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A Geometric-Process Maintenance Model for a
Deteriorating System Under a Random Environment

Yeh Lam and Yuan Lin Zhang

Abstract—This paper studies a geometric-process main- F, Cdf[X,,]
tenance-model for a deteriorating system under a random g pdf[Y,,]
environment. Assume that the number of random shocks, up to G Cdf[Y,.]

time ¢, produced by the random environment forms a counting

process. Whenever a random shock arrives, the system operating h pdf{W,]

time is reduced. The successive reductions in the system operatingH Cdffw.,]

time are statistically independent and identically distributed N number of system-failures
random variables. Assume that the consecutive repair times of N* an optimalN for minimizing C(N)

the system after failures, form an increasing geometric process;

- system reward rate
under the condition that the system suffers no random shock, the y

successive operating times of the system after repairs constitute aWn reduction in th? sys_tem operating t,'me affes #n
decreasing geometric process. A replacement polidy¥, by which ~ Xn system operating time after repai(:#— 1), as-
the system is replaced at the time of the failurgV, is adopted. An suming that there is no random shock
explicit. e).<pres.sion f(?r the average cost rate (long-run average cost x/ the real system operating time after repdin # 1)
per unit time) is d(_enved. Then, an optimal replacement pollc_:y iy system repair time after failuren#
determined anqutlcally. As.a particular case, a compound Poisson 7 t | t1i
process model is also studied. system replacement ime
Index Terms—Compound Poisson process, geometric process, ELXA]
random shocks, renewal process, replacement policy. ® E[Y1]
T E[Z].
ACRONYMS! . INTRODUCTION
ACR average cost rate: long-run average cost per unittimgy - T THE initial stage of research in maintenance problems
Cdf cumulative distribution function A of a repairable system, a common assumption is “repair is
CPPM  compound Poisson process model perfect:” a repairable system after repair is “as good as new.”
GP geometric process Obviously, this assumption is not always true. In practice, most
GPMM  GP maintenance model o repairable systems are deteriorating because of the aging effect
iid s-independent and identically distributed and accumulated wear. Thus, [4] introduced a minimal-repair
pdf probability density function model in which a system after repair has the same failure rate
RP renewal process and the same effective age as at the time of failure. Reference [6]
RS random shock(s) suggests an imperfect repair model, in which a repair is perfect
v random variable with probabilityp, and a minimal repair with probability — p.
8- implies: statistical(ly). An alternate approach is to introduce a monotone process
model. For a deteriorating system, it is reasonable to assume
NOTATION that the successive operating times of the system after repairs
a constantu > 1, ratio of a decreasing GP are stochastically decreasing and the consecutive repair times
b constantp < b < 1, ratio of an increasing GP of the system after failures are stochastically increasing. Ac-
c system repair-cost rate cording to this idea, [12], [13] introduced GP model. This is
CR system replacement-cost a simple monotone process model but a good approximation to
C(N)  ACR with RS under replacement polidy a more general monotone process model.
fn pdf[X,.] Definition 1: Given 2 r.v. X andY, X is stochastically
greater thart” (Y is stochastically less thak) if
Sibl\IAeaEléistcc:)rrl:p;resc.ellz\-/e\;iipA.ugust 14, 2000; revised September 13, 2001. Respon- Pr{X > z} > Pr{Y > z} for all real z:
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Definition 2: A stochastic proces&,,, n = 1,2, ...} isa II. MODEL
GP, if there existsx > 0, such that{a""1¢,, n = 1,2, ...}
forms a RPy is the ratio of GP.

For a GP, let the Cdff] = F; then Cdff,] = F, with  Assumptions
F,(t)= F(a"'-t), n=1,2,...;and

GPMM is studied with 6 assumptions:

1) A new system is installed at the beginning. It is replaced
by a new and-identical one sometime later.

2) Given that there is no random shock, thel,,, n =
1,2,...} form a GP with ratioa > 1 and EX;] =

Thereforen, E[¢,], and Var, ] are 3 important parameters for > 0. However, no matter whether there is &% or not,

Bley)

an—l’

Var[¢]
aQ(n—l) ’

E[En] = Va*r[gn] =

the GP. {Y,,n = 1,2, ...} constitutes a GP with rati6 < 1 and
On the other hand, ife > 1, then{&,,n = 1,2,...}is Ei] =p > 0. Letthe Cdf ofX,, andY, be F, andG.,
stochastically decreasing: respectively; and the pdf bg, andg,, respectively

Fo(z)=F(a" ' -z), fu(z)=0a"""f(a"' 2),

Gu(y) =GO" ' -y),  gnly) =b""1-g(0" " - y).
If 0 < a < 1,then{{,, n = 1,2, ...} is stochastically in- 3y N(z) is the number of RS up to time produced by

&n >t Ent1, n=1,2, ...

creasing: the random environmen{N(t), ¢ > 0} forms a counting
process having stationary agdndependent increment. When-
&n <st Ent, n=12,... ever a shock arrives, the system operating time is reduced.
{W,,n = 1,2, ...} are iid rv; W, is the reduction in the
If « = 1, then the GP is a RP. system operating time aftdt.S #n. The successive reductions

Although, in many cases, the deterioration of a system is ditethe system operating time are additive.

to an internal cause such as aging and accumulated wear df a system fails, it is closed so that the random environment
the system, an external cause such as an environmental fahtgs no effect on a failed system.
might be another reason for system deterioration. In practice, a}) The processesX,,, n =1, 2, ...},{V,, n=1,2, ...},
precision instrument and meter installed in a power workshepd rv Z are s-independent. The process€s(,, n =
might be affected by some RS due to the operation of other in-2, ...}, {N(¢), t > 0}, and{W,,, n = 1, 2, ...} are also
struments, such as lathes or electrical machines: the operatirigdependent.
time of the instrument and meter might be shorter. On the others) The replacement policy¥ is applied.
hand, if an instrument and meter system are installed in a navab) The repair-cost rate of the systeng,ishe replacement cost
vessel, then the high temperature and humidity of the operatigg:z, and the reward rate of the systentis
environment might reduce the operating time of the system. If aThe completion time of repair(#—1) is denoted by,, _;; the
computer is invaded by some virus or attacked with a raider, thember of RS if{t,, 1, ¢, 1 +t] produced by the environment
operating time of the computer is diminished, or the computgy
can break down. These examples show that the system is deteri-
orating due to an external cause. The effect of an internal cause N (tn—1, tn—1 + 1] = N(tn—1 +t) = N(tn-1);
on the system operating time can be a continuous process; w ;t'n,—l) andN(t,_, + t) are, respectively, the number of RS
the effect of an external cause (such as a RS) might form a jum . ) L

. . . oduced in(0, t,—1] and(0, ¢,—1 + t]; the total reduction in
process. Therefore, in studying a maintenance problem for a €2 operating time e for +1] i
pairable system, one should not only consider the internal causé P 9 m=by fn=1 0

but consider the effect of an RS (produced by the environment) N(tn—1,tn-1+1]
against the system. As a result, one should study a maintenance AXt, it a4t] = Z Wi. (1)
model with RS that is also an important model in reliability i=1

theory. References [5], [7], [8] study the Poisson shock modelonsequently, under the random environment, the residual time
Later, [28] presented a generalized Poisson shock model; and,,_; + ¢ is
[30] extended Poisson shock model to a general shock model.
For the case wherBS forms a semi-Markov process, [9], [33] Sn(t) = X =t = AX (1,1 4,y 41]) 2
determine the optimal replacement policy. For more referencegpject toS,, (¢) > 0. Therefore,
see [1], [10], [11], [25].

This paper studies a GPMM for a system under a random en- Xo = inf{#]S. () < 0}. 3)
vironment by considering the effect of RS on the system. The re- . B .
placement policyV is adopted: a failed system is replaced if thMma 1 is useful for later study; the proof is trivial.
number of failures since the installation or the last replacement-€Mma 1:
has reacheaV, otherwise it is repaired. Section Il introducep{x, — ¢ — AX(, oy a4 >0, VEe[o, t']}
the model. Section Il evaluates the ACR. Section IV analyti- _ Pr{X ¥ _AX 1> 0} (4)
cally determines an optimal replacement polidy:.. Section V o (tn1stn 1 4] :
discusses particular case, CPPM. Now, consider the assumptions of GPMM.
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Assumption 2) shows that the system is deteriorating so tteat RS depends on the residual lifetime of a system, if the reduc-
the consecutive repair times constitute an increasing GP;tidn in the residual lifetime is greater than the residual time, then
there is no RS, the successive operating times form a decreasirgsystem fails. Therefore (3) is realistic. These 2 examples also
GP. This is based on general knowledge and on the resultsiow whyW,, acts additively, and i#¥,, acts multiplicatively,
real-data analysis. References [16], [20] apply GP model to fitlBen system could not fail after suffering a RS.
real data-sets by using nonparametric and parametric methodshe reasons whw is adopted are explained. Usidg has
respectively. The first data-set is the coal-mining disastessong history [24], [27]. However in a maintenance problem,
data of the intervals in days between successive coal-miningsidesV, policyT is also applied, wherein the affected system
disasters in Great Britain [2]; the second data-set is the datasfeplaced by a new andidentical one at a stopping tinTé For
arrival times to unscheduled maintenance actions for the U8 long-run average cost, [14] and [31] show that under some
Halfbeak no. 3 main propulsion diesel engine [3]; the thirdhild conditions, an optimaN* is at least as good as an optimal
data-set is the data of arrival times to unscheduled maintenafi¢e The same result for the totalexpected discounted cost
actions for the USS Grampus no. 4 main propulsion diessdse was proved [15],[17]. Therefore, without loss of generality,
engine [3]. The last two data-sets are sequences of succestigepolicy N can be studied. Implementing poli¢y is more
operating times after repairs of the propulsion diesel engirmnvenient than implementing policy. This is an additional
The numerical results in [16], [20] show that all 3 data-setdvantage of using policy .
can be well fitted by the GP model. More real data-sets were
analyzed later. By comparing the GP model with 2 inhomoge- I1l. A VERAGE COST RATE
neous Poisson process models, the Weibull process model, anﬁjI
Cox—Lewis model, [23] shows that, on average, the GP mo 13
can fit these real data-sets better than the others. Therefore,
reasonable to apply a decreasing GP model for the succes
operating times of a system after repairs and an increasing
model to formulate the consecutive repair-times of the syst
after failures. Based on this understanding, [12], [13] applie _ )
the GP model to the maintenance problem for a 1-component s-Expected cost incurred in a cygle )
system. The GP model has also been applied to reliability s-Expected length of a cycle
analysis for 2-component series and parallel system [18], [19]7o begin, study the distribution of’.. For this purpose, let
and [21], [22]. For further reference see [26], [32]. N(tn_1, tu_1 + 1] of RS which occur irt,,_1, t,_1 + ] bek.

Assumption 3) means that the effect of a random enviromrhen for#’ > 0, study the conditional probability:
ment on the system is through a sequence of RS which shorten , , ,
the operating time. In practice, many examples show that the ef-Pr{Xn > UIN(tn—1,tn—1 + 1] = k}
fect of an RS is a reduction rather than a percentage-reduction . {X’

this model, a cycle is completed if a replacement is com-

ted. Because a cycle is actually a time interval between two

t.décessive replacements, then the successive cycles form a RP.
& successive cycles together with the costs incurred in each
cle make a renewal reward process. The standard result in re-
wal reward process shows that the ACR is [29]

— 1 /
in residual operating time. In other words, assume Wiatacts - ,}g(f]{ﬂsn(t) <0} >t

additively rather than multiplicatively. For example, a person

suffering from second hand smoking is very serious, the effect N(tp1,tn_1 +1] = k}

is measured by a reduction in the lifetime. Similarly, a car dam-

aged by traffic accidents reduces its operating time additively. =Pr{S,(t) > 0,¥t € [0,#']|N(tn_1,tn_r + '] = k}
Equation (3) shows that whenever the total reduction

AX (1, , 1. .44 N System operating time it, 1, t,_1 + t] =Pr{X, — 1= A Xq, 1, 4 >0, Vt€[0,]]

is greater than the residual operating tiovg — ¢, then the N(tne,tno1 +1] = k}

system fails: the chance that a shock produces an immediate o

failure depends on the comparative distributionsXof — ¢ =Pr{X, —t' = A X, 4. 4t]> 0|

andAX, _, +._,+1- TO see the reasonableness of this point,

conside(r thélfollé)i/rvi]ng examples. N(tn-1:tn + 1] =k}
In a traffic accident, all the passengers in the bus suffer the — pr {Xn - A X

same shock, so that the reductions in their lifetimes are more

or less the same, but the effects on different passengers might N(tp-1,tn—1 +1] = k}

be quite different. An older passenger is more fragile because k

of having less residual lifetime than a younger passenger has; — py {Xn _ Z W, > t’}

thus the older passenger can be injured more seriously than a im1

younger passenger. The older passenger might even die, but the

younger passenger might only suffer a light-injury. This situa- = / /fn(x) - hi(w) dz dw. (6)

tion also happens in engineering. Suppose many machines are 7P

installed in 1 workshop, all of them suffer the same shock pro- D = {(z,w)|z > 0,w > 0,z —w > t'},

duced by a random environment, but the effects might be dif- &

ferent: an old machine could be destroyed whereas a new may; — 1,4f [Z Wi] 7 @)

chine might be slightly damaged. This means that the effect of P

!
torstn ot > U]
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and is thek-fold convolution ofh with itself. N, =E[X] = /OO w dl, (z) (12)
= pdf[W;], and H = Cdf[W;]. Equation (6) is due to Jo
lemma 1. Therefore, it follows from (7) that is thes-expected real operating time after repgin# 1).

Thus, the objective is to determine an optimal replacement
policy N* for minimizing the ACR:C(N).

= / [/ fu(z) d:L‘:| hi(w) dw
0 t'+w IV. OPTIMAL REPLACEMENT PoLICcY N*

_ /OO [1— F,(t +w)] dHy(w) This section determines the optimsil explicitly.
0

Pr{X, > t|N(tn-1, th-1 +1'] = k}

First, a simple but important lemma is derived.

oo Lemma 2: A/, is nonincreasing im.

=1 —/ Fo(t' + w) dHg(w). 8 {X,,n = 1,2,...} forms a decreasing GP, ard, =
0 Cdf[X,.]; thus from (9) for all real’,

Hy = Cdf[>";_, W;]. Thus Pr{X) >t} >Pr{X,,, >t}

Pr{X’' >t
r{X, ) Thus Lemma 2 follows.

> Second, rewrite (11) as:
[Pr{X] >t|N (tn—1, tn—1 +t'] =k} (1)

k=0 N—-1 o1
CPr{N (tn_1, tn_1 +t'] = k}] (c+r)p n; (1" + 6
oo C(N) = N N_1 - T
Z [(1—/ F,(t' + w) dHy(w )) n; MHrun; (1/bn=t) + 7
- b=r-74+cr. (13)
n —
“Pr{N(tn-1, tn-1 +t'] = k}] Third, introduce the auxiliary function:
> o N N—1
- ZK/ n(t' + w) dHg(w )) (cHr)-p- | X N =Ayyp- 2 BN "4
k=0 D(N) = n=1 n=1 .
" o (Vysn T4 )
- Pr{N(#) = k}} : ©) (14)
Lemma 3 is shown by a direct comparison@N + 1) and

Equation (9) is due to the fact th&iV(¢), t > 0} has a sta- C(N).
tionary increment property. Therefore, by noting tha{z) = Lemma 3:

F(a™ 1. z), the Cdf,1,, of X/ is > -
; R C(N+1) = C(N)<= D(N)= L
nl() = Pr{X, <z} Furthermore, it is obvious that:
=> K/ Fa" ! (z+w)) de(w)> D(N + 1) — D(N)
k=0 0
_ (c+r-p) - (Nyyr —b-Ayio)
- Pr{N(z) = k}] : (10) 8- N - (Ny 1 + u/bN=1) - (Ny g + 1/0N)
By using replacement policy/, it follows from (5) that the e ney
ACR is ZXJF“ Zl/b )+
N—-1 N
E [c- Z Y,—-r- > X/ + cR} This implies:
C(N) = e ! Lemma 4: D(N) is nondecreasing itv.
Z X! + 1\21 Y, + Z} The combination of Lemmas 2—4 gives theorem 1:
n=1 Theorem 1: The optimal maintenance policy™ is deter-
N1 mined by
c- Z ElY,] —r- ZE[X’]—}—CR
__ n=1 N* =min[N|D(N) > 1]. (15)
N
Z_:l E[X7]+ 21 E[Y.] + E[Z] It follows from theorem 1 that:
" " #1. If
N-1 N
c- - 21 (1/pn=1t) —r- 21 A +cr D(1) = (c+r)-p- (AN +7) 51
— = =) = , (11) 8- (A, + ) -
S Nytpe X (1) 47 hen N — 1
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#2.1fa>1,0< b < 1,and forms a compound Poisson process. It is a very popular and
o important process in application. For example, itis reasonable to
(c+7) p- ( AL+ r) assume that the number of customers arriving a supermarket by
D(x) = n=1 <1, time ¢ form a Poisson process and the amounts of money spent
& p by the customers are iid, then the total amount of money spent
thenN* = oo. by the customers forms a compound Poisson process [29].

The result of #1 is trivial. To prove #2, note thauif> 1, let From (10),
E[X,] = An, then I(z) = Pr{X, < x)

. I L

Hence by noting thak!, < \,, then

cw* L exp(—6-w) dw% -exp(—y-x)

Z A, < oo. ) an1 (y-2)k - g
n=1 = I—Z (exp [— (,H_ 3 )x} . T (ra)
Thus #2 is true. k=0
Therefore, /°° [ o1 [ < a"l) } D
) ) o . w exp |—| B+ “w | dw
« if D(1) > 1, the optimal policy is to replace the system 0 A
whenever it fails; k
* if D(o0) < 1, the optimal policy is to repair the system e a1 1 vz 3
foreverz :1—2 exp [_<7+ 5 )4@ N
k=0 : (ﬂ+ Y )
V. A COMPOUND POISSONPROCESSMODEL
To demonstrate the model and methodology developedinthis  _ 1 _ ey, | - 1— p — + " =z
paper, consider the special ca$éi(¢), t > 0} is a Poisson B+ a” A
process with parametey, i.e., the RS arrives according to a A
Poisson process with rate Then, Thus
k oo
Pr{N(t) = k} = (7]';) cexp(—y-t), k=0,1,.... E[X}] =X, = /0 @ dl(x)
' (16) . o
Let the successive reductions in the system operating-time, by 8 an—t
the RS, béVy, Ws, ..., Wy, .... They are iid, each having the = (7 l - ([H——"—l) + 2\ ) - (20)
Gamma distribution]'(a, 3), with pdf h: A
N If v+ = 0, then the system suffers no RS, and the model
p cw L exp(—=B-w) w >0, reduces to the Lam model [12], [13]; ik = 1, then
h(w) = § T(a) (A7) Wy, W,, ..., Wy, ... areiid, each having asxp(3) distribu-
0 elsewhere. tion. Then (20) becomes
Thereforez,ff=1 W, isaGamma r\_/wit_h di_strit_)utioﬁ_(k-oz, B). E[X] =\, = A ) 1)
Also, let X; have an exponential distribution with pdf: an—1. [1 I }
1 . B+ —
_{—-exp(——) z >0, ; ; f ;
fl@)y=4¢ A (18) Now, substitute (20) or (21) into (14) for an explicit expression
0 elsewhere. of D(N). Then an optimal replacement policy can be deter-
The Cdf is: mined by using (15) directly.
This numerical example explains how to determivié. Let
F,(x) :F(a"‘_1 - ) c=4,r =18, cg = 4000, A = 100, . = 5,7 = 48, a = 1.01,
_— b=098a=27p3=37=4.
_ { 1—exp(—a™t-z/\) x>0, (19) Using (20),
0 elsewhere.

90 000 + 6004”1 + o272
. . o )\I — .
Because{N(t), ¢ > 0} is a Poisson process, aRjdlV;, i = n = Gn=1 (3300 + 10a"—1 + 0.01a2"-2)

1,2, ...} areiid, then

Substitute the given values into (11), then the results in Table |

N and Fig. 1 are obtained.
AX,0 = Z Wi C(45) = —8.9955 is the minimum of the long-run average
i=1 cost per unit time; i.e.N* = 45: replace the system immedi-

2The system is always repaired whenever it fails. ately following failure #45.
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RESULTS OBTAINED FROM (11)

N C(N) | N C(N) | N C(N) | N C(N) | N C(N)
1 465334 | 11 -2.4149 | 21 -7.0850 | 31 -85152 | 41 -8.9597 60 -8.7095
2 9282811 | 12 -3.2319 | 22 -7.3063 | 32 -8.5903 | 42 -8.9745 80 -7.7039
3 184841 | 13 -3.9280 | 23 -7.5047 | 33 -8.6571 | 43 -8.9853 100 -6.3007
4 123809 | 14 -4.5267 | 24 -7.6828 | 34 -8.7163 | 44 -8.9923 150 -2.2814
5 82204 | 15 -5.0459 | 25 -7.8429 | 35 -8.7685 [ 45 -8.9955 200 0.9125
6 52074 | 16 -5.4992 | 26 -7.9868 | 36 -8.8142 | 46 -8.9954 300 3.4840
7 29287 | 17 -5.8974 | 27 -8.1163 | 37 -8.8539 | 47 -8.9919 400 3.9274
8 1.1482 | 18 -6.2488 | 28 -8.2327 | 38 -8.8879 | 48 -8.9854 500  3.9902
9 -0278 | 19 -6.5604 | 29 -83373 | 39 -8.9166 | 49 -8.9759 800  4.0000
10 -1.4453 | 20 -6.8376 | 30 -8.4312 [ 40 -8.9404 | 50 -8.9636 | 1000 4.0000
s T T T T T T T T [11] M. Kijima, H. Morimura, and Y. Suzuki, “Periodical replacement
} problem without assuming minimal repaigur. J. Oper. Resvol. 37,
pp. 194-203, 1988.
40} 1 [12] Y.Lam, “A note on the optimal replacement problemdv. Appl. Proh.
vol. 20, pp. 479-482, 1988.
[13] ——, “Geometric processes and replacement probléwtd Mathemat-
a0k | icae Applicatae Sinicavol. 4, pp. 366-377, 1988.
d [14] ——, “Optimal policy for a general repair replacement model: Average
reward case,IMA J. Mathematics Applied in Business and Industry
vol. 3, pp. 117-129, 1991.
2L i [15] —, “An optimal repairable replacement model for deteriorating sys-
tems,”J. Appl. Prob, vol. 28, pp. 843-851, 1991.
* [16] ——, “Nonparametric inference for geometric process€aihmunica-
or 1 tions in Statistics—Theory and Methodsl. 21, pp. 2083-2105, 1992.
N [17] ——, “Optimal policy for a general repair replacement model: Dis-
» counted reward caseCommunication in Statistical-Stochastic Models
of - vol. 8, pp. 245-267, 1992.
[18] ——, “Calculating the rate of occurrence of failures for continuous-time
Markov chains with application to a two-component parallel systdm,”
_10 A . \ i L . L . N Oper. Res. Sogvol. 46, pp. 528-536, 1995.
0 50 100 150 200 250 300 350 400 450 500 [19] —, “The rate of occurrence of failures}. Appl. Prob, vol. 34, pp.
234-247, 1997.
Fig. 1. Average cost rat€;/(N) versusN. [20] Y. Lam and S. K. Chan, “Statistical inference for geometric processes
with lognormal distribution,"Comput. Statist. Data Analvol. 27, pp.
99-112, 1998.
[21] Y. Lam and Y. L. Zhang, “Analysis of a two-component series system
with a geometric process modeNav. Res. Logistvol. 43, pp. 491-502,
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