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We study the extended Hubbard model with both on-sitesUd and nearest neighborsVd Coulomb repulsion
using the exact diagonalization method within the dynamical mean field theory. For a fixedU sU=2.0d, theT-n
phase diagrams are obtained forV=1.4 andV=1.2, at which the ground state ofn=1/2 system is charge-
ordered and charge-disordered, respectively. In both cases, robust charge order is found at finite temperature
and in an extended filling regime aroundn=1/2. Theorder parameter changes nonmonotonously with tem-
perature. ForV=1.4, phase separation between charge-ordered and charge-disordered phases is observed in the
low temperature andn,0.5 regime. It is described by an “S”-shaped structure of then−m curve. ForV
=1.2, the ground state is charge-disordered, and a reentrant charge-ordering transition is observed for
0.42,n,0.68. The relevance of our results to experiments for doped manganites is discussed.
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I. INTRODUCTION

Charge-ordering is a fascinating research topic in con-
densed matter physics. In recent years, charge order and the
related spin and orbital order in doped manganites have at-
tracted much interest. In the system La1−xCaxMnO3 sx.0.5d,
charge order in the ground state is enhanced asx increases.
The corresponding transition temperatureTco is higher than
the Néel temperature,1 and there are strong charge-order
fluctuations at temperatures aboveTco (Ref. 2). In particular,
a reentrant charge-ordering transition has been observed in
systems such as Pr0.65sCa0.7Sr0.3d0.35MnO3 (Ref. 3) and
LaSr2Mn2O7 (Refs. 4 and 5). The origin of these charge-
ordering transitions lies in the complex interplay between
orbital and lattice degrees of freedom in the manganites, and
is presently under intensive study. In other systems such as
the heavy fermion system Yb4As3 (Ref. 6), the quasi-one-
dimensional material NaV2O5 (Refs. 7 and 8), and the super-
conducting layered organic molecular crystalk−sBEDT
−TTFd2X (Ref. 9), charge-ordering is closely related to the
specific properties of the system.

The charge ordering in the above stated systems has dif-
ferent physical origins, and cannot be explained within a
single theory. From a theoretical point of view, an obvious
cause of charge-ordering is the short-range Coulomb repul-
sion between electrons. The simplest model that includes this
interaction is the extended Hubbard model which contains
the kinetic term and the on-site and nearest-neighbor Cou-
lomb repulsion. Despite the simplicity of this model, recent
studies found that it can explain some characteristics of the
experimental observations in doped manganites.10–12 These
studies revealed that many interesting effects arise simply
from pure Coulomb repulsion and charge fluctuations. In par-
ticular, using dynamical mean-field theory(DMFT),13 Pietig
et al. found that the quarter-filled extended Hubbard model
exhibits a reentrant charge-ordering transition near a critical
valueVc of the nearest-neighbor repulsion11 (Fig. 1). It coin-
cides with what was observed in the doped manganites

Pr0.65sCa0.7Sr0.3d0.35MnO3 (Ref. 3) and LaSr2Mn2O7 (Refs. 4
and 5). This indicates that some properties of charge order
may be independent of the concrete microscopic mechanism,
and hence can be studied using simplified models such as the
quarter-filled extended Hubbard model. Along this line, other
authors also studied this problem.14–17 In lower dimensions,
the model has also been extensively studied in various con-
texts using different methods.18

Experimentally, in the doped manganites, charge-ordering
was observed not only atx=0.5, but also in a broad doping
regime. Also the reentrant behavior was observed in systems
away from quarter-filling. In fact, Pr0.65sCa0.7Sr0.3d0.35MnO3

has an electron filling ofn=0.65.0.5. Another feature of the
experimental observation is the inhomogeneous coexistence
of charge-ordered and charge-disordered phases. In the sys-
tem R1−xCaxMnO3 (R=La, Nd, Bi, etc.), many experiments
showed that phase separation(PS) between a ferromagnetic
charge-disordered phase and an antiferromagnetic charge-
ordered phase exists at dopings ranging fromx=0.33 (Ref.
19) to x=0.82 (Ref. 20). Although detailed explanations
should take into account the spin and orbital degrees of free-
dom, simplified models also give remarkably similar results.

FIG. 1. SchematicT-V phase diagram for the extended Hubbard
model atU=2.0 andn=1/2 (taken from Ref. 11, withV rescaled.).
CO and CD denote charge-ordered and charge-disordered, respec-
tively. The vertical dashed lines mark out the positions ofT-n
planes studied in this paper, i.e.,V=1.2 andV=1.4, respectively.
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In the spinless fermion model, when electrons(holes) are
added to a half-filled systemsn=1/2d, an electron(hole) rich
charge-disordered phase is separated from the charge-
ordered background.21

In this paper, motivated by the experimental observations
as well as by the work of Pietiget al.,11 we study the prop-
erties of a single-band extended Hubbard model away from
but near quarter-filling. We confine our study to the two-
sublattice case and do not consider a possible incommensu-
rate ordering. We are interested in the following two issues
of charge-ordering. First, the stability of the reentrant charge-
order transition in the whole doping regime. Second, the pos-
sibility of PS between charge-disordered and charge-ordered
phases. These issues are relevant to the charge-ordering and
PS phenomena observed in doped manganites. Theoretical
studies in the past focused only on fillings at or nearn=1.0
and n=0.5. Despite the intensive studies, these two issues
remain unclear.

Using DMFT together with the exact diagonalization
technique, we study the paramagnetic phase diagram in two
T-n planes for a fixedU-value U=2. As shown in Fig. 1,
these two planes cross theT-V plane atV=1.2 andV=1.4,
which are larger and smaller thanVc, respectively[Vc is the
critical value of the nearest-neighbor repulsion for a quarter-
filled system, which separates charge-ordered and charge-
disordered ground states.Vc<1.32 W (Ref. 11), see Fig. 1].
We found that a reentrant charge-ordering transition exists in
an extended regime of the electron densityn near quarter-
filling.

For V.Vc, the order-parameter of charge-ordering
changes nonmonotonously as temperature decreases. The
ground state is still charge-ordered forn.0.5 regime and
charge-disordered forn,0.5. In the former regime, we also
find the PS between charge-ordered and charge-disordered
phases.

For V a little smaller thanVc, the ground state is charge-
disordered for anyn. The charge-ordering exists only at finite
temperatures and is most robust in then.0.5 regime. At the
lower critical temperature of the reentrant transition, the
order-parameter disappears rather abruptly. Phase diagrams
in these two planes are plotted.

In Sec. II, we describe the model and the method used in
this work. In Sec. III, our results forV=1.4 W.Vc are pre-
sented. Phase separation between charge-ordered and charge-
disordered phases are discussed. Their thermodynamical
structure is compared with other kinds of PSs. Our results for
V=1.2 W,Vc are presented in Sec. IV. A summary is given
in Sec. V.

II. MODEL AND METHOD

The Hamiltonian of the single-band extended Hubbard
model has the form

H = − t o
ki,jls

cis
† cjs + Uo

i

ni↑ni↓ + Vo
si,jd

ninj − mo
i

ni . s1d

In Eq. (1), oki,jl indicates the sum over nearest-neighbor sites
i and j independently.osi,jd indicates the sum over nearest
pairs. Hence, there is the relationosi,jd=1/2oki,jl. U and V

are on-site and nearest-neighbor Coulomb repulsion, respec-
tively, andm is the chemical potential. We use a Bethe lattice
which produces a semicircular density of states for free elec-
trons in the limit of large coordination number. In this limit,
the intersite coupling terms in Eq.(1) are replaced by the
corresponding Hartree term. After a proper rescaling ofV:
V→V/Z (here Z is the number of nearest neighbors) and
neglecting the constant term, we obtain the following mean-
field Hamiltonian:

Hmf = − t o
ki,jls

cis
† cjs + Uo

i

ni↑ni↓ − o
i

sm − Vkni+dldni ,

s2d

where i +d is the nearest site ofi. Note that our scaling is
different from that of Ref. 11, where the scalingV→2V/Z is
used. Therefore in this paper the value ofV is twice as large
as the corresponding one in Ref. 11.

To describe the charge-ordered phase, we divide the Bethe
lattice into two sublattices. Correspondingly, within DMFT,
the model Eq.(2) is mapped onto two uncoupled effective
Anderson impurity models:

HL,imp = o
k=1,s

NS−1

feLkaLks
† aLks + VLksaLks

† cLs + h.c.dg

+ Un↑
cn↓

c − sm − Vkn
L̄

c ldnL
c . s3d

Where L=A,B refers to the two sublatticessĀ=B,B̄=Ad,
and h«Lk,VLkj are effective parameters describing the bath.
They are related to the Weiss functionGL0

−1sivnd through

GL0
−1sivndmap= ivn + sm − VknL̄ld − o

k=1

NS−1
VLk

2

ivn − eLk
. s4d

We use the full exact diagonalization method to calculate the
impurity Green’s function for this model. The number of
sitesNS=5 andNS=6 are found to be sufficient for the cal-
culations in this paper. The free density of states is given by:

Dsed =
2

pW2
ÎW2 − e2 sueu , Wd. s5d

We setW=1 as the energy unit. The DMFT self-consistency
equations for the Bethe lattice are the given by

GL0
−1sivnddys= ivn + m − VknL̄l −

W2

4
GL̄sivnd, s6d

where L=A,B. Equations(3), (4), and (6) form a set of
closed self-consistent DMFT equations. After the Green’s
function and Weiss function are calculated, the new set of
effective parameters for the impurity model is obtained via a
minimization procedure:22

d =
1

nmax+ 1 o
n=0,L

nmax

uGL0
−1sivndmap− GL0

−1sivnddysu2. s7d

The self-consistent equations are solved iteratively. After the
iteration converges, we calculate the electron densities on the
two sublattices,nA and nB, which in turn give the average
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electron densityn=snA+nBd /2 and the order parameterunA

−nBu. The contributions to the total energy per lattice siteE
=ET+EU+EV from different parts of the Hamiltonian are
also calculated. The kinetic energyET, on-site repulsion en-
ergy EU, and the intersite repulsion energyEV are given by:

ET =
1

b
o
n,L

jLsivndGLsivndeivn0+
, s8d

where

jLsivnd = ivn + m − GL0
−1sivnd sL = A,Bd, s9d

EU =
1

2b
o
n,L

fGL0
−1sivnd − GL

−1sivndgGLsivndeivn0+
, s10d

and

EV =
V

2
nAnB. s11d

Phase separation has been studied extensively for models
of strongly correlated electrons, such as the Hubbard
model,23–25 the t-J model,26,27 the Falicov-Kimball model,28

and the double-exchange model.29–31A standard criterion for
the PS is the discontinuous jump in the curve of electron
densityn versus chemical potentialm (Ref. 32). However, in
the DMFT study of double-exchange systems, we have ob-
served PS also through the multiple-valued structure in a
continuousn-m curve.33 As described in Sec. III, we find in a
certain temperature regime forV=1.4 an “S”- or “Z”-shaped
multiple-valued structure in the curves ofnA, nB, andn ver-
susm. Such curves contain the full information about the PS,
including the metastable phase and the first-order phase tran-
sition line. To do this, we introduce33 a self-consistently de-
termined quantitym8:

m8 = m − lsnA − Ad, s12d

where l and A are tunable parameters. The value ofnA is
dependent on the chemical potentialm throughnA=Fsmd and
the functional dependenceFsmd is determined by the DMFT
calculations. For a givenm and in each DMFT iteration, we
first calculatem8 and usem8 instead ofm in the ordinary
DMFT scheme to produce the local Green’s function, and
then extract the«Lk andVLk. After that, the new value ofnA
is calculated. The iteration is carried on until convergence is
reached. This is equivalent to simultaneously solve the
DMFT equation and the following equation:

nA = Ffm − lsnA − Adg. s13d

If the functionFsmd has a multiple-valued regime, by se-
lecting appropriate parametersl andA, thenA-m curve self-
consistently determined by Eq.(13) may become single val-
ued. In this way, our calculation avoids the numerical
instabilities induced by the multiple-valued structure ofn-m
curve. For eachm, we first solve Eq.(13) together with the
DMFT equations, then calculate the thermodynamic quanti-
ties Q. After the data are obtained for eachm, we plot the
quantitiesQ with respect to the argumentm8 to recover the
physical curvesQ=FQsm8d that correspond to the original

Hamiltonian. The final results should be independent of the
parametersl and A, if only they are in an appropriate re-
gime. In the framework of DMFT, this transformation
scheme has been used in the study of PS in the double ex-
change model33 and of the Mott-Hubbard transition in the
Hubbard model.34

III. RESULTS AND DISCUSSION

A. Phase separation:V=1.4.Vc

In this section, we discuss our results forV=1.4, which is
a little larger than the zero-temperature critical valueVc
<1.32(see Fig. 1). For this interaction strength, as is shown
in Fig. 1, the exactly quarter-filled system has a charge-
ordered ground state. The charge order persists up toT
<0.26, and no reentrant transition was found. In order to
study the system away from quarter filling, at a lower tem-
peratureT=0.05, we change the chemical potential and cal-
culate charge densities. Figure 2(a) shows our result for the
sublattice charge densitiesnA, nB, and average charge density
n as functions ofm. As we have expected, charge order exists
in some finite regime of doping aroundn=1/2:
0.44,n,0.73. This regime is not symmetric aboutn=1/2,
since the model(1) does not have particle-hole symmetry at
this point. This differs from the spinless fermion model.21

Here, the charge-ordered regime extends to larger densities,
where the intersite Coulomb repulsion is more effective.
However, the value ofunA−nBu is largest atn=1/2.

One dominant feature of Fig. 2(a) is the S-shaped
multiple-valued structure in then-m, nA-m, andnB-m curves.

FIG. 2. Electron densityn vs chemical potentialm for U=2.0,
V=1.4, andT=0.05. The squares, dots, and diamonds are fornA, nB,
andn, respectively. Calculation results withNs=6 (hollow symbols)
andNs=5 (cross-filled symbols) agree well. Lines are guides for the
eyes. The inset is an enlarged figure for the region of the first order
phase transition.(b) Contributions to the energy per lattice site as
functions ofn: ET, EV, EU, and E denote kinetic energy, nearest-
neighbor repulsion energy, on-site repulsion energy, and the total
energy, respectively. The regime between the dotted vertical lines is
unstable towards phase separation. Charge order exists between the
solid vertical lines.
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This is direct evidence for PS in the extended Hubbard
model near quarter filling. Whenn increases, the system first
goes from a charge-disordered phase into a charge-ordered
phase through a first-order transition, which occurs in the
regimen=0.4–0.5. Asn increases further, the charge order
disappears continuously atn<0.73. The results obtained us-
ing Ns=5 and Ns=6 agree very well in most parts of the
curve. There is only a slight deviation near the second-order
transition point atn=0.44. This indicates that for this prob-
lem,Ns=5 is sufficient to obtain qualitatively correct conclu-
sions. In the following, all our results are fromNs=5 calcu-
lations.

In the multiple-valued regime of then-m curve, the
DMFT self-consistency equations have three solutions for a
fixed m. We use the thermodynamical grand potential
vsT,md to evaluate the relative stability of these solutions:

vsT,md = vsT,m0d −E
m0

m

nsT,m8ddm8. s14d

The actual first-order transition pointmc is determined by a
Maxwell construction, i.e., by solving the equation
v1sT,mcd=v2sT,mcd. At m=mc, two phases coexist, with
their respective volumes determined by the nominal electron
density of the system. AtT=0.05, one of the coexisting
phases is charge-disordered withn1=0.415, the other one is
charge-ordered withn2=0.486. The third solution with inter-
mediaten is charge-ordered, but due to its negative com-
pressibility and highest grand potential, it is unstable with
respect to the others. Form away from but nearmc, there is
only one stable phase in the system, either ordered or disor-
dered. The other two solutions have higher grand potential
and are metastable. These metastable phases may be detected
by hysteresis experiments.

n=0.44 is the lower critical density at which charge or-
dering occurs. At this point, then-m curve turns backwards
sharply, andn=−]vsT,md /]m is continuous while]n/]m is
discontinuous. Therefore, it is identified as a second-order
transition point between charge-disordered and charge-
ordered phases. In this respect, it is the same as then=0.73
point. However, due to the higher grand potential, the
second-order charge ordering transition only exists at meta-
stable level. To understand the PS better, we show then
dependence of the energy in Fig. 2(b). The on-site repulsion
energyEU has a small contribution. It does not change much
at the boundary to the charge ordering regime. This is an
indication that forU=2, double occupancy is small in the
doping range aroundn,0.5, and that it plays a minor role
for PS. In contrast, the kinetic energyET and intersite repul-
sion energyEV are more sensitive to the charge density and
long-range charge ordering. If there is no charge ordering,EV
behaves asEV~n2, while ET recovers the behavior of the
Hubbard model; this means that with increasingn, it de-
creases in the low filling area and increases near half filling.

In Fig. 2(b), it is seen that the charge order in the regime
0.44,n,0.73 strongly reducesEV while it increasesET
with respect to their value in disordered phase. The charge
ordering transition atn=0.44 causes drastic changes inEV
andET, which are then naturally related to the occurrence of

PS. In contrast, at the other transition pointn=0.73, the en-
ergies change more smoothly. Because the opposite contri-
butions fromEV and ET almost cancel, the total energyE
increases monotonously and smoothly with increasingn.
However, the quick change ofEV and ET nearn=0.44 and
their competition leads to a small convex part in theE-n
curve, where]2E/]n2,0. When taking into account the en-
tropy contribution to the free energy, the convex structure
will be enforced by a small amountTS,10−2. Therefore, at
the temperatureT=0.05, theE-T curve already represents the
behavior of free energyFsT,nd. The convex structure ob-
served here is therefore consistent with PS obtained using the
n−m criterion. From Fig. 2(b), it is clear that PS is closely
related to the charge ordering transition. It directly results
from the charge-ordering-induced strong competition be-
tweenEV andET.

In the following, we study the temperature dependence of
charge order and PS. In Fig. 3, threen-m (as well asnA-m
and nB-m) isotherms are shown forT=0.01, 0.1, and 0.13.
Up to temperatureT=0.13, the charge order is quite robust in
the intermediate density regime fromn,0.3 to n,0.7. In
contrast, PS is stable only at much lower temperatures. Com-
pared with theT=0.05 curve in Fig. 2(a), the multiple-valued
structure is more pronounced atT=0.01, while it disappears
at higher temperature. As temperature decreases, the
multiple-valued structure inn-m curve is compressed along
the n axis, but that in thenA-m and nB-m curves does not
change much. As a result, the average electron densities of
the coexisting two phases, which are determined through
Maxwell construction, get closer and both move towardsn
=0.5. On the other hand, as temperature increases, the
multiple-valued part of then-m curve shrinks along them
axis until it disappears atT<0.1 [Fig. 3(b)]. At this tempera-
ture, PS disappears and the slope of then−m curve diverges
at the second-order charge ordering transition, leading to
strong fluctuations in charge density as well as in the order

FIG. 3. Electron densityn vs chemical potentialm for U=2.0,
V=1.4, and(a) T=0.01,(b) T=0.1, and(c) T=0.13. The upper and
lower dotted lines and the solid line are fornA, nB, and n,
respectively.
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parameterunA−nBu. The critical end point of the PS is esti-
mated to ben<0.39,T<0.1.

It is interesting to note that the low temperature behavior
of PS is not unique to this model. Similar behavior has been
observed in the DMFT study of first-order phase transitions
in other strongly correlated electron models. The
ferromagnetic–paramagnetic(FM–PM) PS in the double-
exchange model33 and the Mott-Hubbard metal–insulator
transition in the half-filled Hubbard model34 are both typical
first-order phase transitions. Within DMFT, they are de-
scribed by continuous S or Z-shaped curves that are very
similar with then-m curves presented here. As the tempera-
ture decreases, all these structures are compressed in the ver-
tical direction. The “order parameter” of the first-order tran-
sitions (unFM−nPMu for FM-PM PS, and double occupation
differenceuDmet−Dinsu for the Mott-Hubbard transition) ob-
tained from a Maxwell construction reduces to zero in the
limit of T→0.

Here, though the lowest temperature that we study isT
=0.01, the main tendency is clearly that as temperature de-
creases, the upper two branches of the S-shaped curve[as
shown in Fig. 3(a)] tend to merge. Hence, we expect that as
T→0, the density difference between the two coexisting
phases reduces to zero, similar with our previous findings in
other systems. The two coexisting phases have the same den-
sity n=0.5 and the same energy. In such a scenario, the
ground state of theV=1.4 system is singular atn=0.5. At
this point, a charge-disordered phase and a charge-ordered
phase, both with avarage densityn=0.5, coexist in random
volume proportion. An infinitesimal amount of additional
holes in the system will destroy the phase-separated ground
state and turn it into charge-disordered state, while electrons
will turn it into charge-ordered state withunA−nBu<0.7.
Again, this is different from the spinless fermion system, for
which both additional holes and electrons doped into the
charge-ordered ground state atn=0.5 cause PS.21

In Fig. 4, theT-n phase diagram forU=2.0 andV=1.4 is
shown. It is seen that charge order is rather robust in the
filling regime around n=0.5. At zero temperature, the
charge-ordered ground state extends fromn=0.5 to n
<0.69. This range first expands, and then shrinks as tem-

perature increases, leading to a reentrant transition of charge
ordering in certain doping regimes. The highest charge or-
dering transition temperatureTCO,max<0.28 is reached atn
=0.5. The PS area lies near the lower transition temperature
line on the left side. When both the nominal electron filling
and the temperature lie in this area, a charge-disordered
phase with lower electron density will be separated from a
charge-ordered phase with higher electron density. The two
boundaries of this coexisting area, as shown by the solid
lines in the figure, meet at two end points. The finite tem-
perature end point is located at(Tc<0.1 and nc<0.39),
which is easily seen for ordinary first-order phase transitions
such as liquid–gas transition. The other end point is located
at zero temperature(T=0 andn=0.5), which is a common
feature of the first-order PS described by DMFT.33,35 The
second-order charge ordering transition line extends to zero
temperature. Between this line(thin line in Fig. 4) and the
dashed line lies an unstable area where the compressibility is
negative. Metastable phases, either charge-disordered or
charge ordered, exist in the two patches between the unstable
area and the boundaries. They are intrinsic features of first-
order phase transitions and important for the properties of
materials near PS. In doped manganites, metastable phases
have been observed through the hysteresis of magnetization
and resistivity with respect to temperature,36,37 as well as
through the resistivity relaxation phenomenon.38 The study
of metastable phases has provided valuable information
about the PS in doped manganites.

Electronic PS has been studied extensively in various
models such as the Hubbard model, thet-J model, and the
double-exchange model, etc. Most of the PS scenarios dis-
cussed so far rely on the magnetic exchange mechanisms. Up
to now, PS induced by pure Coulomb repulsion is observed
only in the spinless fermion model.21 Our results show an-
other example of PS caused by Coulomb repulsion only. In
general, the Coulomb repulsion works against the PS, since a
phase-separated state has a higher potential energy than the
charge uniform state. Here we find that PS can also be driven
by the charge-ordering transition which is in turn induced by
pure Coulomb repulsion. When the charge orders to avoid
the strong nearest-neighbor Coulomb repulsion in the high
density regime, the Coulomb potential is strongly reduced
which then allows for PS. It should also be noted that the PS
described here exists mainly at finite temperatures, and
comes from the effect of thermal fluctuations. In this respect,
it is different from the ground-state PS of the spinless fer-
mion model.

In the following we discuss the effect of long-range(be-
yond the nearest neighbor) Coulomb repulsion on the stabil-
ity of PS between charge-disordered and charge-ordered
phases. It is generally believed that long-range Coulomb re-
pulsion will suppress a complete PS in the system, leading to
an inhomogenious distribution of the electron density. Here
we confine our discussion to the two-sublattice case and do
not consider any incommensurate ordering. Taking into ac-
count the long-range Coulomb repulsion, the total intersite
part of the Hamiltonian(including the nearest-neighbor con-
tribution) can be formulated as

FIG. 4. Phase diagram in theT-n plane forU=2.0 andV=1.4.
The thin solid line is the second-order transition line. CO and CD
denote charge-ordered and charge-disordered phase, respectively.
PS denotes phase separation between charge-ordered and charge-
disordered phases. The thick solid lines are the boundaries of the
coexisting regime. In this regime, between the dashed line and the
thin line lies a charge-ordered phase with negative compressibility.
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Hint = o
i,j

Vijninj . s15d

In infinite dimensions, Eq.(15) reduces to its Hartree form.
After performing appropriate scalings for the parametersVi,j,
the effective mean-field Hamiltonian has the form:

Hint = o
iPA

niAsV1knBl + V2knAld + o
iPB

niBsV1knAl + V2knBld.

s16d

The effect of long range repulsion reduces to only the
nearest-neighbor type and the next-nearest-neighbor type,
which are represented byV1 andV2, respectively. If we de-
noteknAl=n+d andknBl=n−d, then Eq.(16) further simpli-
fies to

Hint = o
i

sV1 + V2dnni + dsV2 − V1do
iPA

niA

+ dsV1 − V2do
iPB

niB. s17d

This means that the long-range Coulomb repulsion intro-
duces two effects. One is the enhancement of the average
repulsion as shown in the first term. The other is the frustra-
tion effect caused by the next-nearest-neighbor type repul-
sion. In Eq.(17) this effect is reflected by the terms propor-
tional to V2−V1. The first term can effectively suppress the
coexisting regime, but cannot destroy PS at sufficiently low
temperature.33 In the low temperature limit, the density dif-
ference of two coexisting phases reduces to zero, and the
average repulsion will lose its effect on the PS. In contrast,
the frustration effect induced by long-range Coulomb repul-
sion may destroy the PS completely, since PS crucially de-
pends on the charge-ordering transition. In particular, if the
frustration is so large that the effective nearest-neighborV is
less thanVc, as shown in the next section, there is no PS at
all. Therefore, we conclude that the long-range Coulomb re-
pulsion may destroy the PS through its frustration effect.

In the regimeV.Vc, the charge order becomes robust
with increasingV, as shown in Fig. 1. Therefore, we expect
that asV increases, the charge-ordered area in theT-n phase
diagram will expand in both temperature and filling regime.
However, the main shape of the phase boundary will remain
unchanged. In particular, due to the close relation between
PS and the charge ordering transition, the PS regime may
well expand while keeping its main structure.

Besides PS, we are also interested in the properties of the
charge order in this regime. In Fig. 5, the order parameter
unA−nBu is shown as a function of temperature for different
fillings. Except forn=0.5, unA−nBu shows a nonmonotonous
behavior for all the fillings we studied. It first increases and
then decreases upon lowering the temperature. In the filling
regime 0.5,n,0.69 where the ground state is charge or-
dered,unA−nBu reduces to a finite value atT=0. For fillings
outside but close to this regime, the ground state is charge-
disordered and a reentrant transition occurs at finite tempera-
ture. Compared with the reentrant transition, the nonmonoto-
nous change of the order parameter is a more general
phonomenon. Experimentally, in systems with an ordered

ground state but near the reentrant transition, such a nonmo-
notonous change of the order parameter may well be ob-
served.

B. Reentrant charge ordering: V=1.2,Vc

In this section, we discuss the case ofV=1.2, which is
smaller than Vc<1.32. For this repulsion strength, the
ground state of the quarter-filled system is charge-disordered.
As temperature decreases, the system shows a disorder–
order–disorder type reentrant transition,11 as shown in Fig. 1.
When the electron filling moves away fromn=0.5, we find
that the ground state is still charge-disordered, and that a
reentrant charge ordering transition exists in an extended
density regime 0.42,n,0.68. In Fig. 6, the curves for
unA−nBu vs T are shown for several fillings in this regime. It
is seen thatunA−nBu varies nonmonotonously as temperature
decreases, and drops to zero at some finite temperature.
Though the high temperature transition is continuous for all
fillings, we find that the reentrant transition at lower tem-
peratures has a different behavior for small and large fillings.
For the fillingn=0.4 andn=0.45,unA−nBu changes smoothly
at the reentrant transition temperature, indicating that this
transition is of second order. In contrast, in the curves for
n=0.55, 0.6, and 0.65,unA−nBu drops abruptly near the tem-

FIG. 5. The charge density difference between sublattice A and
B as functions ofT at U=2.0, V=1.4 for several electron fillings:
n=0.4 (dash), 0.45 (dot), 0.5 (solid), 0.65 (dash–dot), and 0.7
(dash–dot–dot).

FIG. 6. The charge density difference between sublattice A and
B as functions ofT at U=2.0, V=1.2 for several electron fillings:
n=0.4 (dash), 0.45 (dot), 0.55 (solid), 0.6 (dash–dot), and 0.65
(dash–dot–dot).
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peratureT=0.05. Accompanied with this rapid change of the
order parameter an obvious slowing down of convergence is
observed, which reduces the numerical precision signifi-
cantly. A similar situation is also found for the fillingn
=0.5. Since we have not found a hysteresis typical for first-
order transitions, here we would not conclude that it is a
first-order phase transition. More detailed studies are needed
to elucidate this issue.

For bothV=1.4 andV=1.2, the nonmonotonous behavior
of unA−nBu vs T originates from the large spin entropy of the
paramagnetic charge-ordered phase. For the charge-ordered
phase, the twofold spin degeneracy on the occupied sites
contributes a total entropysN/2dln 2, while for the charge-
disordered state nearn=0.5, the entropy increases from zero
with increasingT so at low temperature, when the charge-
ordered phase has a higher entropy than the disordered
phase, the charge order develops as temperature increases. At
higher temperature, where the entropy of the disordered
phase exceeds that of the charge-ordered phase, the charge
order is reduced with increasing temperature. This is the
main reason that leads to the nonmonotonous behavior of the
order parameter. Therefore, if the spin degeneracy of the
charge-ordered phase is destroyed by the fourth-order super-
exchange mechanism, it is doubted whether such a reentrant
behavior is still present. Hellberget al.15 carried out a finite-
temperature Lanczos study on a 434 lattice. They found,
however, that the reentrant transition is stable when the su-
perexchange effect is partly taken into account.

In Fig. 7, theT-n phase diagram forU=2.0 andV=1.2 is
shown. The reentrant charge-ordering transition exists in a
regime fromn<0.42 to n<0.68. Similar to the case ofV
=1.4, the charge ordering regime is also asymmetric around
n=0.5. Charge order appears only at finite temperatures.
Here, one important difference from theV=1.4 diagram is
that there is no PS near the reentrant transition line. For the
fillings near the two vertical boundaries of the charge-
ordered area, the order parameter changes continuously to
zero at the lower transition temperature. This continuous
transition is indicated by a thick line Fig. 7. In the regime
0.5,n,0.65, the high temperature transition is continuous,
while at low temperatures, the order parameter disappears
more abruptly. In the phase diagram we schematically denote
such an abrupt transition by a dotted horizontal line. Due to

the severe critical slowing down of convergence at this tran-
sition, it is difficult to obtain the transition temperature ac-
curately.

Comparing Figs. 4 and 7, we see that theT-n phase dia-
grams forV=1.4 andV=1.2 are topologically different. Near
the criticalVc, theT-n phase diagram, including the stability
of PS and the reentrant transition, is very sensitive toV.
WhenV increases fromV,Vc, both then andT regime of
the charge-ordered area expands, and the reentrant transition
temperature decreases. But the ground state remains disor-
dered, as shown in Fig. 7. AtV=Vc, the ground state atn
=0.5 is expected to first turn charge-ordered. WhenV is even
larger, the filling regime of the charge-ordered ground state
extends towards largern, while keeping its left end-pointn
=0.5 unchanged. At the same time, a PS area where charge-
disordered and charge-ordered phases coexist emerges near
the reentrant transition line in then,0.5 regime. In this way,
the phase diagram shown in Fig. 7 for smallV evolves into
that in Fig. 4 for largeV.

Our results are exact for the infinite dimensional extended
Hubbard model on the Bethe lattice. They can also be
viewed as approximate results for the models describing real
materials. The effect of finite dimension and the actual lattice
structure can be crudely taken into account by using the ap-
propriate density of states and a suitable scaling ofV in the
DMFT calculation. However, this will only lead to minor
quantitative differences in the results. For a fixed lattice
structure, the mean-field nature of the DMFT approach will
result in transition temperatures which are somewhat overes-
timated as compared to the exact values. Since the temporal
fluctuations in this model play an essential role, the qualita-
tive structure of the phase diagram obtained from DMFT is
expected to be valid at least for three-dimensional systems
where spatial fluctuaions are weak. More precise studies of
the consequences of finite dimensionality will rely on theo-
ries extending DMFT to include spatial fluctuations.13

Phenomena such as charge ordering, reentrant transition,
and PS have been observed experimentally in doped manga-
nites. The mechanisms for these phenomena are more com-
plicated and are topics of intensive research. The interesting
point here is that starting from an electronic model that only
takes into account the on-site and nearest-neighbor Coulomb
repulsion, we are able to obtain rich phase diagrams that
include all these phenomena. Previous studies11 indicated
that the occurence of a reentrant charge ordering transition
does not depend on details of the localization mechanism.
Here, when compared with other first-order phase transitions
studied, we find that within DMFT, the structure of first-
order transitions and their temperature behavior are very
similar. They are also independent of the specific mecha-
nism. It would be interesting to do such a comparison for
those real materials where different first-order phase transi-
tions occur.

IV. SUMMARY

In this paper, we studied the paramagnetic phase of the
single band extended Hubbard model near quarter filling. In
the framework of DMFT, the effective Anderson impurity

FIG. 7. Phase diagram inT-n plane forU=2.0 andV=1.2. The
solid line is the second-order transition line. CO and CD denote
charge-ordered and charge-disordered phase, respectively. The dot-
ted line denotes an abrupt change of the order parameter.
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model is solved using the exact diagonalization technique.
Based on the previousT-V phase diagram forn=1/2 (Ref.
11), we concentrate on the phase diagram inT-n planes for
two specific value of the intersite repulsionV:V=1.4 and
V=1.2, located on the two sides of the zero temperature criti-
cal valueVc<1.32. In both cases, charge order exists in an
extended regime of filling nearn=1/2. Except at some spe-
cial points(such asV=1.4 andn=1/2), the order parameter
of charge orderunA−nBu changes nonmonotonously with tem-
perature. ForV=1.4, in the filling regime 0.39,n,0.5 and
near the reentrant transition temperature, we find PS between
a charge-disordered and a charge-ordered phase. Information
on this PS, including the existence of a metastable state and
the first-order transition line, is described by the S-shaped
structure in the continuousn−m curve. At zero temperature,
with increasing n, the charge-disordered ground state

changes into a charge-ordered one abruptly atn=1/2. Our
analysis suggests that long-range Coulomb repulsion may
destroy this PS through its frustration effect. ForV=1.2, the
ground state is charge-disordered for all fillings. The reen-
trant charge ordering transition is observed in the regime
0.42,n,0.68. It becomes rather abrupt in the regime
0.5,n,0.65. Relevance of our results to the doped manga-
nites is discussed.
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