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Minority game is a simple-mined econophysical model capturing the cooperative behavior among selfish
players. Previous investigations, which were based on numerical simulations up to about 100 players for a
certain parametera in the range 0.1&a&1, suggested that memory is irrelevant to the cooperative behavior
of the minority game in the so-called symmetric phase. Here using a large scale numerical simulation up to
about 3000 players in the parameter range 0.01&a&1, we show that the mean variance of the attendance in
the minority game actually depends on the memory in the symmetric phase. We explain such dependence in the
framework of crowd-anticrowd theory. Our findings conclude that one should not overlook the feedback
mechanism buried under the correlation in the history time series in the study of minority game.
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I. INTRODUCTION

Minority game sMGd f1,2g is the most studied econo-
physical model capturing the minority seeking behavior of
independent selfish players. MG is a repeated game ofN
players, each picking one out of two alternatives indepen-
dently in every time step based on the publicly posted mi-
nority choices of the previousM turns. Those correctly pick-
ing the minority choice are awarded one mark while the
others are deducted one. The aim of each player is to maxi-
mize his/her own mark. To help players making their
choices, each of them are assigned once and for allS deter-
ministic strategies. Here, each strategy is a map from the set
of all possible minority choices of the previousM turns,
which we call the history, to the set of the two alternatives.
The performance of each strategy is evaluated according to
its virtual score, which is defined as the hypothetical mark it
would got if the strategy were used throughout the game.
Among theS assigned strategies, every player follows the
suggestion of the one with the highest current virtual score to
choose an alternativesin case of a tie, a player randomly uses
one of his/her current best working strategiesd f1,3g.

The number of possible strategies in MG equals 22M
.

Nonetheless, out of these 22M
strategies, only 2M+1 of them

are significantly different. These significantly different strat-
egies formed the so-called reduced strategy space. In fact, for
a fixedSand up to first order approximation, the dynamics of
MG is robust witha, which is the ratio of the reduced strat-
egy space size 2M+1 to the number of strategies at playNS
f2,3g.

The attendance of an alternativeAstd at turnt is defined as
the number of players choosing that alternative in that turn.
Since there is no prior bias in choosing the two alternatives
in MG, kAstdlt,j=N/2 where the average is taken over timet
and initially assigned strategiesj. In contrast, the variance of
attendance per player averaged over initially assigned strat-
egies,ks2(Astd)lj /N, is a more instructive quantity to study.

sWe write ks2(Astd)lj ass2 and call it simply the variance of
attendance from now on when confusion is not possible.d
Numerical simulation shows that, over a wide range of pa-
rameters, thes2/N againsta curve is lower than the value in
which all players make their choices randomly. This implies
that these selfish and independent players maximize their
own marks cooperatively. More importantly, a cusp is found
at a=ac; this second order phase transition pointac divides
the parameter space into the so-called symmetricsa,acd
and asymmetricsa.acd phasesf4g.

The first numerical study on the effect of history concern-
ing the dynamics and cooperative behavior of MG was car-
ried out by Cavagna usingN=101, who suggested that
memory is irrelevant in MG. That is to say, thes2/N against
a curve is unaltered if we replace the history in each turn
with a randomly and independently generatedM-bit string,
while keeping the virtual score calculation method un-
changedf5g. sFrom now on, we denote the original MG and
the one played using random history strings by MGreal and
MGrand respectively.d Later on, by exploring a wider range of
parameters in their numerical simulations, Challet and Mar-
sili pointed out that history is irrelevant if and only ifa
,ac. As long as the occurrence of history is uniform,s2/N
should not change when we replace the history with a ran-
domly and independently generated time series ofM-bit
string f6g. Furthermore, Lee argued that although the time
series of the attendance shows a strong periodic signal, this
signal does not affect the volatility of the attendancef7g. To
summarize, the current understanding is that memory plays
no role on the volatility in the symmetric phase of MG.

In this paper, we perform a large scale numerical simula-
tion of MG played using real and random histories with up to
3232 players for 0.01&a&10. Our simulation results show
that memory is in fact relevant in the symmetric phase when-
ever a&0.2. Specifically, we discover that in such a low
value ofa, the s2/N againsta curves corresponding to the
games played using real and random histories split. We ex-
plain this split by crowd-anticrowd theory developed by Hart
et al. f8,9g and argue that finite size effect prevents earlier
investigations from revealing this discrepancy. Finally, we*Electronic address: hfchau@hkusua.hku.hk
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report two scaling relations in the symmetric phase of MG
and explain their origin.

II. NUMERICAL RESULTS

All the s2’s reported in our simulation are averaged over
1000 independent runs. And in each run, the variance of
attendance is computed from the attendance of 15000 con-
secutive turns after the system equilibrates. Furthermore, we
looked at the attendance time series over at least 83106

iterations in about 50 independent runs with various values
of a to verify that the system has indeed equilibrated. Our
computation requires about 7 Gflops/yr of instructions.

In Fig. 1, we plots2/N againsta for different values ofN
for both the MG played using real and random histories. By
putting N=101, we successfully reproduce the twos2/N
againsta curves for MGreal and MGrand obtained by Challet
and Marsili in Ref.f6g in the range of 0.1&a&10. In fact,
these two curves coincide in the symmetric phase. Surpris-
ingly, by increasing the number of playersN,s2/N for
MGreal is consistently higher than that of MGrand for a
&0.2. Furthermore, Fig. 1sbd shows that for a fixeda
&0.2,s2/N for MGreal increases asN increases. In contrast,
we find that thes2/N againsta curve for MGrand is indepen-
dent ofN. Thus, the discrepancy between the two volatilities
increases withN when a&0.2. sAlthough the values ofN
used in all curves reported in this paper are in the form 2k

3101 for some integerk, our numerical simulation shows
that the same conclusions are reached for the case of oddN.d

From the above discussions, MGrand follows the scaling
relation

srand
2

N
, fsa,Sd s1d

in the symmetric phasesa,acd, wheresrand
2 is the variance

of the attendance for MGrand and f is a scaling function de-
pending only ona andS. Moreover, Fig. 2 shows that, for a
fixed memory sizeM, the value ofs2/N2 is independent of
N in the symmetric phase. That is to say,

sreal
2

N2 , grealsM,Sd . grandsM,Sd ,
srand

2

N2 s2d

provided thata,ac, where sreal
2 is the variance of atten-

dance for MGreal andgi’s are scaling functions depending on
M andS only.

III. THE CROWD-ANTICROWD EXPLANATION

The above numerical findings can be explained by the
crowd-anticrowd theory proposed by Hartet al. using the
notion of reduced strategy spacef8,9g. Recall that decisions
made by two distinct strategies in a reduced strategy space
are either mutually anti-correlated or uncorrelated when av-
eraged over all possible history strings. Besides, the dynam-
ics is very close to the original MG if all strategies are picked
from the reduced strategy spacef3g. In this formalism, the
crowd-anticrowd theory states that every pair of anti-
correlated strategies contributes independently to the vari-
ance of attendances2 f8,9g.

To understand the difference in volatility between MGreal
and MGrand, we first review the periodic dynamics observed
in the symmetric phase of MGreal f6,8–12g. First, a prominent
period 2M+1 peak in the Fourier transform of the minority
choice time series for MGreal is found. We call this phenom-
enon “period 2M+1 dynamics.” In addition, a conspicuous
period two peak in the Fourier transform of the time series of
the minority choice conditioned on an arbitrary but fixed
history string in MGreal is also observed. We refer this as the
“period two dynamics” in our subsequent discussions. Note
that the above two dynamics are also observed by replacing
the minority choice with attendance.

FIG. 1. A plot of s2/N againsta by varying M with S=2.
Figure sad compares the dependence of history forN=101 sinsetd
and 3232smain plotd. We represent the MGreal and MGrand data by
triangles and squares, respectively. Figuresbd shows the depen-
dence ofs2/N on N for MGreal.

FIG. 2. A plot ofs2 againstN2. Each curve is drawn by joining
s2 for different N2 at a fixedM with S=2.
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For MGreal in the symmetric phase, the number of strate-
gies at play is much larger than the reduced strategy space
size. So, it is likely that each strategy in a reduced strategy
space is assigned to more than one player in this phase. Ini-
tially, for a given history stringm, every alternative has equal
chance to win. And the virtual score of a strategyb that has
correctly predicted the winning alternative is increased by

one while that of its anti-correlated strategyb̄ is decreased
by one. Since theM-bit history string in MGreal provides
complete information of the winning choices in the previous

M turns, players will prefer to use strategyb to b̄ at the time
when the same history string appears next. As more players
are using the strategyb in the symmetric phase, these players
are less likely to guess the minority choice correctly. In
MGreal, the history strings of two consecutive turns are
highly correlated. Actually, one can convert the history string
in turn t to that of turnst+1d by deleting thest−1−Mdth turn
minority choice from one end of the former string and then
appending the minority choice in turnt to the other end.
Using these observations, Challet and Marsili studied the dy-
namics of MGreal by means of a de Bruijn graphf6g. A con-
sequence of their analysis is that the history strings in the
symmetric phase from thes2Mk+1dth to the f2Msk+1dgth
turn is likely to form a de Bruijn sequence for any natural
numberk. In other words, for any natural numberk, an ar-
bitrarily given history stringm is likely to appear exactly
once betweens2Mk+1dth and f2Msk+1dgth turns. Besides,
the history m is likely to appear exactly twice between
s2M+1k+1dth and f2M+1sk+1dgth turns—one of the turn at
which a particular alternative wins and the other turn at
which the same alternative loses. As a result, it is highly
probable that the virtual scores of all strategies in the
s2M+1k+1dth turn agree. Since the decision of a player de-
pends on the difference between the virtual scores of his/her
strategies, the dynamics of the game MGreal has a strong
tendency to “reset” itself once every 2M+1 turns. This is the
origin of the period two and period 2M+1 dynamicsf6,8–12g.
Because of the above two constraints on the history time
series, the time series of the minority choice as well as that
of the virtual score of a strategy in MGreal are not random
walks.

From the above discussions, we know that the existence
of period 2M+1 dynamics is closely related to the following
three facts that are unique for MGreal: theM-bit history string
gives complete information on the winning alternatives in
the previousM turns, the virtual score of a strategy is up-
dated according to the current history string, and history
strings of two consecutive turns are highly correlated. In
contrast, for MGrand, the history string does not correlate with
the winning alternatives, the virtual score is updated accord-
ing to the historical winning alternatives rather than the ran-
domly generated history string, and the randomly generated
history strings in two distinct turns are uncorrelated. Conse-
quently, although MGrand has a uniformly distributed history,
it does not have a mechanism to ensure the game to “reset”
itself once every 2M+1 turns. Thus there is no reason for its
history time series to follow a period 2M+1 dynamics. Indeed,
the autocorrelation on the minority choice time series in Fig.
3 confirms the absence of period 2M+1 dynamics in MGrand
although Fig. 4 shows that MGrand still exhibits period two
dynamics. Our finding is consistent with Lee’s observation
that the history occurrence probability density function for
MGreal and MGrand are differentf7g. To summarize, for a

FIG. 3. The autocorrelation functionC0 of the
minority choice time series averaged over 50 runs
for sad MGreal and sbd MGrand. The parameters
used in both plots areN=1616,M =5 andS=2.

FIG. 4. The autocorrelation functionC0
m of the minority choice

time series conditioned on a given history stringm averaged over 50
runs for sad MGreal and sbd MGrand. The parameters used are the
same as that in Fig. 3.
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sufficiently smalla, the entropy of the minority choice time
series for MGrand is higher than that of MGreal.

We have gathered enough information to explain the dis-
crepancy in thes2/N againsta curves between MGreal and
MGrand. Recall that period two dynamics is observed in the
symmetric phase of both games. This is because a significant
number of players are using a particular strategy. And ac-
cording to the crowd-anticrowd theory, this results in a high
volatility in the symmetric phase in both gamesf8,9g. Further
recall that the game MGreal is very likely to “reset” itself
once every 2M+1 turns leading to the period 2M+1 dynamics in
the symmetric phase. In contrast, there is no mechanism to
“reset” the game MGrand once a while fora!ac. Therefore,
the absolute deviation of the virtual score difference between
two distinct strategies for MGreal is less than that for MGrand
whenevera!ac. Consequently, a player in MGrand is more
likely to stick to a strategy. Hence, players in MGrand coop-
erate slightly better than those in MGreal in the symmetric
phase. This explains why for any given sufficiently smalla,
the variance of attendance per players2/N for MGreal is
higher than that of MGrand.

Why do thes2/N againsta curves for MGreal and MGrand
coincide in the symmetric phase in the simulations of Cava-
gna f5g, Challet and Marsilif6g together with Leef7g? We
believe this is due to the finite size effect as they pickedN
=101 andS=2 in their simulations. Due to the small number
of players and the small value ofM involved, the fluctuation
between different runs overwhelms the discrepancy between
MGreal and MGrand.

After discussing the reason whysreal
2 andsrand

2 differ, we
move on to explain the two scaling relationss1d and s2d.
Researchers have argued thats2 is well approximated by a
function of a only f3,10g. Indeed, whena*0.1 and hence
the number of strategies at play is at most ten times the
reduced strategy space size, the above approximation is rea-
sonably good for MGreal and MGrand. Nevertheless, our simu-
lation shows that this approximation breaks down in MGreal
whena&0.1. On the other hand, using mean field approxi-
mation, Manucaet al. showed that

s2 <
N

4
+

N2

3s2Md
x2sSd s3d

where x is a slow varying function ofS provided thata
!ac f11g. Since the correlation between history strings in
successive turns is ignored in this derivation, the scaling re-
lation s1d is applicable to MGrand in the regime ofa&0.1. In
contrast, our simulation shows that this relation is not appli-
cable to MGreal in the same regime.

Since we have already argued thatsreal
2 sM ,Sd /N

ùsrand
2 sM ,Sd /N in the symmetric phase, in order to prove

the validity of relations2d, it suffices to show thatsreal
2 sM ,Sd

and srand
2 sM ,Sd both scale asN2. According to the crowd-

anticrowd theory, for a sufficiently smalla, all players in
MGreal hold strategies whose virtual scores are similar.
Therefore, most players will not stick to a particular strategy
when making their choices. Besides, the existence of period
two dynamics in the symmetric phase implies that bothsreal

2

andsrand
2 scales asN2 f8–11g. Thus relations2d holds.

Finally, we briefly explain whys2 decreases asM in-
creases. Since the average time between successive appear-
ances of a given history increases exponentially withM, the
absolute deviation of virtual score difference between two
distinct strategies increases. Therefore, the period two dy-
namics is weakened. So,s2 for MGreal and MGrand decreases
asM increases.

IV. OUTLOOK

In this paper, we report that history is relevant in deter-
mining the mean variance of attendance per player for MG in
the symmetric phase whena&0.2 by an extensive numerical
simulation using real and random histories. We explain our
finding using crowd-anticrowd theory. Although all graphs
shown in this paper are drawn by fixing the number of strat-
egies per playerS to 2 and by letting the strategies to be
drawn from the full strategy space, our conclusions apply
equally well to the case ofS.2 as well as the case of draw-
ing strategies from the reduced strategy space. Our findings
show that the feedback mechanism buried under the correla-
tion in the history time series is important in the study of
volatility in the minority game.

It is instructive to study the relevance of history in the
parameter region of 0.2&aøac. Our numerical simulation
suggests that memory is irrelevant in this regime and hence
the symmetric phase of MG can be subdivided into two
phases. Further investigation is needed to test our hypothesis.

Finally, it would be nice if one could analytically solve
the dynamics of the game in the symmetric phase. Since the
difference ins2/N for MGreal and MGrand in the symmetric
phase originates from the period 2M+1 dynamics, any such
attempt must take the periodic dynamics of the minority
choice time series into account—something that all attempts
using replica trickf13,14g and generating functional method
f15,16g so far have not been very successful to incorporate.
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