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Abstract-We propose a simple algorithm which is based on edge-coloring of system graphs for termination detection of loosely 
synchronous computations. The proposed algorithm is fully symmetric in that all processors run syntactically identical code and can 
detect global termination at the same time. Under the 1-port communication model, the algorithm is optimal in terms of termination 
delay, the difference between the time when a global termination occurs and the time it is detected, in a number of structures- 
chain, ring of even number of nodes, k-ary n-cube and k-ary n-mesh of low degree, where k is  even; and near-optimal for other 
cases. The optirnality analysis is based on results from a related problem, periodic gossiping in edge-colored graphs. This algorithm 
has been applied to some practical cases in which the overhead due to its execution is found to be insignificant. 

Index Terms-Data parallelism, distributed algorithms, interconnection networks, multicomputers, parallel and distributed systems, 
synchronous computations, termination detection. 
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1 INTRODUCTION 
E:RMINATION detection is a fundamental operation in T parallel and distributed computations. It has been 

heaviily studied in the past for efficient and readily imple- 
mentable solutions. One important area in which termina- 
tion detection has EI major role to play is data-parallel com- 
putations [5]. These computations generally follow the so- 
called Single-Program-Multiple-Data (SPMD) paradigm in 
which each processor executes the same program but on a 
different portion of the problem domain. The computation 
proceeds in steps which are separated by synchronization 
points. During each step, the processors operate independ- 
ently on their own data, and then communicate with their 
data-dependent, usually directly connected, peers. These 
processors are loosely synchronized in that a processor 
need:$ to synchronize only with its data-dependent peers, 
and can proceed into the next step once it is sure that it has 
received/sent all the information it needs to receive/send 
in this step. For this computational model, even though a 
processor interacts only with a subset of other processors, 
global termination detection is still needed to confirm the 
permanence of idleness because an idle peer may get acti- 
vated again by other processors. Clearly, because of this 
elusive nature of processors’ idleness, the problem of dis- 
tributed detection of global termination is a nontrivial one. 

A termination detection algorithm in this context should 
have the following three desirable properties. 

1) The algorithm should minimize the termination de- 
lay-the difference between the time when global 
termination occurs and the time it is detected; 
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2) The algorithm should be symmetric in that all proces- 
sors execute the same syntactically identical code, and 
detect global termination at the same time; 

3) The algorithm should incur as few extra control mes- 
sages as possible. 

The termination delay translates into the message com- 
plexity of the algorithm. The symmetry feature makes the 
algorithm easy to be incorporated in the SPMD paradigm. 
It also ensures simultaneous termination of all processors, 
which is most desirable in applications that consist of a se- 
quence of tasks (or phases). Minimiziing the termination 
delay of a phase enables the next phase to be issued earlier, 
and consequently reduces the overall processing time. Such 
multiphase computations are frequently found in advanced 
image and vision processing systems. 

Loosely synchronous computations have a number of 
characteristics that can facilihte the termination detection 
process. First, processes are statically created and assigned 
to processors in the SPMD fashion. Second, the computa- 
tion proceeds in steps; and the predicate for termination is 
evaluated periodically, instead of at arbitrary times in gen- 
eral models. Third, the data dependency between a pair of 
processors is usually mutual-a send operation in one 
processor is matched by a receive operation in another 
processor; therefore, message passing can be treated as in- 
stantaneous. Lastly, processors communicate with each 
other periodically according to a fixed communication pat- 
tern; as such, the state of a processor can be piggy-backed 
on data messages. 

For the termination detection problem as described 
above, many of the existing algorithms, such as those for 
asynchronous communication models [l], 1131 and for 
dynamic process models [ll] are too general to meet our 
requirements. For the model that assumes instantaneous 
communications, there are a number of algorithms based 
on probing techniques [6], 1161, 1151, [191. They use a to- 
ken to keep track of the number of idle processors, which 
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is passed along a Hamiltonian circuit or a spanning tree. 
These algorithms are nonsymmetric, and their termination 
delay is N in the case of Hamiltonian circuit or larger than 
2 0  in the case of spanning tree (one for the expanding 
wave and another for the contracting wave), where N is 
the number of processors and 0 is the diameter of the 
system graph. 

For the instantaneous communication model, there is 
another class of algorithms which are based on counting 
techniques [8] ,  [16], [17], [18]. These algorithms are based 
on the idea of keeping a counter in every processor to tell 
how far the nearest non-idle node might be. They are all 
fully distributed, symmetric, and require knowledge of 
the diameter of the graph, but do not impose a spanning 
tree or cycle on the graph. In particular, the algorithm by 
Szymanski et al. has a delay of D + 1 [18]. The extra one 
step is for confirmation of global termination. Our algo- 
rithm borrows this idea of using a simple integer counter 
to keep track of the distance of the nearest busy processor. 
We find however that these four algorithms rely on a 
powerful communication primitive which allows a node 
to broadcast to or exchange information with all of its di- 
rect neighbors in one time step. We call these algorithms 
”broadcast-based” in the rest of this paper. This primitive 
is possible only with idealized models such as the all-port 
communication model [lo]. The more realistic models are 
those that are based on 1-port communications, with 
which a node can complete at most one communication 
transaction (half- or full-duplex) along one of its edges in 
one time step. Such a model is assumed in many instances 
of recent research in multicomputer algorithms [12]. The 
understanding is that in a multicomputer, the time to 
complete a broadcast to or a complete exchange of infor- 
mation with all of a node’s neighbors is a function of the 
number of neighbors. This is supported by Valiant’s 
rather popular BSP model [20]. In practice, machines like 
iPSC/2 and iPSC/860 and the Connection Machine are 
basically of the 1-port type. Even though some of the lat- 
est designs of message-passing processors have incorpo- 
rated multiple on-chip communication modules which 
can operate simultaneously, because of the fixed cost of 
setting up a communication, the total time of sending k 
messages, assuming the best possible overlapping in time, 
is still largely determined by h unless the messages are 
overly long. Therefore we consider the 1-port communi- 
cation model a more reasonable and realistic one than the 
all-port model. The communication model assumed in 
this paper is the 1-port, full-duplex model in which a 
processor can exchange a message with at most one direct 
neighbor in a time step. 

If we adopt the 1-port model, one step in a broadcast- 
based algorithm must now be counted as d steps, where d is 
the degree of the network. Referring to the 0 lower bound, 
this makes the broadcast-based algorithms far from opti- 
mal. Our algorithm, to be presented in the ensuing sections, 
performs much better with the 1-port model; its delay is 
6 + 1 iteration steps, where fi is called the color diameter of 
the network and an iteration step is equal to d + 1 commu- 
nication steps between processors in the worst case. For 
most regular topologies such as the mesh and the torus 
with even nodes in each dimension, an iteration step equals 

exactly d communication steps, and 6 = Did ,  and hence the 
delay is D + d communication steps which is optimal for 
reasonably large networks or networks with a small degree. 
For other common topologies, it is near optimal. If instead 
the idealized all-port communication model is assumed, 
our algorithm is still comparable to the broadcast-based 
algorithms for most of the popular topologies. 

The optimality analysis of the termination delay is based 
on the insight that the lower bound of the termination delay 
in communication steps should be the minimum time re- 
quired by every processor to learn the state of every other 
processor. The latter is exactly the lower bound of the time 
for gossiping [9] in the given system graph. Recently, Liest- 
man and Richards proposed a novel periodic gossiping 
technique for edge-colored system graphs [121. Their algo- 
rithm bears much resemblance to our termination detection 
algorithm’ in terms of the communication pattern. There- 
fore, some of the analysis techniques for periodic gossiping 
used in their paper are applicable in our optimality analysis 
of termination delay. 

In addition to being fully distributed and time efficient, 
our algorithm is totally symmetric. Like those broadcast- 
based algorithms, the only limitation of our algorithm is 
that it requires each processor to know the color diameter 
of the network, which however can be easily calculated 
once a coloring scheme is chosen. We present in Sections 2 
and 3 the computation model, the idea and intuition behind 
the algorithm, and the basic definitions. Section 4 gives the 
algorithm and proofs of its major properties. An equiva- 
lence between the communication part of our algorithm 
and the gossiping problem for edge-colored graphs is es- 
tablished in Section 5, based on which we prove the opti- 
mality of our algorithm for some popular topologies. 

2 COMPUTATION 
We consider loosely synchronous computations in multi- 
computers. The multicomputer is assumed to consist of n 
autonomous processors connected by a point-to-point 
communication network. We represent the network by a 
simple connected graph G = (V, E ) ,  where V denotes the set 
of processors labeled from 1 to N and E c V x V is a set of 
bidirectional edges. Each edge 4, j >  E E corresponds to the 
bidirectional communication link between processor i and 
processor j. Let D(G) be the diameter of G. Let d ( i )  denote 
the degree of a node pi in G, and d(G) denote the maximum 
of the degrees of G‘s nodes. 

A loosely synchronous computation in multicomputer 
proceeds in calculation-communication steps. Termination 
condition is evaluated at the end of each step. The scenario 
in which termination detection is to operate is as follows. 
At the point of termination evaluation, we distinguish be- 
tween Busy and Idle states of a processor. A processor is in 
Idle state when its local computation is finished; Busy oth- 
erwise. An Idle state is one in which the problem state value 
remains unchanged after an iteration phase. A Busy proces- 
sor would communicate its newly computed result in a 
data message to its dependent processors and an Idle proc- 

1. A preliminary version was presented in 1211 
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essor would wait for data messages from its Busy neighbors 
in the iteration. A Busy processor can become Idle for the next 
iteration, and an Idle processor may return to Busy on receipt 
of a data message firom a Busy processor during the commu- 
nication phase. Global termination occurs when all proces- 
sors become Idle. Apart from these data messages of the un- 
derlying computation, control messages are used to pass in- 
form3tion about termination around, which can emanate 
from both Busy and Idle processors. Processors would not 
change their stares on receipt of control messages. 

Normally, the data dependency between a pair of proc- 
essors in the loosely synchronous computations is mutual. 
A send operation in one processor is matched by a receive 
operation in anothier one. We therefore assume the data 
exchmge to be instantaneous, which simplifies the termi- 
nation detection problem because there won't be false de- 
tection due to messages in transition. Nevertheless, termi- 
nation detection in the present model is still a nontrivial 
problem as processors could change from Idle to Busy when 
they receive data messages from a Busy processor. 

Suppose the computation being observed will terminate 
in finite time with a global termination condition being 
true; then the task IS to devise a termination detection algo- 
rithm that would allow every processor to detect this con- 
dition within the shortest time after it becomes true. Our 
principal objective is to minimize the difference between 
the time when global termination occurs and the time when 
it is detected by processors/ which is defined as the termina- 
tion delay. 

The broadcast-based algorithms are based on a model 
similx to the above. They use an integer counter S to main- 
tain the control information about termination. S = 0 if and 
only if the processor is in the Busy state. During the commu- 
nicatiion phase of an iteration step, the processor exchanges 
its counter value with those of neighboring processors. Then 
in the computation phase of the iteration step, each Idle proc- 
essor updates its counter to be 1 + min(S, Inputs ) ,  where 
Inpu t s  is the set of all received counter values. It is easy to 
see that the counter in a processor actually corresponds to 
the dlistance between this processor and the nearest Busy 
processor, and sincle the control information of a Busy proc- 
essor can propagate over at most one edge (but reaching 
one or more neighbors) in an iteration step, a processor that 
just ihrned Idle (oiily Idle processors would try to detect 
global termination) requires at least D ( G )  + 1 steps to confirm 
global termination. Hence, the delay for termination detec- 
tion using the broadcast-based algorithm is equal to D(G) + 1. 

Notice that the change of the counter values in a broad- 
cast-based algorithm behaves in a fashion similar to Jacobi 
relaxation for solving equations: In the communication 
phase of an iteration, a processor updates its counter only 
after having collected all the counter values of the neigh- 
boring processors. This may cause unnecessary delays in 
prop3gating individual counter values within the processor 
structure. An alternative is to follow the Gauss-Seidel way 
of solving equations: during the communication phase of 
an iteration, a processor updates its counter immediately 
after its every exchange with a neighboring processor; this 
way, counter value:; could get propagated a lot faster. 

Generally, a processor having more than one neighbor 
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can interact with only one of its neighbors at a time in the 
synchronous communication model, vvhich fits well with 
the 1-port physical model discussed previously. The inter- 
action order can be determined by edge-coloring of the 
system graph. The edge-coloring technique allows efficient 
communication while avoiding the polssibility of message 
collisions and congestion. In order to shorten the time 
needed to complete the communication phase, the edge- 
coloring algorithm must assign the minimum number of 
colors to a given graph. Our algorithm is therefore based on 
edge-coloring using the minimum numlber of colors. 

3 EDGE-COLORING OF THE SYSTEM GRAPH 
Given the system graph G, we color the edges of G with the 
minimum number of colors, denoted by K, such that no two 
adjoining edges are assigned the same color. We index the 
colors with integers from 1 to K, and represent the K-color 
graph as G ,  = (V, E,), of which E, is a set of 3-tuples of the 
form (i, j ;  c), (i, j ;  c)  E E ,  if and only if c is the chromatic in- 
dex of the edge (i, j )  E E.  It is known that the minimum 
number of colors lcis strictly bounded by d(G),  and d(G)  I IC 

I d ( G )  + 1 [4]. Fig. 1 shows two 3-color graphs derived from 
a 2 x 4 mesh. 

Fig. 1 .  Examples of two 3-color meshes. 

We next introduce some essential concepts that are nec- 
essary for the subsequent presentation and analysis of our 
algorithm based on edge-coloring. 

DEFINITION 3.1. Let G ,  be a K-color graph of G. A sequence of 

( i  = io, i,; cl) ,  (i,, i,; c,)/ . . ., (i,-], i, = j; c,) 

edges in G, of the form 

is called a color-path of length 1 from i to j if all intermedi- 
ate vertices i,(l 5 s 5 1 - 1) are distinct and K 2 c1 > c2 > . . . 
> c, 2 1. 

From this definition, a color-path is a path in the graph 
with decreasing color numbers along the edges that make 
up the path. In Fig. l a  for example, there are several ways 
of going from vertex 1 to vertex 5, including this one which 
comprises two color paths: (1, 8; 3), (8, 7; 1) and then 
(7,6; 21, (6,5; 1). 

DEFINITION 3.2. In  a K-color graph G ,  a node j is said to be 
reachable from node i in one trip if there exists a color path 
from i to j .  The color-distance from nodes i to j ,  denoted 
by 6(i, j ) ,  is the minimum number of trips required for 
going from i to j .  The greatest color-distance among the 

color-distances of all the node pairs in G ,  is called the 

color-diameter of G ,  denoted by 6 ( G K ) .  

As an example, let us re-examine the 3-color mesh in 
Fig. la. It is clear that node 7 fs reachable from 1 in one trip 
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because of the color path (1, 8; 3), (8, 7; l), and that node 5 is 
reachable from node 2 in one trip because of the color path (2, 
7; 31, (7,6; 21, (6,5; 1). Hence, 60, 7) = 6(2, 5) = 1; similarly, 
we have 6(1, 5) = 6(1, 6) = 2, and thus, 6(G,) = 2.  Gener- 
ally, the color-diameter of an edge-colored graph is 
equivalent to the diameter of an extension of the graph, 
each edge of which corresponding to a color-path. 

Within an iteration step in the termination detection al- 
gorithm, to be discussed next, each color is activated once, 
in the order of increasing color numbers. When a particular 
color is activated, all edges of this color become active and 
information would flow through or be exchanged over 
them. Therefore, information at one end of a color path will 
propagate to the other end within an iteration step of the 
algorithm. Note that some processors may have fewer 
neighbors than the others, but since communications are 
synchronous and every color must be considered once in an 
iteration step, the time complexity of the communication 
phase is a function of the number of colors. 

HE MI 

The control information for termination detection is ab- 
stracted as a local integer counter S maintained in every 
processor. This counter's value changes as the iterative ter- 
mination detection algorithm proceeds. We serialize the 
communication phase of an iteration step into a number of 
consecutive exchange operations, one for each color. An 
exchange operation for color c causes two neighboring 
processors connected by an edge of color c to exchange 
their counter values. After each of these little exchanges 
with a neighbor, a processor would update its counter im- 
mediately with the value received from the other processor 
if the latter is smaller than this processor' current counter 
value. And at the end of each iteration step, the processor 
sets the counter to 0 if the node is still a Busy node (not lo- 
cally terminated); otherwise, it increments the counter 
value by 1. When S reaches a predefined value, the proces- 
sor stops with the sure knowledge that the computation has 
reached global termination. 

Our algorithm bears certain resemblance to the broad- 
cast-based algorithm, but the updating of the counter S 
follows a different protocol as has been explained. The al- 
gorithm follows. The variable Inputs temporarily stores the 
neighboring counter value received in the current exchange 
operation. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Algorithm for Processor i (1 5 i 5 N): 
s = 0; 
while (S < PredefinedValue) { 

for (c = 1; c 5 IC, e++) 
if (an incident edge colored c exists) { 

Inputs = Exchange(c); 
S = min{S, Inputs}; 

I 
if (LocalTerminated)/" Idle "/ 

s = s + 1 ;  
else/" Busy */ 

s = 0; 
I 

For each color (each iteration of the for-loop), the procedure 
Exckange(c1 is executed which causes the counter values of 
the this processor and a neighboring processor connected 
by the edge colored c to exchange their counter values, 
where c is the current color (loop index). If the processor 
has no incident edge colored c, it skips this one and goes on 
to the next color. Note that unlike the broadcast-based algo- 
rithms in which the counter is not updated until all the 
neighboring counter values are received, our algorithm 
compares the local counter with a neighbor's counter value 
as soon as the latter comes in through the exchange. 

This algorithm is fully symmetric in that it is syntacti- 
cally identical for each processor, and there is no central 
control. Below, we give an example to illustrate how the 
counter S gets updated. Then, based on S, we show how 
PredefinedValue in the algorithm above is determined. 

Let S!'(t) denote the counter value of processor i after the 
exchange (after line 7) over the edge colored c (if there is one) 
has taken place within iteration step t ,  SL( t )  the counter value 
of processor i at the end of the for loop (after line 8 before line 
9), and S,(f) the counter value at the end of the iteration step f 

(after line 12). Clearly, S [ ( t )  < S,c(t) for all c. Table 1 gives a 
partial trace of the counter distribution when we apply the 
algorithm to the processor structure of Fig. la. The counter 
distribution is assumed to be (0, 1, 1, 1, 1, 1, 1, 1) at to, the 
instant at which our tracing begins; processor 0 becomes 
Idle at step to + 2; processor 1 returns to Busy at step to + 2 
and becomes Idle again at t ,  + 4; processor 2 returns to Busy 
at t ,  + 4 and becomes Idle again at f, + 5, and global termi- 
nation occurs at this point since all eight processors are Idle. 
All the counter values reach 3 at to + 7, which is the 
(earliest) point at which every processor is sure of the 
global termination-the detection delay is three iteration 
steps. This implies that PredefinedValue has been set to 3 in 
the algorithm. The following analysis on the global termi- 
nation condition tells us how this number comes about. 

The presentation of the analysis is similar to that in [SI. 
First, we derive a recursive expression of S from the above 
algorithm. 

PROPOSITION 1. For any node i, 1 5 i 5 N,  

where l+(i) = I ( i )  U {i}, and I(i) is the set of nodes that i can 
reach in  one trip. 

PROOF. If j E I(i), then there exists a color path from i to j .  
Suppose this color path has the form (i, i,; c,), (i,, i,; c,), 

..., (il-,, j; CJ, where c1 > c2 > ... > cI. Then, it is clear 
that S % ( t  + 1) $'(t + 1) <...< S,":(t + 1) 5 S j ( t )  . Since 

Si(f + 1) 5 S,'l(t + l), it follows that S,(f + 1) < Sj( t ) .  In 

addition, if there exists a processor j E I ( i )  and j + i, 
S , ( t  + 1) will not be influenced by S,(f). Thus, the 
proposition is proved. 0 



XU AND LAU: EFFICIENT TERMINATION DETECTION FOR LOOSELY SYNCHRONOUS APPLICATIONS IN MULTICOMPUTERS 

~ 

54 1 

TABLE 1 
A TRACE OF THE COUNTER DISTRIBUTION OF PROCESSORS IN A 4 X 2 MESH S'TRUCTURE 

1 Processor p, p2 p3 

S,{fo + 6) 

p4 
1 

1 

2 
- 

3 

2 

2 

3 
-- 

The numbers in parentheses aye the counter values veceived in the cuvrent exchange 

The above proposition reveals that a nonzero counter 
value of a processor contains more information than just its 
own current state (which is Idle). The historical states of 
processors from which processor i is reachable may be de- 
duceld from s,. In the most trivial case, if the counter value 
of a processor i equals 1 at the end of an iteration step, then 
the processor can infer that there exists at least one Busy 
processor within I'-(i) at the end of the last iteration step. 
Generally, if S,(t)  = Y > 0, then the following properties con- 
cerning historical state information can be derived. 

PROPOSITION 2. Suppose at some iteration step t, there is a stable 
processor i with S,(t) = a > 0. Then 

1) there exists a processor j satisfying E(i, j )  I a ,  Sj(t - a) 

2) for any  processor j satisfying D(i, j )  5 a ,  s,(t - t') > 0, 
= 0  

where E(i,,i) 5 t' < a .  

PROO'F. Part 1) can be proved by induction on the integer a. The 
statement trivially holds for SJt )  = a = 1. Now suppose it 
holds for Si(t) := a = b > 1. If Si@) = b + 1, then according to 
Proposition 1, there exists at least one processor j E T(i) 
with counter value Sj(t - 1) = b. From the hypothesis, 
there exists a :processor k satisfying fi( j ,  k) < b with the 

counter value Sk(t - b - 1) = 0. Since the processor k also 
satisfies f i ( i ,  k )  < b + 1, Part 1) is proved. The proof of 

Part 2) proceeds in a similar way. 0 
Part 1) of the proposition says that if an Idle processor finds 
its counter value to be r > 0 at the end of some iteration 
step, then there exists a processor which is at most r color 
paths away from this processor and whose state was Busy r 
iterations ago. That is, the counter value (= 0) of this Busy 
processor got propagated to the Idle processor within r it- 
erations; while on the way, this value got incremented by 
one at each iteration. Part 2)  says that if this value did get 
propagated all the way to the Idle processor in question, 
then there must not have been any Busy processors that 
were within r color paths from this processor during the 
period of the propagation. 

On the basis of the properties of S, we are now in the po- 
sition to establish the condition for global termination in 
terms of S .  

THEOREM 4.1. For any processor i in the  color or graph G,  it 
detects global termination when S, = D(GK) + 1. 

PROOF. In order to be certain about global termination when 
a processor satisfies this condition S,(t)  = B(GK)  + 1, it 
suffices to show that at time t ,  all other processors p,, 
j # i, have the same counter value, i.e., 
~ , ( t )  = IS(G,) + 1.  Suppose at time t, s,(t) = E ( G ~ )  + I, 
but there exists a processor pi such that 
S,(t)  = a < E ( G K )  + 1. According to Part 1) of Proposi- 
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tion 2, there exists a processor, say pk, with S,(t - a) = 
0. On the other hand, from Part 2) of Proposition 2, all 
the counter values at time t - a must be positive. We 
conclude from the contradiction that S,(t) = 6(G,) + 1 
if and only if S,(t) = 6 ( G K )  + 1. Thus, the theorem is 

In summary, for any given processor structure, the global 
termination condition is dependent on a single v a l u e t h e  
structure’s color-diameter, 6, (G) .  The processors exit the it- 
eration loop simultaneously (i.e., at the same iteration step) 
with the same counter value 6 ( G )  + 1. Hence, the constant 
PredefinedValue in the algorithm should be set to E ( G )  + 1. The 
delay of the algorithm is D(G) + 1 iteration steps which is 
measured from the instant the last Busy processor twns Idle. 

proved. U 

We have shown that for a given edge-colored system graph 

G ,  the termination delay of the algorithm is equal to its 
color diameter 6 ( G K ) + l  which is in terms of number of 
iteration steps. Referring to the termination detection code 
in the algorithm, we note that one iterative step comprises IC 
communication operations, K being the number of colors. 
Hence, the termination delay in communication operations 
is equal to ( 6 ( G K )  + 1 ) ~ .  Since the edges of a graph G can 
usually be colored in more than one way, as illustrated in 
Fig. 1, and that different ways of coloring may result in dif- 
ferent color diameters, and hence different termination de- 
lays, we would like to determine the best coloring scheme 
for a given structure G so that the minimum termination 
delay can be achieved. 

5.1 Lower Bound of Termination Delay 
The termination delay of the algorithm, as we have defined 
before, is the time span from the occurrence of a global ter- 
mination till the termination is detected by each processor. 
Clearly, the lower bound of the termination delay (in com- 
munication steps) should be the minimum time required by 
every processor to learn the state of every other processor. 
It is the lower bound of the time for gossiping [9] in the 
given graph. 

The gossiping problem has been studied by a number of 
researchers under various communication models. Under 
the same 1-port, full-duplex communication model, Farley 
and Proskurowski analyzed the problem for the ring, the 
mesh, and the torus [3]. Their results, which can serve as 
the lower bounds of the termination delay, are summarized 
in Table 2. 

TABLE 2 
LOWER BOUNDS OF TERMINATION DELAY (GOSSIPING) IN 

COMMUNICATION STEPS 

k -  1 if k is even; k otherwise 

5.2 Termination Delay in 
We now present the optimality analysis of the termination 
delay of our algorithm in the structures of n-dimensional 
torus and mesh (n  2 l), and their special cases, the ring, the 
chain, and the k-ary n-cube. An n-dimensional torus is a 
variant of the mesh with end-round connections. A k-ary n- 
cube is a network with n dimensions, k nodes in each di- 
mension [2], [14]; it is a special case of the n-dimensional 
torus which allows different numbers of nodes in different 
dimensions. The hypercube is a special case of both the n- 
dimensional mesh and the k-ary n-cube. A hypercube is an 
n-dimensional mesh with the same number of nodes (of 2) 
in each dimension-that is, a 2-ary n-cube. We limit our 
scope to these structures because they are the most popular 
choices of topologies in commercial parallel computers [ 141. 

Instead of directly working out the appropriate coloring 
schemes for the structures, measuring their color diameters, and 
comparing with the above lower bounds, we make use of existing 
results from a version of the gossiping problem which is equiva- 
lent to our termination detection problem to argue about opti- 
mality. h version of the gossiping problem, by Liestman and 
Richards, uses exactly the same edge-coloring technique as we 
have used here for the chain, the ring, and the mesh [12]. It is easy 
to see that the two problems-to find a coloring that would yield 
the shortest color diameter and to find a coloring that would lead 
to the mini” gossiping t imeare  equivalent. Therefore, we 
can use the gossiping results for edge-colored graphs to compare 
with the above lower bounds. In the following, if the gossiping 
time in some colored graph is optimal with respect to the corre- 
sponding lower bound in Table 2, then the termination delay due 
to our algorithm using the same coloring scheme is optimal or 
near optimal. Precisely, if we let g to be the gossiping time, then 
the termination delay is less than g + 2 x K communication steps. 
The coloring scheme that is used to arrive at the optimal gossiping 
time is exactly the optimal coloring scheme we need for om ter- 
mination detection. Note that ”gossiping time” in the following 
refers to that from using edge-coloring. 

Liestman and Richards derived, among their many results, 
the following minimum gossiping times which are of rele- 
vance here. We use g(G) to denote the minimum gossiping 
time for the structure G, and g(G7 the gossiping time for G 
with coloring c. 

THEOREM 5.1 [12]. For a chain of k nodes, C,, g(C,) = 2L(k - 1)/21 
i 1 ; f o r  a ring of k nodes (k even), R,, g(R,) = k / 2 ;  for a 
two-dimensional 2 x k mesh M2,b g(M,,,) = 3L(k - 1)/21+ 1. 

Note that in proving the above, Liestman and Richards 
gave an actual coloring scheme for each case (using two 
colors for the chain and the ring, and three colors for the 
mesh). They also showed that the minimum gossiping time 
is no larger than 2 x max{k,, k,] for a two-dimensional k, x k2 
mesh by using an ”alternate” coloring scheme with 4 colors. 
In the following, we sharpen the bound and show its op- 
timality for the even square mesh. We also present a tight 
bound of gossiping time for the square torus. 

THEOREM 5.2. For a two-dimensional k, x k, mesh Mkl ,k2 ,  k,, k, 2 
3, the minimum gossiping time is bounded as 
g4(Mk,,k,  5 4L(k - 11/21 + 2, where k = max{k,, k2]; it is 

optimal when k, = k,. 
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PROOF. Suppose in a 4-color situation we color a chain with 
the sequence "... 1313 ...''; then it is easy to verify that 
the gossiping; time of such a chain matches the result 
of Theorem Ei of [12]-i.e., its gossiping time is equal 
to 4 L(k - 1)/21+ 1, where k is the number of nodes in 
the chain. If instead we color the chain by the se- 
quence ''." 2424 ".," then its gossiping time becomes 
one unit more than the above-i.e., 4 L(k - 1)/21 + 2- 
since the two colors 2,4 are exactly one time step be- 
hind the colors l, 3. Now the two-dimensional mesh 
in question is' basically an assembly of horizontal and 
vertical chains, and its gossiping time is equal to the 
maximum of the gossiping times of these chains. 
Therefore, if we always color the longer dimension 
with ''." 1313 ..." and the shorter dimension by ''... 
2424 ".," then g4(Mi, ,k2)  5 4L(k - 1)/2] + 2, where k = 

max{k,, k,) and c denotes the alternate coloring scheme. 
When k, = k2 == k, g4(Mi,k) = 4L(k - 1)/2] + 2 = 2k - 2 is 
optimal since it matches the corresponding lower 
bound in Table 2. 0 

Fi,g. 2a shows an example of 4-color mesh using alternate 
coloring, and a trace of the propagation of information from 
one node to another. 

The upper bound of gossiping time for a two- 
dimensional mesh can be generalized to an n-dimensional 
kl kn mesh, Mk,,k2,,,,,kn ' We label the edges in the 

ith dimension of thle mesh, i = 1,2, . . ., n, with alternating i's 
and (n + i - 1)s. Based on this kind of colored meshes, we 
obtain the following results. 

THEOREM 5.3. For an n-dimensional k, x k,, ..., k, mesh 
Mk,,k2 ,,,,, k , ,  k,, k2, ..., k, 2 3, the minimum gossiping time 
is bounded as g ( M k , , k 2  ,..., k ,  ) < 2nl(k - 11/21 + n ,  where k 

= max {kl, k,,, ..., k,,]; it is optimal when all the kis are 
equal to the same even number. 

Next, the torus structure. We consider even tori of which 
the rmmber of nodes in each dimension is even. Such a 
torus can be colored with 2n colors using the alternate col- 
oring, scheme as above, where n is the number of dimen- 
sions. Fig. 2b shows a 6 x 8 colored torus using alternate 
coloring, and a trace of information propagation from one 
node to another. 

THEOREM 5.4. For a two-dimensional k, x k2 torus Tk,,k2, k,, k, > 2 
and are even, the minimum gossiping time is bounded as 
g(Tk,,k2) 5 k,  where k = maxlk,, k2); it is optimal when 

k, = k,. 

" '  

PROOF. From Theorem 5.1, a 2-color ring with even k nodes 
completes gossiping in k/2 time units. In our 4-color 
torus here, wlhich is an assembly of even rings, infor- 
mation advances one step in every two time units; 
hence, for a ring of k nodes colored with 1 . 1  1313 
the gossiping time is 2k/2 - 1 = k - 1, where the -1 is 
due to the fact that the last step (a 1 or a 3) takes only 
one time unit; correspondingly, for a ring of k nodes 
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Fig. 2. Examples of a 4-color mesh and a 4-color torus using alternate 
coloring. The corner node with double circles corresponds to the node 
whose information will take the longest time to propagate to all other 
nodes. Using dashed ovals, we trace the propagation of information 
from this node to other nodes against time step numbers in the figure. 

colored with ... 2424 I . . ,  the gossiping time is k. 
Therefore, if we always color the rings of the longer 
dimension with ... 1313 . . I ,  WE' have g(T," ) 5 k, 

where k = max{k,, k,] and c denotes this way of alter- 
nate coloring. When k, = k, (Le., a k-ary 2-cube), 
g(T,",,k2) = k is optimal since it matches the lower 
bound in Table 2. 0 

1, 2 

Generalizing, we have the following. 

THEOREM 5.5. For an n-dimensional kl :< k, x ... x k, torus 
whew k,, k,, ..., k,  aye even, the minimum gos- 

siping time is bounded as g(Tk,,k2, , k n )  2 nk/2; it is opti- 

mal when k, = k, = ... = k,  (i.e., a k-a y n-cube). 

Tkl,k2, &' 

With all the necessary gossiping results in place, we can 
now comment on the optimality of ouir termination detec- 
tion algorithm. By comparing Theorem 5.1 and Table 2, we 
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find that our termination detection algorithm is optimal for 
the chain and the even ring (d  - g is a constant two to four 
time steps). From Theorems 5.3 and 5.5, our termination 
detection algorithm is near-optimal for even square meshes, 
and near-optimal for the k-ary n-cube, where k is even. All 
of the above are valid by applying the alternate coloring 
scheme using the appropriate number of colors, and the 
near-optimality would tend to optimal if the graphs degree 
(and hence the number of colors) is small. 

We have shown that our simple termination detection algo- 
rithm based on edge-coloring is time-optimal in terms of 
termination delay for the chain, the even ring, the even 
square mesh of low degree, and the k-ary n-cube (k  even) of 
low degree under the 1-port, full-duplex communication 
model. It is near-optimal for the other cases. The time opti- 
mality also implies message optimality because the termi- 
nation delay determines the number of extra communica- 
tion operations needed after a global termination state has 
emerged. Moreover, the edge-coloring technique used in 
the algorithm allows efficient communication while avoid- 
ing the possibility of message collisions and congestions. 

From Table 2, we note that the numbers of time steps for 
the optimal cases under the 1-port model is actually equal to 
the respective absolute lower bounds for information dis- 
semination in these structures regardless of the communica- 
tion model. Therefore, if we use the all-port communication 
model, our algorithm performs as well as the broadcast- 
based algorithm or any other algorithm in these structures. 

We implemented our termination detection algorithm in 
two major applications of iterative data-parallel computa- 
tions (WaTor simulation and parallel image thinning) [22], 
[23] and found the overhead due to the execution of this 
algorithm to be minimal. In [22], we also experimented 
with periodic distributed remapping which helped to 
achieve better efficiency of the computations. The remap- 
ping mechanism, which is based on some nearest-neighbor 
load balancing algorithms [23], [24], had to incorporate our 
termination detection algorithm in implementation. 
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