Motor Neuron Disease in Hong Kong Chinese: Epidemiology and Clinical Picture

Original Paper

Neuroepidemiology 1996;15:239–245

K.Y. Fong
Y.L. Yu
Y.W. Chan
R. Kay
J. Chan
Z. Yang
M.C. Kwan
K.P. Leung
P.C.K. Li
T.H. Lam
R.T.F. Cheung

Departments of
a Medicine and
b Community Medicine,
The University of Hong Kong;
c Departments of Medicine,
Kwong Wah Hospital,
Chinese University of Hong Kong,
and
f Queen Elizabeth Hospital,
Hong Kong

Key Words
Motor neuron disease
Chinese
Epidemiology

Abstract
This study documents the clinical features, incidence and prevalence of motor neuron disease (MND) in Hong Kong Chinese. Patients with MND who were alive between 1989 and 1992 were recruited by retrieval of medical records from the four major hospitals in Hong Kong, and by referral of neurologists, neurosurgeons and medical consultants. Mortality statistics was provided by the Census and Statistics Department. A total of 84 cases were identified with a male preponderance of 1.98:1. The average annual period incidence was 0.31/100,000 and the point prevalence on December 31, 1992, was 0.95/100,000. The mean age at onset was 55.5 years (range 19–81) with a peak observed from 55 to 65 years. The clinical features are similar to other reported series of MND. The incidence and mortality of MND in Hong Kong are therefore lower than the worldwide figures of 2.0/100,000 and 1.5/100,000, respectively.

Introduction

Motor neuron disease (MND) is a degenerative disease affecting the anterior horn cells and pyramidal fibres. The epidemiology and clinical features are delineated in Caucasoid and Japanese but not in Chinese populations [1–7]. A study was published on the clinical picture and electromyographic findings of MND in 198 patients in the Chiang Xu Province of the Republic of China, but the epidemiological aspects were not investigated [8]. Hong Kong is located to the south of Guangdong Province of China (latitude 22°20′N, longitude 114°12′E). Its population of 5.7 million is predominantly Chinese, and medical service is available at nominal cost to all citizens [9]. The present study was undertaken to
Table 1. Clinical classification of MND

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically definite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset in the limbs (ALS/PBP)</td>
<td>20</td>
<td>10</td>
<td>30 (35.7)</td>
</tr>
<tr>
<td>Onset in the bulbar muscles (PBP/ALS)</td>
<td>17</td>
<td>11</td>
<td>28 (33.3)</td>
</tr>
<tr>
<td>Clinically probable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBP</td>
<td>0</td>
<td>1</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Spinal ALS (3 regions)</td>
<td>6</td>
<td>1</td>
<td>7 (8.3)</td>
</tr>
<tr>
<td>Spinal ALS (2 regions)</td>
<td>10</td>
<td>5</td>
<td>15 (17.8)</td>
</tr>
<tr>
<td>PMA</td>
<td>2</td>
<td>1</td>
<td>3 (3.6)</td>
</tr>
<tr>
<td>PLS</td>
<td>0</td>
<td>0</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>29</td>
<td>84 (100)</td>
</tr>
</tbody>
</table>

ALS = Amyotrophic lateral sclerosis; PBP = progressive bulbar palsy; PMA = progressive muscular atrophy; PLS = primary lateral sclerosis.

Figures in parentheses represent percentages.

1 Four of these patients presented with predominant respiratory failure with minimal limb weakness or wasting.

The mortality and population data were provided by the Census and Statistics Department. Causes of death were categorized on the basis of the International Classification of Diseases, and death certificates in which MND (ICD code 335.5) is entered as the direct or contributing cause of death were identified during the period of 1989–1992.

Materials and Methods

We adopted the recommendations made by the World Federation of Neurology [10] in establishing the clinical diagnosis of MND. Patients were recruited into the study if they had progressive upper and lower motor neuron signs in at least two different regions of the central nervous system (cortical, brainstem, cervical, thoracic or lumbar spinal cord motor neurons), and in the absence of sensory signs (including visual abnormalities), Parkinson’s disease, and Alzheimer’s disease. Recruited cases were further subclassified as in the Scottish Motor Neuron Disease Research Group [11]. Clinically definite MND was defined as upper and lower motor neuron signs involving the brainstem and one or more spinal regions (cervical, thoracic or lumbar sacral). If signs were limited to the brainstem and only one spinal region, both upper and lower motor neuron signs were required in that region. Clinically probable MND was defined as progressive bulbar palsy, spinal amyotrophic lateral sclerosis, progressive muscular atrophy and primary lateral sclerosis (table 1). Appropriate tests such as CT or MRI of the neuroaxis, myelography, nerve conduction study and electromyography, blood tests for heavy metal screening, serum immuno-electrophoresis, and analysis of CSF were carried out in most cases to exclude diseases which could produce clinical syndromes mimicking MND. Patients with MND who were alive between January 1st, 1989, and December 31st, 1992, were identified by the following means: (1) medical records (ICD code 335.2) were retrieved from the four regional hospitals (Queen Mary Hospital, Queen Elizabeth Hospital, Kwong Wah Hospital, and Prince of Wales Hospital) which are tertiary referral centres for neurological diseases in the territory; (2) letters were sent to internists and geriatricians in the public sector apart from the four above hospitals and to all neurologists and neurosurgeons in Hong Kong, requesting them to complete a simple questionnaire concerning possible cases of MND formerly under their care, and (3) an announcement was made in the monthly newsletter of the Hong Kong Medical Association asking all doctors to report possible cases.

All available patients or their case notes were evaluated by the authors to ascertain the diagnosis and clinical picture. Their current status was also clarified via telephone, letters of enquiry or family visits.

Results

Sixty-three patients were identified from the four regional hospitals, and another 30 patients were referred from private practitioners, to which 35 (70%) respectively contributed data of I or more. Fourteen patients were identified from other sources. However, the clinical and possible cases could not be obtained from the private clinic because of failure in obtaining medical records. Six patients with MND were rejected either because of a misdiagnosis or non-progression. A total of 84 cases met our criteria and were enrolled in the study.

MND in Hong Kong Chinese
Progressive muscular atrophy and amyotrophic lateral sclerosis (table 1). Appropriate tests of the neuroaxis, myelography, myology and electromyography, blood screening, serum immuno-electrophoresis of CSF were carried out in the diseases which could produce a picture mimicking MND. Patients with PBP and S were identified by the following criteria:

<table>
<thead>
<tr>
<th>Men</th>
<th>Women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10</td>
<td>30(35.7)</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>28(33.3)</td>
</tr>
</tbody>
</table>

0 1 1 (1.2)
6 1 7 (8.3)
10 5 15 (17.8)
2 1 3 (3.6)
0 0 0 (0.0)

55 29 84 (100)

PBP = progressive bulbar palsy; S = primary lateral sclerosis.

Fig. 1. Age distribution of MND onset and deaths among Hong Kong Chinese (1989–1992).

The mortality and population statistics were provided by the Census and Statistics Department. Death certificates in which MND (ICD code 335.2) was entered as the direct or contributory cause of death during the period of 1989–1992 were analysed.

Results

Sixty-three patients were identified from the four regional hospitals, and a further 33 patients were referred from other hospitals and private practitioners. Fifty letters were sent, to which 35 (70%) responded; 19 doctors contributed data of 1 or more patients. Fourteen patients were identified by more than 1 source. However, the clinical details of 6 possible cases could not be obtained from the private clinic because of failure in retrieval of medical records. Six patients with possible MND were rejected either because of wrong diagnosis or a non-progressive history. Thus, a total of 84 cases met our diagnostic criteria and were enrolled in the study.

The Chinese population in Hong Kong, based on the census carried out in 1991, was 5.7 million. The numbers of new MND cases diagnosed in 1989–1992 were 17, 14, 17, and 22, respectively, hence the average annual incidence was 0.31/100,000. As 31 patients had succumbed by December 31st, 1992, the point prevalence was 0.95/100,000. Another twelve deaths occurred in the year 1993, and the calculated mean survival for all deaths from onset of symptoms was 2.8 years (range 0.5–6 years). The male to female ratio was 1.98:1, but the male preponderance was not apparent in those presenting at age 65 and above. The mean age at onset was 55 years (range 19–81) with a peak observed from 55 to 65; onset was before age 50 in 35% of the cases (fig. 1).

Of these 84 cases, 57 (68%) were clinically definite MND and the rest were clinically probable cases (table 1). For those with clinically definite MND, bulbar or limb onset was of similar frequency. The majority of patients
reported muscle weakness as the initial symptom (83%), 45% noticed difficulty in speaking, 40% difficulty in walking, 20% muscle wasting, and 5% difficulty in breathing. Bulbar dysfunction was found in 29 patients at presentation (34.5%), and the rest of the physical findings were similar to that in other reported series. Of those 36 patients without initial bulbar involvement, 19 patients (53%) had MRI, or CT and myelograms of the cervical cord to exclude the possibility of myelopathy. Two of these patients were subjected to cervical decompression due to thecal compression by spondylotic tissues, but the procedure did not result in any clinical improvement. Most patients (96%) underwent electromyographic examination showing denervation changes to support the clinical diagnosis.

One patient with a positive family history was identified. He was a 19-year-old student who presented with progressive bulbar palsy, developed generalised involvement within 6 months and died of aspiration pneumonia 2 months afterwards. Autopsy showed a variable degree of neuronal loss and demyelination involving the corticospinal tracts at the lower medulla and cervical spinal cord. His mother had had a similar history of progressive dysarthria and dysphagia for 1 year and had died at the age of 30; his two siblings were normal, however. The age of death based on death certificates during the same period when MND was entered as the direct or contributory cause (ICD code 335.2) are also shown in figure 1. The calculated average annual mortality of MND was 0.33/100,000 with a male to female ratio of 1.68:1. The age- and sex-specific incidence and mortality rates are presented in table 2. The age-specific incidence rate rises steadily with age, peaks at age 50–59 and slightly declines afterwards whereas the age-specific mortality rate peaks at age 60 and above.

Discussion

In this study we have shown a low incidence, prevalence and mortality of MND among Hong Kong Chinese. The 1% familial incidence is also low compared to the reported figures of 5–10% [12, 13]. Nevertheless, the clinical picture is similar to sporadic MND cases reported in the Chinese series [8] and other studies [2, 4, 14]. However, this low incidence and prevalence of MND in Hong Kong must be regarded as the minimum estimate because of certain limitations of the study.

Whilst we attempted to identify all available sources, our study was retrospective and based on retrieved hospital and clinic records. Thus, the ascertainment due to underreporting, this observational study indicates false-positive diagnoses. Most studies have examined this issue and the cause of death in about 10% was misclassified as MND [1, 10]. Coding probably existed in some at-death certificates as evidenced by the findings of a decline in the age distribution. This finding on the decline in the age distribution suggests that the age 75 would raise the possibility of disease in the elderly population. It may be missed clinically or confused with other neurodegenerative diseases. The incidence rate of MND in the whole population is just cost-effective to attempt such a procedure. In fact, age- and sex-specific incidence studies, except in the USA, are usually at 60–75 years, without after this [7]. Although our study joins with this observation, future trends should take into account methodological limitations.

With these provisos, we believe that the results are reasonably correct for a number of reasons.

1. A survey on median age at death within 14 days showed that 93% consulted doctors within 6 months.
We have shown a low incidence and mortality of MND among older Chinese. The 1% familial incidence is low compared to the recent 15–10% [12, 13]. Nevertheless, the picture is similar to sporadic cases reported in the Chinese series [8] [12, 4, 14]. However, this low prevalence of MND in Hong Kong is regarded as the minimum estimate because of certain limitations in the study.

Whilst we attempted to identify cases from all available sources, our study was retrospective and based on retrieval of records from hospitals and clinics. Thus, incomplete case ascertainment due to underreporting is likely. A point of note is that the mortality data given by the death certificates is slightly higher than the incidence rate obtained from retrospective record analysis. Besides reflecting possible underreporting, this observation may also indicate false-positive diagnostic coding. Two studies have examined this issue and show that the cause of death in about 10–30% of patients was misclassified as MND [1, 15]. False-positive coding probably existed in the death certificates as evidenced by the finding of 6 patients reported as MND who did not satisfy our present stringent diagnostic criteria. In addition, the finding of a decline in incidence after age 75 would raise the possibility of underdiagnosis in the elderly population in whom MND may be missed clinically or confused with other neurodegenerative diseases. The magnitude of this error can only be determined by carrying out a systematic survey in the elderly population. Given such a low incidence of MND in the whole population, it would not be cost-effective to attempt such a screening procedure. In fact, age- and sex-specific rates in all incidence studies, except that of Rochester, Minn., USA, show a steady rise to a peak, usually at 60–75 years, with a sharp decline after this [7]. Although our study is in keeping with this observation, future comparison of trends should take into account our methodological limitations.

With these provisos, we believe our data are reasonably correct for a number of reasons.

(1) A survey on medical consultations within 14 days showed that most subjects (93%) consulted doctors of conventional Western medicine whereas only 7% consulted acupuncturists, bonesetters or herbalists [16]. Hence, we believe that most patients with MND would be diagnosed and treated under the care of competent physicians.

(2) As 80% of patients die within 5 years after the diagnosis of MND, the mortality figure should provide a fair estimate of the prevalence. As prevalence can be estimated by multiplying the mortality rate with the average disease duration, the projected prevalence based on mortality data supplied by the Census and Statistics Department was therefore 0.92/100,000, which matched reasonably well with our prevalence figure. In addition, the distribution of age at onset and age at death are well matched (fig. 1).

(3) MND is a progressive and fatal illness and most patients will be seen at least once by a neurologist before a definite diagnosis is entertained. This is supported by the fact that 14 patients were seen by 2 or more neurologists, and that all patients were seen by more than 1 physician.

(4) The annual incidence and mortality figures were fairly constant throughout these years.

(5) The possibility of incomplete retrieval of records was minimized by studying the disease incidence and prevalence in the past 4 years.

Table 3 shows a comparison of the incidence, prevalence, and mortality of the present study with other reported series. The worldwide incidence and prevalence of MND are in the order of 2/100,000 and 4/100,000, respectively, excluding those areas with especially high prevalence such as Guam and the Kii Peninsula of Japan [17]. Similarly, mortality figures of MND in most countries are above 0.4/million, and global figures range from 0.06 to 2.50/100,000 [22]. In contrast to this uniformity, the low incidence and mortality of MND in Hong Kong are comparable to

<table>
<thead>
<tr>
<th>MND in Hong Kong Chinese</th>
</tr>
</thead>
</table>

Neuroepidemiology 1996;15:239–245
Table 3. Worldwide figures of MND epidemiology

<table>
<thead>
<tr>
<th>Location</th>
<th>Author</th>
<th>Year(s)</th>
<th>I</th>
<th>P</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>Kondo and Ysubaki [1]</td>
<td>1977</td>
<td>0.9 [17]</td>
<td>0.4–0.6</td>
<td></td>
</tr>
<tr>
<td>Rochester, Minn., USA</td>
<td>Juergens et al. [2]</td>
<td>1925–1984</td>
<td>2.0</td>
<td>6.0</td>
<td>0.9 [18]</td>
</tr>
<tr>
<td>Sweden</td>
<td>Forsgren et al. [19]</td>
<td>1969–1980</td>
<td>1.7</td>
<td>4.8</td>
<td>1.0–2.5</td>
</tr>
<tr>
<td>Mexico</td>
<td>Olivares et al. [21]</td>
<td>1972</td>
<td>0.4</td>
<td>0.8</td>
<td>0.28</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>present study</td>
<td>1989–1992</td>
<td>0.31</td>
<td>0.92</td>
<td>0.33</td>
</tr>
</tbody>
</table>

I = Incidence/100,000; P = prevalence/100,000; M = mortality/100,000.

those studies conducted in India [23], Israel [24], Mexico [21], Africa and South American countries [25]. An interesting phenomenon was noted by Chancellor and Warlow [7] who showed that the age-standardised rates (45–74 years) of MND correlated positively with the degrees of latitude north. A low incidence of MND in Hong Kong is therefore in line with this observation. In addition, a recent study carried out in England showed that the mortality of MND among immigrants from Asia, Carribean countries (West Indians) and Africa was much lower than that of Caucasoids [26]. These data provide further evidence that ethnic origin or environment may have an impact on the prevalence of the disease. Like others, we suggest that there is a need to re-examine the commonly held premise of uniform distribution of MND in most parts of the world.

Acknowledgments

The authors wish to thank the following colleagues for submitting patient records to the study: Dr. T.H. Tsoi of the Department of Medicine, Nethersole Hospital; Dr. P.W. Ng of the Department of Medicine, United Christian Hospital; Dr. M.L. Wong of the Department of Medicine, Caritas Medical Centre; Dr. K.P. Leung of the Department of Medicine, Tung Wah East Hospital, and Dr. A.T.T. Lee, Dr. C.Y. Huang, and Dr. B. Tse in private medical practice. We are also grateful to Ms. P.Y. Tung of the Department of Immigration and the staff of the Census and Statistics Department for providing the mortality statistics of MND.

References

<table>
<thead>
<tr>
<th>P</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4–0.6</td>
<td>1.2–2.1 [7]</td>
</tr>
<tr>
<td>6.0</td>
<td>0.9 [18]</td>
</tr>
<tr>
<td>4.8</td>
<td>1.0–2.5</td>
</tr>
<tr>
<td>30–650</td>
<td>0.28</td>
</tr>
<tr>
<td>0.8</td>
<td>0.33</td>
</tr>
</tbody>
</table>

...the commonly held premise that the distribution of MND in most populations is bimodal.

Comments

I would like to thank the following colleagues for their help with the data collection: Dr. T.H. Lai, the Medical Director of the Department of Medicine, Tuen Mun Hospital; Dr. M.L. Wong of the Department of Medicine, Caritas Medical Centre, Dr. A.T.T. Lee, Dr. C.Y. Huang, and the nursing staff of the Department of Immunology. These nurses provided the mortality statistics of MND in Hong Kong Chinese as well as the data on the neuroepidemiology of MND.

MND in Hong Kong Chinese

...Neuroepidemiology 1986;15:239-245...