-Coloring of Graphs,” Selected Top-
ics in Graph Theory, L.W. Beineke and R.J. Wilson, eds., Academic
Press, 1978.
G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon, and
D.W. Walker, Solving Problems on Concurrent Processors, vol. 1.
Englewood Cliffs, N.J.: Prentice Hall, 1988.
N. Francez, ”Distributed Termination,” ACM Trans. Programming
Languages and Systems, vol. 2, pp. 4245, Jan. 1980.
N. Francez and M. Rodel-r, ”Achieving Distributed Termination
without Freezing,” IEEE Trans. Software Engineering, vol. 8, no. 3, pp.
287-292,1982.

C. Hazari and H. Zedan, ”A Distributed Algorithm for Distributed
Termination,“ lnformation Processing Letters, vol. 24, pp. 293-297,
1987.
S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, “A Survey of
Gossiping and Broadcasting in Communication Networks,” Net-
works, vol. 18, pp. 319-349,1988.
S.L. Johnsson and C.-T. Ho, ”Optimum Broadcasting and Personal-
ized Communication in Hypercubes,” I E E E Trans. Computers, vol.
38, no. 9, pp. 1,249-1,268, Sept. 1989.
T.-H. Lai, ”Termination Detection for Dynamic Distributed Systems
with Non-First-In-First-Out Communications,” 1. Parallel and Dis-
tributed Computing, vol. 3, pp. 577-599,1986.
A. Liestman and D. Richards, ”Network Communication in Edge-
Colored Graphs: Gossiping,” IEEE Trans. Parallel and Distributed Sys-
tems, vol. 4, no. 4, pp. 438445, Apr. 1993.
F. Mattem, ”Asynchronous Distributed Termination: Parallel and
Symmetric Solutions with Echo Algorithms,” Algorithmica, pp. 325-
340, May 1990.
L.M. Ni and P.K. McKmley, ”A Survey of Wormhole Routing Tech-
niques in Direct Networks,” Computer, vol. 26, no. 2, pp. 62-76, Feb.
1993.
S.P. Rana, “A Distributed Solution of the Distribution Termination
Problem,” Information Processing Letters, vol. 17, pp. 43-46,1983.
S. Ronn and H. Saikkonen, ”Distributed Termination Detection with
Counters,” Information Processing Letters, vol. 34, pp. 225227,1990,
S. Skyum and 0. Eriksen, ”Symmetric Distributed Termination,”
The Book of L, G. Rozenberg and A. Salomaa, eds., pp. 427430,
Springer-Verlag, 1986.
B. Szymansla, Y. Slu, and S. Prywes, ”Synchronized Distributed
Termination,” I E E E Trans. Software Engineering, vol. 11, no. 10, pp.
1,136-1,140, Oct. 1985.
R.W. Topor, ”Termination Detection for Distributed Computa-
tions,” Infomation Processing Letters, vol. 18, no. 1, pp. 33-36,1984.
L.G. Valiant, ”A Bridging Model for Parallel Computation,” Comm.
ACM, vol. 33, no. 8, pp. 103-111, Aug. 1990.
C.-Z. Xu and F.C.M. Lau, ”Distributed Termination Detection of
Loosely Synchronized Computations,” Proc. Fourth I E E E Symp. Par-
allel and Distributed Processing, pp. 196-203, Dec. 1992.
C.-Z. X u and F.C.M. Lau, “Decentralized Remapping of Data Par-
allel Computations with the Generalized Dimension Exchange
Method,” Proc. 1994 Scalable High Performance Computing Conf.,
pp. 414-421, May 1994.
C.-Z. Xu and F.C.M. Lau, ”The Generalized Dimension Exchange
Method for Load Balancing in k-ary n-cubes and Variants,” 1. Paral-
lel and Disfributed Computing, vol. 24, no. 1, pp. 72-85, Jan. 1995.
C:Z. Xu, B. Monien, R. Luling, and F.C.M. Lau, “Nearest-Neighbor
Algorithms for Load-balancing in Parallel Computers,” Concurrency:
Practice and Experience, vol. 7, no. 7, pp. 707-736, Oct. 1995.

Chengzhong Xu (M’95) received the BS and
MS degrees from Nanjing University, China, and
the PhD degree from the University of Hong
Kong in 1986, 1989, and 1993, respectively, all
of them in computer science. From 1994 to
1995, he was a guest professor at the University
of Paderborn, Germany. He is currently a visit-
ing assistant professor in electrical and com-
puter engineering at Wayne State University,

~ Detroit, Michigan. His research interests are
primarily in the design and analysis of algo-

rithms for mapping and load-balancing problems in parallel computers,
and in the development of parallel programming environments for
combinatorial optimizations and data-parallel applications.

Francis C.M. Lau (S’78-M’87) has a BSc de-
gree from Acadia University, Canada, and
MMath and PhD degrees from the University of
Waterloo, Canada. He joined the Department of
Computer Science at the University of Hong
Kong in 1987 where he is now a senior lecturer.
His research interests are in parallel and distrib-
uted computing, object-oriented programming,
and operating systems.

