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ABSTRACT

We derive the anisotropic heat transport equation for rotating neutron stars, and we also derive the thermal
equilibrium condition in a relativistic rotating axisymmetric star through a simple variational argument. With a
simple model of a neutron star, we model the propagation of heat pulses resulting from transient energy releases
inside the star. Such sudden energy release can occur in pulsars during glitches. Even in a slow rotation limit
(� � 1 ; 103 s�1), the results with rotational effects involved could be noticeably different from those obtained
with a spherically symmetric metric in terms of the timescales and magnitudes of thermal afterglow. We also
study the effects of gravitational lensing and frame dragging on the X-ray light curve pulsations. Our results
indicate that the effect of rotation on the light-curve modulation is small and that the spacetime-curvature effect
predominates. The metric components and rotational deformation of the stellar structure are calculated using
Hartle-Thorne formalism. We have applied our model to study the thermal response timescales of pulsars after
glitches and find that the centrifugal force produced by rotation can substantially reduce the response time by a
factor of 3 between a nonrotating star and a rotating star with � � 900 s�1. The equation of state can also affect
the duration of the response.

Subject headings: dense matter — stars: evolution — stars: interiors — stars: neutron — X-rays: stars

1. INTRODUCTION

Rotation-powered pulsars spin down as they radiate. During
the spin-down epoch, some pulsars exhibit dramatic events
called ‘‘glitches,’’ which are sudden spin-ups of the star. Many
observations have identified such phenomena (Krawczyk et al.
2003; Hobbs et al. 2002; Lyne et al. 2000; Wang et al. 2000).
Numerous mechanisms have been proposed to explain the
origin of pulsar glitches, and the superfluid-driven mechanism
(Anderson & Itoh 1975; Alpar et al. 1984) and the starquake
mechanism (Ruderman 1969; Baym & Pines 1971) are the
most widely accepted. The starquake mechanism is based on
the idea that a neutron star possesses a solid crust. As the
star spins down, centrifugal force on the crust decreases and
gravity pulls the crust to a less oblate equilibrium shape. This
change in stellar shape induces stress in the crust. However,
the rigidity of the solid crust resists this stress, and the shape
remains more oblate than the equilibrium value. When the
crust stresses reach a critical value, the crust cracks and the
glitch energy is released in a small volume at the weak regions
in the solid crust. This localized energy releasing induces
an uneven heating of the surface, which corresponds to the
‘‘spot’’ case. It should be noted that the starquake-driven
glitches can occur anywhere within the crust where a Coulomb
lattice exists.

The superfluid-driven mechanism (Anderson & Itoh 1975)
suggests that the spin-up of the crust is produced by transfer-
ring angular momentum from a rotating superfluid to the more
slowly rotating crust. Apart from spinning up, the mechanism
also produces frictional heating and hence local energy dissi-
pation (Alpar et al. 1984; Shibazaki & Lamb 1989). Moreover,
the critical angular speed difference for spinning is inversely
proportional to the distance from the rotational axis, so this
process concerns only equatorial regions and hence a ring
structure at the rotational equator is produced (Cheng et al.
1988). It should be noted that superfluid-driven glitches can

occur only in the inner crust, where superfluid and Coulomb
lattices coexist.

Some other glitch mechanisms have been proposed. For
example, Link & Epstein (1996) have proposed a thermal
glitch mechanism. In this model, a large increase in the vortex
creep rate is induced by a temperature perturbation. As a re-
sult, the superfluid quickly loses angular momentum and de-
livers a spin-up torque to the crust. Carter et al. (2000) have
suggested that centrifugal buoyancy forces are the origin of
pressure gradients sufficient to crack the crust and allow out-
ward vortex motion.

Several authors (Van Riper et al. 1991; Chong & Cheng
1994; Hirano et al. 1997; Cheng et al. 1998; Tang & Cheng
2001) have suggested that the thermal evolution of a pulsar
after glitches would provide a good method to determine the
equation of state for neutron stars. The glitch energy was first
assumed to be released in a spherical shell at a certain density
inside the pulsar (Van Riper et al. 1991; Chong & Cheng 1994;
Hirano et al. 1997), although this does not seem realistic. These
authors also show that the glitches in the ‘‘shell’’ case cannot
produce very significant observed results for young pulsars.

Cheng et al. (1998) argue that if a good fraction of glitch
energy is released in a small volume, namely, the spot case,
then instead of the heating up the entire stellar surface, even a
small fraction of glitch energy can heat up a small area of the
stellar surface drastically. This would result in a periodic hard
thermal X-ray pulse emission that should stand out clearly
from the soft X-ray background. They suggest that by ob-
serving the timescales of thermal X-ray afterglows resulting
from glitches, the equations of state of neutron stars can be
determined. However, the energy transport in the spot case is
clearly not spherically symmetric. They derive the general
expression of the relativistic thermal transport and energy
balance equations without assuming spherical symmetry and
use these equations to study the evolution of the hot spot on
the surface of the neutron star after glitches.
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Tang & Cheng (2001) incorporate the relativistic light
bending effect (Pechenick et al. 1983) and magnetic field ef-
fect (Page 1995) in their calculations. They show that these
effects can significantly affect the intensity and the pulse shape
of the transient X-rays resulting from glitches.

Apart from the equation of state, the glitch mechanism also
affects the thermal responses. Larson & Link (2002) simulate
the emergence of a thermal wave at the stellar surface with
two different glitch models and compare the results with the
data from Chandra observations of thermal emission from the
2000 January glitch in the Vela pulsar (Helfand et al. 2001).

All the aforementioned studies have not considered the
effects of the rotating metric, which can affect the timescale,
intensity, and pulse shape of the transient X-ray pulses. In
studies of the spot case (Cheng et al. 1998; Tang & Cheng
2001), the Schwarzschild metric is used and all the effects of
the rotating metric are ignored. For a complete analysis, the
development of an anisotropic transport equation is clearly
needed, and instead of the Schwarzschild metric a rotating
metric must be used.

We organize the paper as follows. In x 2 we review the
Hartle-Thorne formalism. In x 3 we study the effects of rota-
tion on thermal equilibrium configuration. In x 4 we describe
the development of the anisotropic heat transport equation. In
x 5 we describe a Markovian random walk method to simulate
the thermal afterglows resulting from glitches. In x 6 we study
the effects of gravitational lensing and frame dragging on the
X-ray light curves. In x 7 we discuss the physical interpreta-
tion of the numerical results.

2. HARTLE-THORNE FORMALISM

The general expression for the line element of an axial
symmetric spacetime is determined by time-translational in-
variance and axial-rotational invariance:

ds2 ¼ e 2� r;�ð Þdt 2 � e2k r;�ð Þdr 2

� r2e2 r;�ð Þ d�2 þ sin2� d�� ! r; �ð Þdt½ �2
n o

; ð1Þ

where we have chosen the units G ¼ c ¼ 1.
To calculate the rotating stellar model as a perturbative ex-

pansion from a spherical star, we adopt the method proposed
by Hartle (1967) and Hartle & Thorne (1968). We calculate the
perturbations up to second order of the rotational frequency.
The perturbed geometry of spacetime is described by

ds2 ¼ e 2� rð Þ 1þ 2 h0 þ h2P2 cos �ð Þ½ �f gdt 2

� 1þ 2 2m0 þ m2P2 cos �ð Þ½ �= r � 2Mð Þ
1� 2M=r

dr 2

� r2 1þ 2 �2 � h2ð ÞP2 cos �ð Þ½ �

; d�2 þ sin2� d�� ! dtð Þ2
h i

þ O �3
� �

; ð2Þ

where � is the rotational frequency of the star,
P2 cos �ð Þ ¼ (3 cos2�� 1)=2 is the Legendre polynomial of the
second order, and h0, h2, m0, m2, and �2 are all functions of r
that are proportional to �2 (Hartle 1967; Hartle & Thorne
1968). The terms � rð Þ and M are the metric function and the
gravitational mass of a nonrotating star, respectively. With the

chosen equation of state and the central density, they can be
calculated by integrating the set of equations

dP

dr
¼� �þ Pð Þ M þ 4�r3

r r � 2Mð Þ ; ð3Þ

dM

dr
¼ 4�r2�; ð4Þ

d�

dr
¼� dP

dr
�þ Pð Þ�1 ð5Þ

outward from the center with the boundary conditions
M 0ð Þ ¼ 0, P Rð Þ ¼ 0, and � Rð Þ ¼ 1

2
ln ½1� 2M Rð Þ=R�, where

R is the radius of the nonrotating star. For a uniformly and
rigidly rotating star, the contravariant components of the four-
velocity are

ut ¼ e�� 1þ 1

2
r2 sin2�!̄2e�2� � h0 � h2P2 cos �ð Þ

� �
; ð6Þ

u� ¼ �ut; ð7Þ

ur ¼ u� ¼ 0; ð8Þ

where !̄ ¼ �� ! and ! defines the dragging frequency of
local inertial frames.
The star is centrifugally deformed by rotation. In the ref-

erence frame that is momentarily moving with the fluid, the
energy-density distribution including the effect of rotation is

�þ�� ¼ �þ �þ Pð Þ p�0 þ p�2P2 cos �ð Þ
� � d�

dP
: ð9Þ

All the necessary rotational perturbation functions are calcu-
lated from the equations described below.
The angular velocity of the fluid relative to the local inertial

frame !̄ is found by integrating the differential equation

1

r4
d

dr
r4j

d!̄

dr

� �
þ 4

r

dj

dr
!̄ ¼ 0; ð10Þ

where

j rð Þ ¼ e�� 1� 2M

r

� �1=2

: ð11Þ

This equation can be integrated outward from the center of
the star with the boundary conditions !̄ ¼ !̄c and d!̄=dr ¼ 0.
The constant !̄c is chosen arbitrarily. When the surface is
reached, one can determine the angular momentum J ¼
1
6
R4(d!̄=dr)r¼R, as well as the angular velocity � ¼ !̄ Rð Þþ

2 J=R3, corresponding to the chosen !̄c.
The terms p�0 and m0 can be calculated by integrating the

equations

dm0

dr
¼ 4�r 2 d�

dP
�þ Pð Þp�0 þ

1

12
j 2r4

d!̄

dr

� �2

� 1

3
r 3 dj

2

dr
!̄ 2;

ð12Þ

dp�0
dr

¼� m0 1þ 8�r2Pð Þ
r � 2Mð Þ2

� 4� �þ Pð Þr2
r � 2Mð Þ p�0

þ 1

12

r4j 2

r � 2Mð Þ
d!̄

dr

� �2

þ 1

3

d

dr

r 3j 2!̄ 2

r � 2M

� �
ð13Þ
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outward from the center with the boundary condition p�0 ¼
m0 ¼ 0. Owing to the centrifugal force, a rotating star will
have a larger mass than a nonrotating one for a given central
density. The increment is given as �M ¼ m0 Rð Þ þ J 2=R3, and
h0 can be obtained from the algebraic relations. Inside the star,

h0 ¼ �p�0 þ
1

3
r2e�2�!̄2 þ h0c; ð14Þ

outside the star,

h0 ¼ � �M

r � 2M
þ J 2

r3 r � 2Mð Þ ; ð15Þ

and h0c is a constant determined by demanding that h0 be
continuous across the surface.

The remaining four perturbation functions (�2, h2, m2, and
p�2) can be calculated from the following equations:

d�2
dr

¼ �2
d�

dr
h2 þ

1

r
þ d�

dr

� �
� 1

3
r3

dj2

dr
!̄2 þ 1

6
j 2r 4 d!̄

dr

� �2
" #

;

ð16Þ

dh2

dr
¼ �2

d�

dr
þ 2r

r � 2M

d�

dr

� ��1

2� �þ Pð Þ � M

r3

� �( )
h2

� 2�2
r r � 2Mð Þ

d�

dr

� ��1

þ 1

6

d�

dr
r � 1

2 r � 2Mð Þ
d�

dr

� ��1
" #

r 3j 2
d!̄

dr

� �2

� 2

3

d�

dr
r þ 1

2 r � 2Mð Þ
d�

dr

� ��1
" #

r 2!̄ 2j
dj

dr
; ð17Þ

m2¼ r � 2Mð Þ �h2 �
1

3
r3

dj 2

dr

� �
!̄ 2þ 1

6
r 4j 2

d!̄

dr

� �2
" #

; ð18Þ

p�2 ¼ �h2 �
1

3
r 2e��!̄; ð19Þ

with boundary conditions �2 ¼ 0 and h2 ¼ 0 at the origin.

3. THERMAL EQUILIBRIUM CONFIGURATION

Consider a particle in the star with energy E. The energy of
this particle as measured by a distant observer, E1, can be
related to its locally measured value E by E1 ¼ E=ut. Next, we
consider the energy transport from one region to another in
an isolated star without any change in the density of particles.
For a local observer, the fundamental thermodynamics relation
dE ¼ T dS is always valid, where dS is the change in entropy
per baryon and T is the locally measured temperature.

By following the scheme of Zel’dovich & Novikov (1971),
the equilibrium condition can be obtained by extremizing the
entropy of the system with the constraint that the total energy
is conserved:

�

Z
Sn dV þ �

Z
E1n dV

� �
¼ 0;Z

�S þ �
�E

ut

� �
n dV ¼ 0;Z

1þ �
T

ut

� �
n dV ¼ 0; ð20Þ

where n is baryon number density, dV is proper volume ele-
ment, and � is a Lagrange multiplier. Consequently, the
thermal equilibrium condition of a relativistic axisymmetric
star is formulated as

T

ut
¼ ��1 ¼ constant: ð21Þ

This result, which is obtained from a relatively simple varia-
tion argument, is consistent with the one derived more vig-
orously by Miralles et al. (1993). Also, there is an underlying
assumption that the neutron star is in rigid rotation. If it were
not, the internal friction would produce heat and our varia-
tional argument would no longer be valid.

The aforementioned isothermal approximation is only ap-
propriate in the interior. There is a thin atmosphere sur-
rounding the isothermal core that sustains an appreciable
temperature gradient. For spherically symmetric cases, model
atmospheres have already been calculated by Gudmundsson
et al. (1983) that give the surface temperature Ts as a function
of the temperature at the base of the atmosphere Tb and the
surface gravity gs. The base of the atmosphere is chosen at
a particular density �b. For our study, it is chosen at �b ¼
1010 g cm�3:

Tb9 ¼ 0:1288
T4
s6

gs14

 !0:455

: ð22Þ

We shall assume that this relation is valid in the slow-
rotation case with a suitable choice of an effective local sur-
face gravity gs �ð Þ that takes the centrifugal deformation into
account. Consequently, the surface temperature Ts Tb; �ð Þ de-
pends on the polar angle.

4. GENERAL RELATIVISTIC ANISOTROPIC HEAT
TRANSPORT EQUATION

With an intention to model the most general case of
energy transport inside a rotating neutron star, we derive the
heat transport equation without making the assumption of
spherical symmetry in energy transport, stellar structure, or
spacetime.

To derive the equation, we assume that there are no other
entropy-generating mechanisms besides diffusion and fluid
motion inside the star, because of the thermal effects being
negligible. The energy-momentum tensor inside a star consists
of a perfect fluid, which allows the heat flow to be written as
T�� ¼ �þ Pð Þu�u� � Pg�� þ u�q� þ u�q�, where g�� denotes
the inverse components of equation (1), u� is the four-velocity
of the fluid flow, which has been described in x 2, and � and P
are the total energy density and pressure measured in the rest
frame of the fluid (Tolman 1934). The heat flow is given by
q� ¼ K(g�	 � u� u	 )(T;	 � Ta	), where a� ¼ u� ;	u

	 is the
four-acceleration and K is the thermal conductivity (Tolman
1934).

No matter how complicated the transport equation is, the
basic principle is that the underlying physics is nothing but
the law of conservation of energy. In relativity, the energy-
momentum tensor embodies a compact description of energy
and momentum. To be more specific, the transport equation
can be derived by the conservation of the energy-momentum
tensor, namely,

Tt�
;� ¼ Ttt

;t þ Ttr
;r þ Tt�

;� þ T
t�
;� ¼ 0; ð23Þ
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where

Ttt
;t ¼ utut þ utut � gttð Þ dP

d�

� �
@�

@t

þ 2utK gtt � ututð Þ @
2T

@t2
þ gt� � utu�
� � @2T

@t@�

� �
þ 2�t

rt f
r þ 2�t

�t f
�; ð24Þ

Ttr
;r ¼ @f r

@r
þ @k
@r

f r þ @k
@�

f � þ �t
tr f

r þ �t
r�u

�qr; ð25Þ

Tt�
;� ¼ @f �

@�
þ �t

t� f
� þ ��r� f

r þ ���� f
� þ �t

��u
�q�; ð26Þ

T
t�
;� ¼ @f �

@�
þ ���� f

� þ ��r� f
r þ �t

��u
�q� þ �t

r�u
�qr; ð27Þ

where f i ¼ Tti is the energy flow per unit area parallel to the
i-direction. �
�	 are the Christoffel symbols, and @�=@t in Ttt

;t

is the rate of change of energy density measured by distant
observer, which can be expressed in the locally measured
quantity, namely, @�=@� . It depends on the processes under
consideration. If only heat conduction and neutrino emission
are considered, we have @�=@� ¼ Cv(@T=@�)þ Q� , where Cv

and Q� are the heat capacity and the neutrino emissivity
measured in the local frame, respectively. Expressing this in
the coordinate time t, we have @�=@t ¼ Cv(@T=@t)þ (Q�=u

t).
Using this relation and equation (23), we obtain the heat
diffusion equation:

0 ¼ utut þ utut � gttð Þ dP
d�

� �
Cv
@T

@t
þ Q�

ut

� �

þ 2utK gtt � ututð Þ @
2T

@t2
þ gt� � utu�
� � @2T

@t@�

� �

þ @f r

@r
þ @f �

@�
þ @f �

@�
þ 3�t

rt þ
@k
@r

þ ��r� þ ��r�

� �
f r

þ 3�t
t� þ

@k
@�

þ ���� þ ����

� �
f � þ 2�t

r�u
�qr þ 2�t

��u
�q�:

ð28Þ

In the nonrotational limit, the spacetime is described by
the diagonal Schwarzschild metric, and the above equation
recovers the case obtained by Cheng et al. (1998). It should
also be noted that this equation recovers the well-known
Newtonian case.

5. SIMULATIONS OF THERMAL AFTERGLOWS THAT
RESULT FROM GLITCHES

The anisotropic relativistic heat transport equation, i.e.,
equation (28), can be rearranged into a single-variable partial
differential equation (see the Appendix). We employ a quan-
tized Monte Carlo technique for the simulation of heat
transport inside a rotating neutron star. Dynamic stochastic
processes are simulated by using rate coefficients (i.e., diffu-
sion coefficient D, drift coefficient v, annihilation coefficient �,
and local depletion S ). These coefficients are determined by
rearranging the rate equation (28). In order to perform the
simulations, some assumptions must be made. First, we as-
sume that the quantities Di; vi; and �i depend only on posi-
tion, where i denotes the motion of energy carriers in r, �,
and �. Much more general dependences result in nonlinear

behavior. Second, if the grid sizes are fine enough, the energy
carriers transit from the surrounding grid points in the previ-
ous time step with equal probability. Third, we neglect the
thermal effects on the stellar structure.
There are two terms of mixed derivative and second time

derivative present in the equation. There is no easy way to
incorporate these in a random walk approach. However, their
coefficients contain only the factors of (gtt � utut) and
(gt� � utu�). Since the zero-order terms are canceled in the
subtractions, only the second-order perturbation terms remain.
Up to the highest rotational frequency that we have considered
(1 ; 103 s�1), these coefficients are still negligible in com-
parison with the smallest term that we have taken into account,
so it is safe to drop them in the simulations.
With these assumptions, the heat transport inside a rotating

neutron star can now be simulated by a straightforward
Markovian random walk (MacKeown 1997): (1) Specify the
initial condition T (r; 0) and quantize it by a large number M of
‘‘walkers’’ whose starting positions are selected in accordance
with T (r; 0) and whose random walk is modeled. (2) In each
time step �t, a weight is attached to each walker according
to the survival probability ��t by means of ‘‘survival bi-
asing’’ (MacKeown 1997). Then it is displaced by � xi ¼
�(2Di�t)1=2 þ vi�t in each degree of freedom, where the sign
of the step is chosen with equal probability on the basis of
a uniform random variate. (3) Incorporate the local depletion
S�t. (4) Repeat steps 2 and 3 M times for each walker. (5)
Repeat step 4 N times. (6) Plot the distribution of the walkers,
and this should approximate the solution T (r; t) at t ¼ N�t.
Note that the finite value of walkers M introduces an un-
avoidable statistical fluctuation. Also, the finite time step used
will introduce a truncation error.
Since we intend to investigate the effect of rotation on the

heat transport, we adopt a simple model of a neutron star. We
employ the method described in x 2 to calculate the rotational
stellar structure. The stellar structure is determined by the
equation of state. We use the equation of state of neutron
matter from Pandharipande (1971) in our calculation. We have
considered the contribution of protons, neutrons, and electrons
to the heat capacity (Maxwell 1979), but the most important
term is the contribution of electrons. We consider only the
neutrino emissivities due to neutron-neutron bremsstrahlung,
proton-neutron bremsstrahlung, and the modified Urca process
(Maxwell 1979). We adopt the analytic formulae of thermal
conductivity presented by Flowers & Itoh (1981).
We calculate temperature distributions for a ‘‘ring’’ case

and a ‘‘spot’’ case. For both cases, heat inputs are deposited
at the depth of the crust where ��1013 g cm�3. The ratio
R=M � 8 corresponds to M �1 M� and R �10 km. The core
temperature is taken to be 107 K. With �E ¼ 1042 ergs de-
posited around the equator (i.e., � ¼ 90

�
), Figure 1 illustrates

the polar angular surface temperature distribution of a rota-
tional ring case with � ¼ 7:6 ; 102 s�1. For the spot case,
we choose �E ¼ 1042 ergs to be released at � ¼ � ¼ 90

�
.

Figure 2 illustrates the azimuthal profile of surface tempera-
ture at the rotational equator of the hot spot for a rotational
case with � ¼ 7:6 ; 102 s�1. Figure 3 illustrates the evolution
of the thermal X-ray flux of the spot case. Three cases with
different rotational frequency are compared. With the mass
increased by �33% and the radius decreased by �1%, the
R=M ratio is reduced to �6, which indicates that the gravi-
tational effect is enhanced. We recalculate the spot case with
this R=M ratio, and the results for three cases with different
rotational frequency are shown in Figure 4. The timescale and
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the magnitude of the afterglows for the nonrotational cases
are consistent with those obtained by previous authors (Tang
& Cheng 2001).

The heat propagation time � is approximately inversely
proportional to the diffusion coefficient Dr, which is propor-
tional to thermal conductivity K and inversely proportional to
heat capacity Cv. In the region that we are interested in, the
heat capacity is proportional to temperature while the ther-
mal conductivity is inversely proportional to the temperature.
Hence, � is roughly proportional to the temperature squared. It
can be seen that heat propagation becomes much slower as the
temperature becomes higher. For this reason, the duration of
the afterglow for the ring case is shorter than that for the spot
case for the same heat input. Comparing the nonrotational flux
curve of the spot case with R=M � 8 in Figure 3 and that with
R=M � 6 in Figure 4, we find that the afterglow takes a longer
time in the model with R=M � 6 because of a larger mass

underneath the location of the energy release, which hinders
the propagation of the heat pulse to the surface. Comparing
the rotational cases with the nonrotational ones in Figures 3
and 4, we find that the duration of the thermal afterglow is
shortened when the effect of rotation is introduced. To further
investigate this effect, we carry out more simulations of the
spot case with different rotational frequencies. Figure 5 il-
lustrates the fractional decrease in the duration of the thermal
afterglow as a function of rotational frequency for R=M � 8
and R=M � 6.

The rotational effects can originate from the centrifugal
forces in rotating neutron stars. When the energy �E is re-
leased in a localized region at the equator, it can be viewed as
an equivalent mass ��E=c2 that corotates with the star. This
leads to a natural interpretation that centrifugal forces prompt
a faster and larger thermal response. In Figure 5 it should be
noted that the fractional decrease in the duration is larger in
the case of R=M � 6 than that in the case of R=M � 8 for
a given �. This indicates the other effect of rotation on the
heat transfer. Apart from prompting a faster heat propagation,
centrifugal forces also deform the star. As pointed out by some

Fig. 2.—Surface temperature of a spot case at the equator as a function
of azimuthal angle for a neutron star with R=M � 8, � ¼ 7:6 ; 102 s�1,
Tc ¼ 107 K, and �E ¼ 1042 ergs at �glitch ¼ 1013 g cm�3 and � ¼ � ¼ 90�.
The inset denotes days elapsed after the heat deposition.

Fig. 3.—Evolution curves of thermal X-ray flux for a neutron star with
R=M � 8, Tc ¼ 107 K, and �E ¼ 1042 ergs at �glitch ¼ 1013 g cm�3 and � ¼
� ¼ 90� for a spot case. Three cases with different rotational frequency are
compared.

Fig. 4.—Same as Fig. 3, but with R=M � 6.

Fig. 1.—Surface temperature of a ring case as a function of polar angle for
a neutron star with R=M � 8, � ¼ 7:6 ; 102 s�1, Tc ¼ 107 K, and �E ¼
1042 ergs at �glitch ¼ 1013 g cm�3 and � ¼ 90�. The inset denotes days elapsed
after the heat deposition.
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ellipticity studies (Abramowicz 1990; Chandrasekhar & Miller
1974), the denser a neutron star, the less eccentric it is. A star
with R=M � 8 is more eccentric than one with R=M � 6.
Since the heat inputs are deposited at the depth where � �
1013 g cm�3 at the equator in both models, the heat pulse needs
to propagate through a larger distance in a more eccentric star
in order to reach the surface and give the afterglow.

Nevertheless, the behavior of centrifugal forces in general
relativity is fundamentally different from that in Newtonian
physics (Freire & da Costa 1999; Abramowicz et al. 1988,
1993; Abramowicz & Prasanna 1990). One of the questions
behind our interpretation is whether there can be inversion
of centrifugal forces inside neutron stars. Freire & da Costa
(1999) show that most realistic equations of state do not allow
the existence of such inversion. Without the bother of cen-
trifugal force inversion, we suggest that rotation introduces
two effects on the thermal afterglow. First, it prompts a faster
and larger thermal response. Second, it increases the distance
that heat needs to travel in order to give an afterglow on the
surface. The resultant effect on the duration and the magnitude
of the thermal afterglow depends on the interplay between
these two factors.

6. THERMAL X-RAY LIGHT CURVES

For the spot case, the locally released energy would mod-
ulate the X-ray pulse shape by heating a portion of crust so
that more thermal X-rays are emitted at a particular phase. The
modulation of X-ray pulse will last until the surface temper-
ature has equilibrated. We now investigate the effects of
spacetime curvature and rotation on the thermal X-ray profile.

6.1. Gravitational Lensing Effect

Since the surface gravity of a neutron star is tremendous,
the effect of gravity on the trajectory of emitted photons must
be taken into account. In this section, we choose our coor-
dinates so that the observer is on the positive z-axis at r ¼ r0,
where r0 ! 1 (see Fig. 6). The following scheme of calcu-
lating the X-ray light curves resulting from light bending is
adapted from Pechenick et al. (1983). The surface of the star
is described by angular spherical coordinates � and �, where �
is measured from the z-axis that we have just defined. When

the photon is being emitted from the surface at an angle �, as
illustrated in Figure 6, it will be deflected by the gravitational
field. It will seem to the observer that it is emitted at angle �0

from the z-axis. Hence, � is a function of �0:

� ¼
Z M=R

0

M

b

� �2

� 1� 2uð Þu2
" #�1=2

du; ð29Þ

where b ¼ r0�
0 and u ¼ M=r; b is the impact parameter of the

photon.
If the star has the ratio R=M > 3, then a photon emitted

from the surface and reaching the observer must have an
impact parameter b � bmax, where bmax ¼ R 1� 2M=Rð Þ�1=2

.
The maximum possible value of � occurs when b ¼ bmax. We
consider a hot spot of angular radius � centered at � ¼ �0. A
function h(�;�; �0) is then defined as the range of � included
in the ‘‘one-dimensional slice’’ at � of the hot spot. If

Fig. 6.—Geometry used to determine the brightness of a hot spot.

Fig. 5.—Fractional decrease in the duration of thermal afterglow of a spot
case as a function of rotational frequency for R=M � 8 and R=M � 6.
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�0 þ � � �max � 180� and �0 � � 	 0, then h(�;�; �0) is
defined as

h(�;�; �0) ¼

2 cos�1 cos �� cos �0 cos �

sin �0 sin �

� �
�0 � � � � � �0 þ �;

0 � outside the range �0� �:

8<
:

ð30Þ

When the requirement that the photons under consideration
must reach the observer is imposed [not all the photons
emitted at (�; �) can reach the observer], � is also a function of
�0. Let x ¼ b=M and xmax ¼ bmax=M . Then we have

� ¼ sin�1 x

xmax

� �
: ð31Þ

We will come back to this requirement when we discuss the
rotational effect on the pulse shape.

In order to obtain light curves, �0 has to be obtained as a
function of time. If 	 is the angle between the axis of rotation
of the star and the line joining the center of the hot spot and
the center of the star, and 
 is the angle between the axis of
rotation and the z-axis (see Fig. 7), then

cos �0 ¼ sin 	ð Þ sin 
ð Þ cos �tð Þþ cos 	ð Þ cos 
ð Þ; ð32Þ

where � is the rotational frequency of the star. We are now
able to calculate the relative brightness:

A �0; f ;
M

R
; �

� �
¼ 1� 2M

R

� �2
M

R

� �2

;

Z xmax

0

f � xð Þ½ �h x;�; �0ð Þx dx; ð33Þ

where f �ð Þ ¼ 1 for isotropic emission, f �ð Þ ¼ cos � for en-
hanced emission, and f �ð Þ ¼ sin � for suppressed emission.
The relationship between A and �t is plotted in Figure 8.

6.2. Rotational Effect

Apart from getting bent due to spacetime curvature, the
trajectory of a photon emitted in a general direction from a
point re will be dragged away from its original direction of
emission when the rotation of the relativistic star is taken into
consideration (Kapoor & Datta 1985). In this section, the axis
of rotation is taken to be the z-axis. The net angle of deflection
in the trajectory will be given by

��0 ¼
Z r0

re

! 1þ !qeð Þ � qee
2� � e2 

e��k 1þ !qeð Þ2� q2ee
2� � e2 

h i1=2 dr; ð34Þ

with re and r0 denoting the point of emission and the ob-
server’s location, respectively; e� , e , and ek are the exterior
rotating metric components:

e2� ¼ e�2k ¼ 1� 2M

r
þ 2 J 2

r 4
; ð35Þ

e 2 ¼ r 2 sin2�: ð36Þ

The dragging frequency ! has an analytic exterior solution:

! rð Þ ¼ 2 J

r3
: ð37Þ

The term qe in the integrand of equation (34) is defined as
the impact parameter of the photon with rotation taken into
consideration:

qe ¼
e �� e �� �� !ð Þþ sin �

� �
1þ e �� e ��! �� !ð Þ þ � sin �½ �

					
r¼re

: ð38Þ

In our case, the source (hot spot) is located at the rotational
equator; � represents the azimuthal angle at which the photon
is emitted with respect to the normal vector of the surface as
seen in the local rest frame of the star. We choose the con-
vention that � ¼ 0 for a radial outgoing photon, � < 0 for a

Fig. 7.—Relation of the orientation of the hot spot and the axis of rotation
to the observer’s line of sight.

Fig. 8.—Relative brightness A as a function of phase for � ¼ 5�, with
f �ð Þ ¼ 1 and 	 ¼ 
 ¼ 90�.
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tangentially forward photon, and � > 0 for a tangentially
backward photon.

As mentioned in x 6.2, only the photons emitted at a par-
ticular value of � would be received by the distant observer.
The value of qe has been obtained by imposing this require-
ment. Because of the effect of frame dragging around the
neutron star, the situation will be different from that in pre-
vious section.

It should be noted that the impact parameter qe is not
symmetric in ��. In principle, this asymmetry will manifest
itself in the final pulse shape:

�new ¼ � þ �0 �ð Þ: ð39Þ

Figure 9 schematically illustrates the deflection of a photon
trajectory. As a consequence of rotation, �0 �ð Þj j 6¼ �0 ��ð Þj j.

This asymmetry does not occur in spherically symmetric
spacetime, where however the spacetime curvature will still
deflect the trajectory of photon. This can be easily seen if one

approximates the corresponding Schwarzschild expression of
equation (34) as follows:

�S0 
 � qS

R
1þ

sin2� 2R� 3RS
� �

12 R� 2RSð Þ

" #
; ð40Þ

where the superscript ‘‘S’’ refers to the Schwarzschild case.
Here � ¼ 90� for reasons of symmetry; RS denotes the
Schwarzschild radius, and qS ¼ (e �� sin �)r¼R. It can be seen
that j�S0 �ð Þj ¼ j�S0 ��ð Þj.
We define the corresponding �Snew of equation (39) as

�Snew ¼ � þ �S0 �ð Þ; ð41Þ

comparison between �Snew and �new is made in Figure 10. Even
in the fastest rotational case that we have considered (� ¼
1 ; 103 s�1) with a relatively small gravitational effect
(R=M � 8), the comparison indicates that the effect of
rotation is small and that the effect of spacetime curvature
predominates.

6.3. X-Ray Light Curves

We can generate light curves in the soft X-ray regime for
different spot cases. According to Pechenick et al. (1983), the
total energy flux observed is

FX ¼
X

I0
R

r0

� �2

A �0; f ;
M

R
; �

� �
; ð42Þ

where I0 is the energy flux from each cell at the surface,
including the factor of enhanced emission. We adopt �new
instead of �Snew to incorporate the asymmetry due to rotation.P

denotes the summation of the contribution from each cell.
The comparisons of light curves with different rotational
frequencies are made in Figures 11 and 12 with R=M � 8 and

Fig. 9.—Schematic illustration of the effect of frame dragging on the
photon trajectory.

Fig. 10.—Effect of frame dragging on the photon trajectory; �S illustrates
the deflection in Schwarzschild spacetime, and �þ; �� illustrate the deflection
in the tangentially backward direction and in the tangentially forward direc-
tion, respectively, at the rotational equator of a neutron star.

Fig. 11.—Thermal X-ray pulse profiles at the peak time for a neutron star
with R=M � 8, Tc ¼ 107 K, and �E ¼ 1042 ergs at �glitch ¼ 1013 g cm�3 and
� ¼ � ¼ 90� in an orientation with � ¼ 3�, f �ð Þ ¼ cos �, and 	 ¼ 
 ¼ 90�

for a spot case. Three cases with different rotational frequency are compared.
The numbers associated with the arrows indicate the number of days after the
glitch.
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R=M � 6, respectively. We have not found any asymmetry in
the pulse profile for the rotational cases.

7. CONCLUSION AND DISCUSSION

In this paper we have developed an anisotropic heat trans-
port equation. This equation is then employed to simulate
thermal afterglows resulting from pulsar glitches. We have
examined the effects of rotation on the thermal responses.
Although rotation does not have significant effect on the rate of
standard cooling (Miralles et al. 1993), noticeable changes in
duration and intensity of thermal afterglows are found in spot
cases. In comparison with static cases, afterglows with shorter
duration and larger intensity are found in rotating stars. These
are not unexpected when the effects of centrifugal forces on
the stellar structure as well as heat transport are realized. We
suggest that rotation prompts a faster and larger response. In
equation (A1) of the Appendix, the radial diffusion coefficient
is given by Dr ¼ �C2=C6, which contains the factors of the
rotating metric and hence is a function of rotational fre-
quency. Dr increases with rotational frequency (see Table 1)
and prompts a faster response. On the other hand, the rotation
also increases the distance that heat pulses need to travel in
order to give an afterglow on the surface. The resultant effect
on the duration and the magnitude of the thermal afterglow
depends on the interplay between these two factors. We have
also generated the thermal X-ray light curves for the spot
cases. The effects of gravitational lensing and frame dragging
are fully taken into account. Apart from the peak time and
the peak intensity, we have not found any significant effect of
rotation on the morphology of the pulse profile.

Hirano et al. (1997) characterize the thermal afterglow by
the fractional increase of surface temperature at the peak and
the peak time. They also propose a framework to set constraints
on the equation of state by using these two parameters. Since
the peak time is larger and the amplitude is smaller for a stiff
star than for a soft star, without taking the effects of rotation
into consideration we may underestimate the stiffness of the
equation of state.

One of the practical questions is the detectability of these
soft X-ray transients, which depends on the sensitivity of the
detector. For the spot cases considered in this paper, the glitch
events are able to be detected by state-of-the-art X-ray satel-
lites such as XMM-Newton. Once the observational data of
these thermal afterglows are obtained, these can be used in
putting constraints on the equation of state of neutron stars as
well as the glitch models by the method of periodic analysis
(Andersen & Ögelman 1997).

In our calculations, we have neglected interstellar ab-
sorption, magnetospheric effects, magnetic field effect (Page
1995), and the possibility of uplifting and local expansion
of matter caused by heat deposition (Eichler & Cheng 1989).
We would like to remark that we have ignored the contri-
bution of impurity scattering in the thermal conductivity,
which may be important when T � 107 (Yakovlev & Urpin
1980). We have also assumed that no other glitch events
occur during the evolution of the afterglow. Glitch events
occurring too frequently may result in a pileup of pulses,
as well as a long-term variation of the total thermal radiation,
which would eventually reduce the detectability of the thermal
afterglow (Li 1997). Moreover, we keep a constant rotational
frequency during the evolution of the afterglow. However,
glitches recover exponentially and hence � should vary with
time. Also, the effects should be more important for fast
rotation; a fully numerical scheme is needed to calculate the
metric in the fast-rotation case. For further study, all these
effects have to be taken into account.

APPENDIX

The anisotropic relativistic heat transport equation (i.e., eq. [28]) can be rearranged into a standard form of partial differential
equation as follows:

0 ¼ C1

@2T

@t2
þC2

@2T

@r2
þ C3

@2T

@�2
þC4

@2T

@�2
þC5

@2T

@t@�
þC6

@T

@t
þC7

@T

@r
þC8

@T

@�
þC9

@T

@�
þC10T þC11: ðA1Þ

Fig. 12.—Same as Fig. 11, but with R=M � 6.

TABLE 1

Deviation of Radial Diffusion Coefficient

R=M ¼ 8 R=M ¼ 6

�

(s�1)

�Dr

(cm2 s�1)

�

(s�1)

�Dr

(cm2 s�1)

152....................... 14.1 200....................... 28.6

305....................... 56.3 300....................... 60.3

500....................... 152.2 513....................... 183.0

579....................... 201.3 586....................... 238.0

762....................... 344.6 760....................... 395.8

839....................... 416.1 802....................... 418.2

Note.—Shown is the deviation of the radial diffusion coefficient from the
nonrotational value (i.e., �Dr ¼ Dr;� 6¼0 � Dr;�¼0) at the location of energy
deposition for spot cases (i.e., at �glitch ¼ 1013 g cm�3; � ¼ � ¼ 90�, with
�E ¼ 1042 ergs; Tc ¼ 107 K) at t ¼ 0 s as a function of rotational frequency.
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The expressions of coefficients C1 through C11 are listed as follows (with G ¼ c ¼ 1):

C1 ¼ 2utK gtt � ututð Þ; ðA2Þ

C2 ¼ utKgrr; ðA3Þ

C3 ¼ utKg��; ðA4Þ

C4 ¼ K ut g�� � u�u�
� �

þ u� gt� � utu�
� �� �

; ðA5Þ

C5 ¼ K 3ut gt� � u�ut
� �

þ u� gtt � ututð Þ
� �

; ðA6Þ

C6 ¼
@K

@�
ut gt� � u�ut
� �

þ u� gtt � ututð Þ
� �

þ Cv
dP

d�
utut � gttð Þ þ utut

� �
; ðA7Þ

C7 ¼ K
@ut

@r
g rr þ ut

@K

@r
g rr þ utK

@g rr

@r
þ 3�t

rt þ
@k
@r

þ ��r� þ ��r�

� �
utKg rr þ 2�t

r�u
�Kg rr � utKg rrar; ðA8Þ

C8 ¼ K
@ut

@�
g�� þ ut

@K

@�
g�� þ utK

@g��

@�
þ 3�t

�t þ
@k
@�

þ ���� þ ����

� �
utKg�� � utKg��a�; ðA9Þ

C9 ¼
@K

@�
ut g�� � u�u�
� �

þ u� gt� � utu�
� �� �

; ðA10Þ

C10 ¼ � ar C7 þ utKgrrarð Þ þ a� C8 þ utKg��a�
� �

þ utKgrr
@ar
@r

þ utKg��
@a�
@�

� �
; ðA11Þ

C11 ¼
Q�

ut
dP

d�
utut � gttð Þ þ utut

� �
: ðA12Þ
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