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Memory is relevant in the symmetric phase of the minority game
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Minority game is a simple-mined econophysical model capturing the cooperative behavior among selfish
players. Previous investigations, which were based on numerical simulations up to about 100 players for a
certain parametes in the range 0.£ a=<1, suggested that memory is irrelevant to the cooperative behavior
of the minority game in the so-called symmetric phase. Here using a large scale numerical simulation up to
about 3000 players in the parameter range 8:@1< 1, we show that the mean variance of the attendance in
the minority game actually depends on the memory in the symmetric phase. We explain such dependence in the
framework of crowd-anticrowd theory. Our findings conclude that one should not overlook the feedback
mechanism buried under the correlation in the history time series in the study of minority game.
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I. INTRODUCTION (We write (c*(A(1)))¢ asa? and call it simply the variance of
Minority game (MG) [1,2] is the most studied econo- attendance from now on when confusion is not possible.
physical model capturing the minority seeking behavior ofNumerical simulation shows that, over a wide range of pa-
independent selfish players. MG is a repeated gamal of rameters, the?/N againstx curve is lower than the value in

players, each picking one out of two alternatives indepen‘-NhiCh all players make their choices randomly. This implies

dently in every time step based on the publicly posted milhat these selfish and independent players maximize their

nority choices of the previousl turns. Those correctly pick- ©Wn marks cooperatively. More importantly, a cusp is found

ing the minority choice are awarded one mark while the®t @=ac; this second order phase transition paiptdivides

others are deducted one. The aim of each player is to maxil® Parameter space into the so-called symmetic: a.)

mize his/her own mark. To help players making their@nd asymmetri¢a> ac) phaseg4]. _

choices, each of them are assigned once and fd@ aéter- ~ The first numerical study on the effect of history concern-
ministic strategies. Here, each strategy is a map from the sé3g the dynamics and cooperative behavior of MG was car-
of all possible minority choices of the previowd turns, fied out by Cavagna usinl=101, who suggested that
which we call the history, to the set of the two alternatives.memory is irrelevant in MG. That is to say, teé/N against
The performance of each strategy is evaluated according t& Curve is unaltered if we replace the history in each turn
its virtual score, which is defined as the hypothetical mark itVith @ randomly and independently generatdebit string,
would got if the strategy were used throughout the gameWwhile keeping the virtual score calculation method un-
Among theS assigned strategies, every player follows thechanged5]. (From now on, we denote the original MG and
suggestion of the one with the highest current virtual score téh€ one played using random history strings by Mand

choose an alternativ@n case of a tie, a player randomly uses MGranafespectively. Later on, by exploring a wider range of
one of his/her current best working strategigs 3. parameters in their numerical simulations, Challet and Mar-

2 sili pointed out that history is irrelevant if and only i
< a,. As long as the occurrence of history is uniforaf/N
should not change when we replace the history with a ran-

The number of possible strategies in MG equa?gl.
Nonetheless, out of thesé 2strategies, only '*1 of them
are significantly different. These significantly different Strat'domly and independently generated time seriesMbbit
€gies formed the sq-called reduced_straﬁegy space. In f_act, fgEring [6]. Furthermore, Lee argued that although the time
a fixedSand up to first order approximation, the dynamics 0fseries of the attendance shows a strong periodic signal, this

MG is robus'g W'th‘f’ which is the ratio of the r educed strat- signal does not affect the volatility of the attendaf¢g To
Eazg):/g]space size"?* to the number of strategies at plajs summarize, the current understanding is that memory plays
The attendance of an alternatidé) at turnt is defined as nOILOItii(S)r;J;rIIDeeI}/ ?Il,e;tl:;tg)/rfl(r)lr::easlg:grgitg;epzﬁrsneeﬁigf Si.mula-
the number of players choosing that alternative in that turn,qo, ¢ MG playéd using real and random histories with up to
Since there is no prior bias in choosing the two alternativesgy sy piavers for 0.0% a=< 10. Our simulation results show
in MG, (A(t))1=N/2 where the average is taken over tine nat memory is in fact relevant in the symmetric phase when-
and initially assigned strategigsIn contrast, the variance of eyer 4<0.2. Specifically, we discover that in such a low
attendance per player averaged over initially assigned strajr|ye of o, the 02/N againste curves corresponding to the
egies (*(A(1)))¢/N, is a more instructive quantity to study. games played using real and random histories split. We ex-
plain this split by crowd-anticrowd theory developed by Hart
et al. [8,9] and argue that finite size effect prevents earlier
*Electronic address: hfchau@hkusua.hku.hk investigations from revealing this discrepancy. Finally, we
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FIG. 1. A plot of ¢?/N againsta by varying M with S=2.
Figure () compares the dependence of history for 101 (inse) in the symmetric phasex< «), Whereafand is the variance
and 3232(main ploy. We represent the M@, and MG,nqdata by  of the attendance for MG,y andf is a scaling function de-
triangles and squares, respectively. Figlog shows the depen- pending only orne andS. Moreover, Fig. 2 shows that, for a
dence ofo®/N on N for MG cq fixed memory sizeM, the value ofo?/N? is independent of
N in the symmetric phase. That is to say,

report two scaling relations in the symmetric phase of MG o2 0%
and explain their origin. N JreaM,S) > GrandM, S) ~ N 2
provided thata< a,, where o2, is the variance of atten-
real A h
Il. NUMERICAL RESULTS dance for MG,y andg;’s are scaling functions depending on
M andS only.

All the o®s reported in our simulation are averaged over
1000 indepgndent runs. And in each run, the variance of || THE CROWD-ANTICROWD EXPLANATION
attendance is computed from the attendance of 15000 con-
secutive turns after the system equilibrates. Furthermore, we The above numerical findings can be explained by the
looked at the attendance time series over at leastl®  crowd-anticrowd theory proposed by Hast al. using the
iterations in about 50 independent runs with various valuesotion of reduced strategy spal@9]. Recall that decisions
of « to verify that the system has indeed equilibrated. Oummade by two distinct strategies in a reduced strategy space
computation requires about 7 Gflops/yr of instructions. are either mutually anti-correlated or uncorrelated when av-
In Fig. 1, we plote?/N againsta for different values oN  eraged over all possible history strings. Besides, the dynam-
for both the MG played using real and random histories. Byics is very close to the original MG if all strategies are picked
putting N=101, we successfully reproduce the twd/N  from the reduced strategy spak®. In this formalism, the
againsta curves for MGy, and MG,,q Obtained by Challet crowd-anticrowd theory states that every pair of anti-
and Marsili in Ref.[6] in the range of 0.£ «=<10. In fact, correlated strategies contributes independently to the vari-
these two curves coincide in the symmetric phase. Surprisance of attendance? [8,9].
ingly, by increasing the number of playets,o?/N for To understand the difference in volatility between Mg
MG,y is consistently higher than that of MG, for «  and MGg,,4 We first review the periodic dynamics observed
=0.2. Furthermore, Fig. (b) shows that for a fixeda  in the symmetric phase of MG, [6,8—12. First, a prominent
=0.2,0%/N for MG, increases abl increases. In contrast, period 2'*1 peak in the Fourier transform of the minority
we find that thes?/N againsta curve for MG,q4is indepen-  choice time series for M@, is found. We call this phenom-
dent ofN. Thus, the discrepancy between the two volatilitiesenon “period ¥*1 dynamics.” In addition, a conspicuous
increases wittN when «=<0.2. (Although the values ofN period two peak in the Fourier transform of the time series of
used in all curves reported in this paper are in the fofm 2the minority choice conditioned on an arbitrary but fixed
X 101 for some integek, our numerical simulation shows history string in MGgy is also observed. We refer this as the
that the same conclusions are reached for the case dilgdd “period two dynamics” in our subsequent discussions. Note
From the above discussions, M follows the scaling that the above two dynamics are also observed by replacing
relation the minority choice with attendance.
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For MG¢q in the symmetric phase, the number of strate- From the above discussions, we know that the existence
gies at play is much larger than the reduced strategy spaad period 2'*! dynamics is closely related to the following
size. So, it is likely that each strategy in a reduced strategghree facts that are unique for Mg the M-bit history string
space is assigned to more than one player in this phase. Irgives complete information on the winning alternatives in
tially, for a given history strings, every alternative has equal the previousM turns, the virtual score of a strategy is up-
chance to win. And the virtual score of a stratggyhat has ~dated according to the current history string, and history
correctly predicted the winning alternative is increased bystrings of two consecutive turns are highly correlated. In
one while that of its anti-correlated strateEyis decreased contra.lst,.for MGang t_he history string does not correlate with
by one. Since theM-bit history string in MGy, provides _the winning alte_rnatlvgs,_the virtual score is updated accord-
complete information of the winning choices in the previous9 to the historical winning alternatives rather than the ran-

| il oref he ti domly generated history string, and the randomly generated
M turns, players will prefer to use strategyto S atthe ime 0y 'strings in two distinct turns are uncorrelated. Conse-

when the same history string appears next. As more playeig,eny, although MG,;has a uniformly distributed history,
are using the strategyin the symmetric phase, these players; yoes not have a mechanism to ensure the game to “reset”

are less likely to guess the minority choice correctly. INysaif once every ¥*1 turns. Thus there is no reason for its
MGreq the history strings of two consecutive tums arepigiory time series to follow a period’2! dynamics. Indeed,
highly correlated. Actually, one can convert the history stringyhe 4 tocorrelation on the minority choice time series in Fig.
in turnt to that of turn(t+1) by deleting the(t—=1-M)th turn 3 -, firms the absence of period2 dynamics in MGy
minority choice from one end of the former string and thenalthough Fig. 4 shows that MG, still exhibits period two

appending the minority choice in turnto the other end. qynamics. Our finding is consistent with Lee’s observation
Using these observations, Challet and Marsili studied the dygat the history occurrence probability density function for

namics of MGe, by means of a de Bruijn graflé]. Acon- G and MG, are different[7]. To summarize, for a
sequence of their analysis is that the history strings in the

symmetric phase from th&Mk+1)th to the [2M(k+1)]th T T T 1 T T T T 1
turn is likely to form a de Bruijn sequence for any natural o4
numberk. In other words, for any natural numbkran ar- 2
bitrarily given history stringu is likely to appear exactly

once betweer(2Vk+1)th and[2M(k+1)]th turns. Besides, 04r
the history u is likely to appear exactly twice between 08
(2M*k+1)th and [2Y*Y(k+1)]th turns—one of the turn at

which a particular alternative wins and the other turn at 45
which the same alternative loses. As a result, it is highly
probable that the virtual scores of all strategies in the
(2M*1k+1)th turn agree. Since the decision of a player de-ir of
pends on the difference between the virtual scores of histhe [
strategies, the dynamics of the game MEhas a strong
tendency to “reset” itself once every'? turns. This is the M Ty e s 10 12 14 16 18 2
origin of the period two and period"?* dynamics6,8—17.
Because of the above two constraints on the history time FIG. 4. The autocorrelation functioB of the minority choice
series, the time series of the minority choice as well as thaime series conditioned on a given history striagveraged over 50
of the virtual score of a strategy in Mg, are not random runs for (8) MG,y and (b) MG,,¢ The parameters used are the
walks. same as that in Fig. 3.
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sufficiently smalle, the entropy of the minority choice time the validity of relation(2), it suffices to show that (M, S)
series for MG,,q is higher than that of M@, and ofano(M ,S) both scale as\?. According to the crowd-
We have gathered enough information to explain the disanticrowd theory, for a sufficiently smalt, all players in
crepancy in thes?/N againsta curves between M@, and MG, hold strategies whose virtual scores are similar.
MGiane Recall that period two dynamics is observed in theTherefore, most players will not stick to a particular strategy
symmetric phase of both games. This is because a significagthen making their choices. Besides, the existence of period
number of players are using a particular strategy. And actwo dynamics in the symmetric phase implies that hafh,
cording to the crowd-anticrowd theory, this results in a highand o2, , scales ad\? [8—11]. Thus relation(2) holds.
volatility in the symmetric phase in both gani&s9]. Further Finally, we briefly explain whys? decreases a! in-
recall that the game Mg, is very likely to “reset” itself  creases. Since the average time between successive appear-
once every #*! turns leading to the period2* dynamics in  ances of a given history increases exponentially Withthe
the symmetric phase. In contrast, there is no mechanism tabsolute deviation of virtual score difference between two
“reset” the game M@,qonce a while fore< a.. Therefore,  distinct strategies increases. Therefore, the period two dy-
the absolute deviation of the virtual score difference betweenamics is weakened. So? for MG,y and MG,,qdecreases
two distinct strategies for Mg, is less than that for Mz,qy  asM increases.
whenevera < a.. Consequently, a player in Mgqis more

likely to stick to a strategy. Hence, players in Mgz coop- IV. OUTLOOK

erate slightly better than those in NG in the symmetric ) , ) )

phase. This explains why for any given sufficiently small n this paper, we report that history is relevant in deter-
the variance of attendance per playg/N for MG, is mining the mean variance of attendance per playerfor MG in
higher than that of MG the symmetric phase when<0.2 by an extensive numerical

Why do thes?/N againsta curves for MGuy and MGang simulation using real and random histories. We explain our
coincide in the symmetric phase in the simulations of Cavafinding using crowd-anticrowd theory. Although all graphs
gna[5], Challet and Marsil[6] together with Leg7]? We shpwn in this paper are drawn by ﬂxmg the numbgr of strat-
believe this is due to the finite size effect as they picked ©€9i€S Per playeS to 2 and by letting the strategies to be
=101 andS=2 in their simulations. Due to the small number drawn from the full strategy space, our conclusions apply
of players and the small value bf involved, the fluctuation €dually well to the case B> 2 as well as the case of draw-

between different runs overwhelms the discrepancy betweelld Strategies from the reduced strategy space. Our findings
MGieq aNd MGang shovy that thg feedb.ack me_chamsm buried u_nder the correla-

After discussing the reason Wh’&fem and O-Eanddiﬁerv we tionin th_e hlstory time series is important in the study of
move on to explain the two scaling relation® and (2).  volatility in the minority game.

Researchers have argued thdtis well approximated by a It is instruct.ive to study the relevance _of his_tory in the
function of @ only [3,10]. Indeed, whene=0.1 and hence parameter region of 02 o< a.. Our numerical simulation

the number of strategies at play is at most ten times th&uggests that memory is irrelevant in this regime and hence

reduced strategy space size, the above approximation is re{le Symmetric phase of MG can be subdivided into two

sonably good for MG, and MG,4 Nevertheless, our simu- phases. Further investigation is needed to test our hypothesis.

lation shows that this approximation breaks down in MG Finally, it would be nice if one could analytically solve
when a=0.1. On the other hand, using mean field approxi-the dynamics of the game in the symmetric phase. Since the
mation. Manucaet al. showed that difference ino?/N for MG, and MGgng in the symmetric

phase originates from the period? dynamics, any such
2 attempt must take the periodic dynamics of the minority
3(2M)X2(S) (3)  choice time series into account—something that all attempts
using replica tricK 13,14 and generating functional method
where y is a slow varying function ofS provided thata [15,14 so far have not been very successful to incorporate.
<« [11]. Since the correlation between history strings in
successive turns is ignored in this derivation, the scaling re-
lation (1) is applicable to MG,4in the regime ofa<0.1. In We would like to thank the Computer Center of HKU for
contrast, our simulation shows that this relation is not applitheir helpful support in providing the use of the
cable to MG, in the same regime. HPCPOWER System for the simulation reported in this pa-

Since we have already argued thats(M,S/N  per. Useful discussions from C. C. Leung are gratefully ac-
=02,.dM,S)/N in the symmetric phase, in order to prove knowledged.
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