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We present a theoretical analysis of a spin pump in the presence of a superconducting lead. The spin pump
is facilitated by a rotating magnetic field which provides a spin flip mechanism and hence can generate a spin
current without an accompanying charge current. Using a nonequilibrium Green’s function method, we obtain
a general solution of the pumped charge current and spin current in both the adiabatic and non-adiabatic
regimes. The numerical results for the charge current and spin current are presented as we vary different system
parameters such as the gate voltage, the external magnetic field, and the pumping frequency. We find that for
a quantum dot with a single resonant level in line with the Fermi energy of the left normal lead, a pure spin
current is generated by a rotating magnetic field at any frequency. We have identified two kinds of photon-
assisted processes which dominate at low pumping frequencies and high pumping frequencies, respectively.
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I. INTRODUCTION

The charge and spin are two basic properties of an elec-
tron. The charge degree of freedom has been fully explored
in microelectronics as well as nanoelectronics. One of the
key ingredients in spintronics is to use the spin flow to con-
trol the nonlinear electronic devices.1 For this reason, much
research effort has been devoted to generating the pure spin
current without an accompanying charge current. One way to
generate the spin current in a quantum dot system is by cy-
clic deformation of two or more system parameters. This
parametric pumping mechanism has recently attracted in-
creasing attention in charge pumping.2–8 If the external mag-
netic field is applied, the pumped charge current is spin po-
larized. In the presence of magnetic field, electrons with
different spins experience different system parameters. It is
known that the magnitude as well as the direction of the
pumped charge current is very sensitive to various param-
eters of the system such as the potential landscape of the
pump,9,10 the frequency of the driving force,11 and the Fermi
energy of the leads.12 Hence, it is possible that under certain
conditions, the electrons with different spins flow in the op-
posite direction, thereby giving rise to a spin current without
accompanying charge current. Indeed, several different spin
pumps have been proposed along this line. For an interacting
system, Sharma and Chamon studied the quantum pump for
both spin and charge transport.13 For noninteracting systems,
an adiabatic quantum pump was proposed14 which generates
the pure spin current by cyclic variation of the confining
potential of the quantum dot and the external magnetic field.
In fact, this proposal has been realized experimentally15 that
spin current was detected. Similar ideas have also been pro-
posed to generate pure spin current using the Zeeman effect
for a quantum dot.16,17 For instance, the spin current can be
generated when the external magnetic field which induces a
Zeeman energy is chosen as one of the pumping

parameters.16 Due to peculiar electronic properties of the car-
bon nanotube(CNT),18–22 the CNT based quantum pump
shows antisymmetric pumped signals near the many doubly
degenerate resonant levels of the finite-length CNT for a
wide range of energies.23 Because of this reversal of the
pumped charge current together with the Zeeman effect, the
pure spin current can be achieved for the Fermi energy near
the resonant levels in the presence of a magnetic field.17 In
the nonadiabatic regime, using the property of charge current
reversal, the spin current can be delivered from a normal
quantum dot connected by two ferromagnetic leads.24 The
spin current can also be produced by either a rotating mag-
netic moment or a rotating external magnetic field which
leads to the unipole spin battery which gives constant spin
current.25,26 To drive a spin current for future spintronic cir-
cuits, a spin-cell device which provides the necessary con-
stant spin-motive force is needed.27,28 By shining micro-
waves on a double quantum dot in the presence of a
nonuniform magnetic field, such a bipolar spin battery is
proposed.27 In the presence of magnetic barriers, the spin
current is found to pump out using the adiabatic theory.29 So
far, the investigations on the spin current are focused on
normal nanostructures. It will be interesting to study a hybrid
structure with a superconducting lead where the Andreev re-
flection is present near the normal-superconductor(NS) in-
terface. In this paper, we investigate a spin pump for a two-
dimensional quantum dot with a single levele connected by
a normal and a superconducting lead. For simplicity, in the
following discussion we assume that 0,e,D. The spin
pump is facilitated by a rotating magnetic field:B0std
=B0fsinu cosvti +sinu sinvtj +cosukg, whose z compo-
nent gives the Zeeman split and whose rotating component
provides a spin flip mechanism. For the spin pump with nor-
mal leads the rotating magnetic field generates an effective
spin-motive force: an incoming spin up electron with energy
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below the Fermi level enters the quantum dot, absorbs a
photon, jumps to the levele, becomes spin down due to the
spin flip mechanism, and finally exits to the same lead with
down spin. Hence a spin current is produced. In the presence
of a superconducting lead, a second photon-assisted process
can also drive the spin current. This process is effective at
large frequenciesv. ueu+D with D the superconducting gap
such that electrons from the superconducting lead with en-
ergy below −D can also participate in the photon assisted
transport.30 In this case, electrons with spin up(or down)
from both leads can absorb a photon with spin flip at the
same time, jump to the levele (assumingBz=0 for simplic-
ity), and exit to the left lead. Our results show that when the
resonant level of the quantum dot is in line with the Fermi
level the charge current is zero and spin current is pumped
out which exhibits resonance features.

The rest of this paper is organized as follows: In Sec. II,
the theoretical formalisms for calculating the charge current
and spin current in both adiabatic and nonadiabatic regimes
are presented. In Sec. III, the numerical calculations and dis-
cussions of these results are given.

II. THEORETICAL FORMALISM

The system that we consider in this paper consists of a
two-dimensional quantum dot in the presence of a rotating
magnetic field connected by a normal lead and a supercon-
ducting lead. The Hamiltonian of the system is written as
follows:

H = HL + HR + Hdot + HT, s1d

whereHL describes the left normal electrode andHR the right
superconducting electrode,

HL = o
ks

eL,kCL,ks
† CL,ks = o

k

eL,kCL,k↑
† CL,k↑ + o

k

eL,kCL,k↓
† CL,k↓,

s2d

HR = o
ks

eR,kCR,ks
† CR,ks + o

k

fDCR,k↓CR,−k↑ + DCR,−k↑
† CR,k↓

† g,

s3d

where for simplicity we have assumed that the gap energyD
is real. We assume that the Fermi energy of the left lead is in
line with the superconducting condensate of the right leadms
which is set to zero, i.e.,EF=0. Furthermore, there is no bias
applied in the left and right leads since we are interested in
the pumped current. In Eq.(1), Hdot is the Hamiltonian of the
quantum dot with a single resonant levele which can be
varied by applying a gate voltage.Hdot contains a time-
independent partHdot

0 which is a diagonal matrix(in spin
space) and a time-dependent partH8std which is off-
diagonal. Settingg=B0 sinu, we have

Hdot
0 = o

s

fe + smB0 cosugds
†ds,

wheres= ±1 denotes the spin and

H8std = ge−ivtd↑
†d↓ + geivtd↓

†d↑ s4d

due to the rotating magnetic field.31 It is the termH8std that
provides the spin flip mechanism and hence the total spin
current is not conserved. Finally, in Eq.(1), HT describes the
coupling between quantum dot and the electrodes,

HT = o
s,k,a

tk,a,sCa,ks
† ds + H.c.

= o
k,a

tk,a,↑Ca,k↑
† d↑ + tk,a,↓Ca,k↓

† d↓ + H.c. s5d

Due to the spin flip mechanism introduced by the rotating
magnetic field and the presence of the superconducting lead,
we have to consider both electrons and holes together with
their spins. For this reason, we consider the following
Nambu representation:32

Ca,k =1
aa,k1

aa,k2

aa,k3

aa,k4

2 ;1
Ca,k↑
Ca,−k↓

†

Ca,k↓
Ca,−k↑

†
2, F =1

d↑
d↓

†

d↓
d↑

†
2 . s6d

Here the operatorCa,ks destroys an electron with spins and
Ca,−ks

† creates an electron with spins or effectively destroys
a hole with an opposite spins̄. So we have four kinds of
particles:(1) electrons with spin up;(2) holes with spin up;
(3) electrons with spin down; and(4) holes with spin down.
With this representation, the Hamiltonian Eq.(1) can be ex-
pressed in a matrix form:

HL = o
k

CL,k
† 1

eL,k 0 0 0

0 − eL,−k 0 0

0 0 eL,k 0

0 0 0 − eL,−k

2CL,k, s7d

HR = o
k

CR,k
† 1

eR,k D 0 0

D − eR,−k 0 0

0 0 eR,k − D

0 0 − D − eR,−k

2CR,k, s8d

Hdot = Hdot
0 + H8std, s9d

with

Hdot
0 = F†1

e1 0 0 0

0 − e2 0 0

0 0 e2 0

0 0 0 − e1

2F s10d

wheree1,2=e±mB0 cosu and

H8std = F†1
0 0 ge−ivt 0

0 0 0 − ge−ivt

geivt 0 0 0

0 − geivt 0 0
2F s11d
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HT = o
k,a

Ck,a
† 1

tk,a,↑ 0 0 0

0 − t−k,a,↓
* 0 0

0 0 tk,a,↓ 0

0 0 0 − t−k,a,↑
*

2F.

s12d

Note that since we have doubled the Hilbert space in a 4
34 Nambu representation, a factor of1

2 should be included
to account for this in the Hamiltonian. From now on, we will
include this factor when we calculate the charge and spin
current. With this Hamiltonian, we will derive in the follow-
ing sections the pumped current in the adiabatic regime,
where the pumping frequency is very small, and in the nona-
diabatic regime where the pumping frequency is finite.

A. Adiabatic regime

In this section, we examine the pumped current in the
low-frequency limit. In this limit, the system is nearly in
equilibrium and we can use the equilibrium Green’s function
to characterize the pumping process. Using the distribution
function, the total number of particles of typen in the scat-
tering system during the pumping process is given by

Nnsx,td = − i E dE

2p
†fG,

„E,B0std…gnn‡xx, s13d

whereG, is the lesser Green’s function in real and space,
andx labels the position so that eachG,sxd is a 434 sub-
matrix corresponds to the 434 Nambu representation. Here
nn=11,22,33,44 label the diagonal matrix elements which
denote, respectively, the spin up electron, spin up hole, spin
down electron, and spin down hole.B0std is the external pa-
rameter due to the rotating magnetic field which facilitates
the pumping process. In the absence of the external bias, the
equilibrium Green functionG, is related to the retarded and
advanced Green functionsGr andGa as follows:

G,sE,B0d = GrsE,B0dS,GasE,B0d. s14d

From Eqs.(13) and (14), we obtain

FdNasstd
dt

G
nn

= −E dE

2p
s− ]EfdTroFGaGrstd

dH8

dt
GastdG

nn
,

s15d

where the effective linewidth functions are

GsEd = GLsEd + GRsEd s16d

with

GLsEd = GL1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
2 s17d

and

GRsEd = usuEu− uDud
nGR

ÎE2 − D21
E − D 0 0

− D E 0 0

0 0 E D

0 0 D E
2 ,

s18d

wheren=1 for E.−D andn=−1 otherwise.
In the adiabatic limit, the Green’s function is written as

fGrstdg−1 =1
− e +

i

2
G −

G

2
− ge−ivt 0

−
G

2
e +

i

2
G 0 ge−ivt

− geivt 0 − e +
i

2
G

G

2

0 geivt G

2
e +

i

2
G

2 ,

s19d

where we have setu=p /2 for simplicity and G=GL+GR.
Since the electrons and holes have opposite charge, we ob-
tain, from Eqs.(15) and(19), the charge currentJea and spin
currentJsa througha electrode in the adiabatic regime,

Jea = 1
2TrsfsedNasstd/dtg = 0, JsR= 0, s20d

and

JsL =
1

2
TrsfssdNLsstd/dtg =

"

2

2vB0
2GGL

2pfse2 + G2/2 − B0
2d2 + G2B0

2g
,

s21d

where the trace Trs is over the spin space and Tro is over
orbital degrees of freedom. Herese and ss are defined as
follows:

se = q1
1 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 − 1
2 ,

ss =
"

21
1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1
2 .

Since we have set the Fermi level of the left lead to zero, the
gap energyD does not appear in the expression of spin cur-
rent. We note that in the absence of the superconducting lead,
the spin current in the adiabatic regime is26

JsL =
"

2

2vB0
2GGL

2pfse2 + G2/4 − B0
2d2 + G2B0

2g
. s22d

We see that the difference between Eqs.(21) and(22) is the
factor of 2 of G2 in the denominator. As a result, the peak
positions of spin current are different with or without the
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superconducting lead. Since there is no electric current in the
normal lead, the supercurrent is zero in the superconducting
lead from the current conservation. As a result, there is no
Andreev reflection in the adiabatic regime. Hence the en-
hancement of the charge pumping33 due to the Andreev re-
flection is absent as can be seen from Eqs.(21) and (22).

B. Nonadiabatic regime

Going beyond the adiabatic approximation, the charge
and spin current can be calculated analytically using the non-
equilibrium Green’s function(NEGF) method. To do that, it
is convenient to define the particle current operator in spin
space,

Ian = dNan/dt, s23d

whereNan=okaakn
† aakn with aakn defined in Eq.(6). With this

definition, the charge current and spin current are written as

Ja
estd =

1

2
TrsfsedNa/dtg = −

1

2o
k

TrsfsesTkaGd,ka
, st,td + H.c.dg

s24d

and

Ja
sstd =

1

2
TrsfssdNa/dtg

= −
1

2o
k

TrsfsssTkaGd,ka
, st,td + H.c.dg. s25d

Using the theorem of analytic continuation, Eqs.(24) and
(25) become

Ja
e,sstd = −

1

2
E dt1Trsfse,sTro„G

rst,t1dSa
,st1 − td

+ G,st,t1dSa
ast1 − td + H.c.…g, s26d

whereGrst ,t1d andG,st ,t1d are the Green’s function of the
quantum dot. The effect of electrodes has been included in
the self-energySg sg=r ,a, , d. Now we consider the dc
components, the averaged current flowing through contacta
due to the rotating magnetic fieldH8std in one periodt is
given by

Ja
e,s =

1

t
E

0

t

dtJa
e,sstd =

1

2L
E

−L

L

dtJa
e,sstd, s27d

whereL=Nt and we will take the limitN→`. From Eqs.
(26) and (27), we obtain

Ja
e,s = −

1

4L
E dtdt1Trsfse,sTro„G

rst,t1dSa
,st1 − td

+ G,st,t1dSa
ast1 − td + H.c.…g. s28d

Carrying out the following double Fourier transform over
time t and t8,

GgsE,E8d =E dtdt8eiEt−iE8t8Ggst,t8d, s29d

with g=r ,a,,, Eq. (28) becomes

Ja
e,s = −

1

2L
E dE

2p
Trsfse,sTro„G

rsE,EdSa
,sEd

− Sa
,sEdGasE,Ed + G,sE,EdSa

asEd − Sa
r sEdG,sE,Ed…g.

s30d

In Eq. (30) the Green functionsGr,a and G, are calculated
from the following Dyson equation:

Grst,t8d = Gr0st − t8d +E dt1G
rst,t1dH8st1dGr0st1 − t8d

s31d

and the Keldysh equation

G,st,t8d =E dt1dt2G
rst,t1dS,st1 − t2dGast2,t8d, s32d

whereGr0st ,t8d is the equilibrium Green function which de-
pends only on the time differencet− t8.

After the double Fourier transform over time, we write all
matrix elements ofGr appearing in Eq.(31) as

G11
r sE,E8d = dsE − E8dG11

r0sEd + B0G13
r sE,E8 − vdG11

r0sE8d

− B0G14
r sE,E8 − vdG21

r0sE8d, s33d

G12
r sE,E8d = dsE − E8dG12

r0sEd + B0G13
r sE,E8 − vdG12

r0sE8d

− B0G14
r sE,E8 − vdG22

r0sE8d, s34d

G13
r sE,E8d = B0G11

r sE,E8 + vdG33
r0sE8d

− B0G12
r sE,E8 + vdG43

r0sE8d, s35d

G14
r sE,E8d = B0G11

r sE,E8 + vdG34
r0sE8d

− B0G12
r sE,E8 + vdG44

r0sE8d. s36d

Shifting the variableE8 to E8−v in Eqs. (35) and (36) and
then substituting into Eqs.(33) and (34), we can solve for
Gij

r sE,E8d with i =1 and j =1,2,3,4. Theother matrix ele-
ments ofGij

r can be calculated in a similar way. We wish to
mention that the rotating magnetic field facilitates the solu-
tion in terms of the matrix Green’s functions, which other-
wise would lead to equations that do not close. Once theGr,a

is calculated the lesser Green’s function is obtained from the
Keldysh equation,

G,sE,E8d =E dE1

2p
GrsE,E1dS,sE1dGasE1,E8d. s37d

Having obtainedGr,a, G,, andS,,r,a, the charge current and
spin current can be calculated from Eq.(30).

We setGrsE,E+svd=Gs and FsE+svd=Fs, where F
could be the coupling constantG or Fermi distribution func-
tion f. For instance,G↑,11sEd=G11sE+vd. We write the
charge and spin current as follows:

Ja
e = qsJa,↑ + Ja,↓d,

Ja
s = 1

2sJa,↑ − Ja,↓d, s38d

wherea=L ,R and
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Ja,s =E dE

2p
Ta,ssfs − fd. s39d

Here

TL,↑ = GL,11fG↑33suG↑13
r u2 + uG↑14

r u2d + 2G↑34 ResG↑13
r G↑14

r,* dg
s40d

and

TR,↑ = GR,11fG↑33suG↑13
r u2 + uG↑14

r u2d + 2G↑34 ResG↑13
r G↑14

r,* dg

+ GR,21fG↑33sG↑13
r G↑23

r,* + G↑14
r G↑24

r,* d + G↑34sG↑13
r G↑24

r,*

+ G↑14
r G↑23

r,* dg − S12,R
r fG↑33 ImsG↑13

r G↑23
r,* + G↑14

r G↑24
r,* d

+ G↑34 ImsG↑13
r G↑24

r,* + G↑14
r G↑23

r,* dg, s41d

where we have used the fact thatG↑33=G↑44 and G↑34=G↑43
whereGi j is the matrix element ofG. To obtain the current
Ja↓ from Eqs.(40) and(41), we note that the transformation
↑→↓ implies 1→3, 3→1, 2→4, and 4→2 in the Green’s
function from Eq.(6). For instance, under this transforma-
tion, G↑23

r →G↓41
r . For simplicity, in the following discussion

we will consider the symmetric situation so thattkL= tkR and
let GL=GR=G0. The self-energies due to the lead are

Sa,r,,sEd = SL
a,r,,sEd + SR

a,r,,sEd, s42d

SL,R
, sEd = sSL,R

a sEd − SL,R
r sEddfsEd, s43d

where fsEd is Fermi distribution function, and32

SL
r sEd =

− iG0

2 1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
2 , s44d

SR
r sEd =

− i

2

nG0

ÎE2 − D21
E − D 0 0

− D E 0 0

0 0 E D

0 0 D E
2 . s45d

From Eqs.(43)–(45), we have

SL
,sEd = iG0fsEd1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
2 , s46d

SR
,sEd = iusuEu − uDudfsEd

nG0

ÎE2 − D21
E − D 0 0

− D E 0 0

0 0 E D

0 0 D E
2 .

s47d

III. RESULTS AND DISCUSSIONS

Now we present the numerical results of charge current
and spin current obtained from Eq.(39). In Fig. 1, we calcu-

late the charge currentJL
e through the left lead versus the

pumping frequencyv for different resonant energiese
(which can be controlled by the gate voltage).34 In general,
we have the following relations for the charge current,JL↑

e

=JL↓
h andJL↑

h =JL↓
e . The charge current of spin up and down

charged carriers are in the opposite direction. Whene=0, the
absolute values of these four terms are equal, resulting in
zero charge current at any frequency. Whene is nonzero,
there is a slight difference in charge current between up and
down charged carriers forv,D. Indeed, this is what we see
from Fig. 1, that the charge current is small forv,D. When
v.D, the charge currents exhibit big peaks at certain fre-
quencyvp which depends on the resonant energye. For in-
stance, we havevp=1.65 and 1.94 meV fore=0.1 and
0.4 meV. Our numerical results indicate thatvpsed depends
on e linearly.

To understand this, we discuss two physical processes that
are responsible in this pumping process. Without loss of gen-
erality, we assume thate.0. The first process is largely
responsible for the spin current. Due to the rotating magnetic
field, a spin up(or down) electron near Fermi level comes
from the left lead, absorbs a photon along with the spin flip
and jumps to the levele, and finally exits to the left lead with
opposite spin. This process is the dominant pumping process
in the low frequency regime and gives pure spin current in
the left lead with no accompanying charge current. Note that
this is the only process for the normal system in the presence
of rotating magnetic field as discussed in Ref. 26. As a result,
the spin current shows a resonant feature with a peak near
v,e. In the presence of the superconducting lead, there is a
second pumping process at large frequenciesv. ueu+D such
that electrons from both leads with energy below −D can also
participate the photon assisted transport. In this case, elec-
trons with spin up(or down) from both leads can absorb a
photon with spin flip at the same time, jump to the levele,
and exit to the left lead. This explains why there is a peak in
the left charge current and a cutoff frequency exists,vc
= ueu+D as shown in Fig. 1.

The spin current through the left lead vsv is depicted in
Fig. 2. For comparison, the spin current through the right

FIG. 1. The charge currentJL
e vs the pumping frequencyv at

different resonant energiese: e=0.2 meV (solid line), e=0.4 meV
(dashed line), and e=0.8 meV (dotted line). Other parameters:
mB0=0.1 meV,G=0.1 meV,D=1.45 meV andu=p /2.
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lead vsv is also plotted in the inset of Fig. 2. Although the
charge current is nonzero whenv,D, the spin current in the
superconducting lead must be zero due to the opposite mo-
menta of the Cooper pair. It is precisely what we have ob-
tained. From the inset of Fig. 2 we see that only whenv
.D, the spin current in the superconducting lead starts to
occur and shows similar features as that of the charge current
(see Fig. 1). As described in the first pumping process, due to
the spin flip mechanism introduced by the rotating magnetic
field, the incoming spin up electron(hole) is reflected back
as the spin down electron(hole) so that the spin currents are
in the same direction. As a result, the spin current of the left
lead is much larger whenv,D and shows a large peak at a
certain frequency which depends on the resonant energye.
When the frequency is larger than the gap energy, a second
small peak emerges for the spin current of the left lead.

In Fig. 3, we plot the charge current versus the pumping
frequency at different magnetic fields. We see that as the

magnetic field is increased the charge current increases. The
resonant feature is similar to that of Fig. 1 except that the
peak positions do not shift. This is understandable since the
resonant levele remains unchanged.

The spin current of the left lead versus the pumping fre-
quency is plotted in Fig. 4 and the corresponding spin current
of the right lead is shown in the inset. For the left lead, the
spin current exhibits a double peak structure while for the
right lead the spin current shows a single peak. As the mag-
netic field is increased the spin current increases but the peak
positions do not change. Clearly, the physics of Fig. 4 is
similar to that of Fig. 2 and can be understood within the two
pumping processes discussed above.

In the inset of Fig. 5, we plot the charge current vse for
two different pumping frequencies:(1). v,D (the left inset)
and (2). v.D (the right inset). Two points should be men-
tioned here. First, the charge current can change its direction
when the resonant level(which can be controlled by the gate
voltage) crosses zero. Second, whene is nonzero, the charge
current can also change its sign by changing the pumping
frequency(compare the left inset with the right inset). The
current reversal ase changes sign can be understood as fol-
lows. Whene.0 the charge carriers that dominant the two
pumping processes discussed above are electrons. However,
the holes dominant the same processes whene,0. Since the
only difference it makes whene changes sign is to change
the sign of charged carriers, we have35

JL
ese . 0d = − JL

ese , 0d,

JL,R
s se . 0d = JL,R

s se , 0d. s48d

In the main panel of Fig. 5, we plot the charge current vse
for magnetic fields. Similar current reversal behaviors are
observed.

In Fig. 6, the spin currents of the left lead vse at different
pumping frequenciessv,Dd are plotted. Whenv is small,
the spin current shows clearly two symmetric peaks with

FIG. 2. The spin current of the left leadJL
s vs the pumping

frequencyv at different e: e=0 (solid line), e=0.2 meV (dashed
line), e=0.4 meV(dotted line), ande=0.8 meV(dash-dotted line).
Other parameters are the same as Fig. 1. Inset: the right spin current
JR

s vs the pumping frequencyv at differente. The symbols are the
same as the main panel.

FIG. 3. The charge currentJL
e vs the pumping frequencyv at

different magnetic fieldsmB0: mB0=0.05 meV (solid line), mB0

=0.1 meV(dashed line) andmB0=0.2 meV(dotted line). Other pa-
rameters:e=0.2 meV,G=0.1 meV,D=1.45 meV, andu=0.5p.

FIG. 4. The left spin currentJL
s vs v at different magnetic fields

mB0: mB0=0.05 meV(solid line), mB0=0.1 meV(dashed line), and
mB0=0.2 meV(dotted line). Other parameters are the same as Fig.
3. Inset: the right spin currentJR

s vs v at different magnetic fields.
The symbols are the same as the main panel.
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respect toe=0. Whenv increases, the two peaks start to
merge. The double-peak structure can be understood from
the expression of the pumped spin current in the adiabatic
regime. The right spin current at larger frequenciessv.Dd
is shown in the right inset. We see that there is always a peak
at e=0. When the frequency is slightly greater than the gap
energyD, the spin current exhibits a sharp peak neare=0. As
the frequency increases, two sideband peaks emerge atueu
,v−D (see dashed and dotted lines of the right inset). Ob-
viously this sideband is due the second pumping process.
When ueu is greater thanv−D, the electron from below −D
cannot gain enough energy by absorbing a photon of energy
v to jump to the resonant levele. As a result, the spin current
drops drastically. At an even largere, the first pumping pro-
cess dominates and the spin currents show peaks neare
,v. In the left inset of Fig. 6, the left spin currents vse at
different frequencies are also plotted. Here we see again the
sideband structure due to the second pumping process. We
also see that the spin current exhibit shoulders neare,v
beyond which the spin current decreases quickly. This again
is attributed to the first pumping process that an electron
jumps to the resonant level by photon absorption.

In summary, we have studied the spin current pumped by
a rotating magnetic field for a normal superconducting hy-
brid system. The spin current was calculated in both adia-
batic and non-adiabatic regimes using the NEGF method.
Two photon assisted pumping processes are identified. One

of them is dominated at low frequency. The other is present
only for NS systems and is dominated at high frequencyv
.D. When the resonant level of the quantum dot is in line
with the Fermi level of the lead, pure spin current is gener-
ated at finite frequencies with clear signature of resonance
assisted pumping. The spin current may be detected in sev-
eral ways:(1) When the spin current passes through a mate-
rial with the spin-orbital coupling, there will be a charge
imbalance which can be measured.36 (2) The electric field
generated by the spin current37 can also be used to measure
the spin current.(3) Recently, a method to measure the spin
polarization of the current has been proposed and realized by
Folk et al.38 using a gate-controlled bidirectional spin filter.
With this technique, the measurement of spin current is ex-
perimentally feasible. In our theory, the rotating frequency of
the field needs not to be large, and the device structure is
quite typical; we believe the spin current should be experi-
mentally measurable. In this paper, we did not consider the
Coulomb interaction which may show additional interesting
features.39
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FIG. 6. JL
s vs e at different v: v=0.01 meV (solid line), v

=0.1 meV (dashed line), v=0.5 meV (dotted line), and v
=1.0 meV(dash-dotted line). Other parameters are the same as Fig.
1. The right inset: JR

s vs e at much larger frequencies:v
=1.5 meV(solid line), 2.0 meV(dashed line), and 2.5 meV(dotted
line). The left inset:JL

s vs e at differentv. The symbols are the same
as the right inset.

FIG. 5. The charge currentJL
e vs the resonant energye at differ-

ent magnetic fields:mB0=0.05 meV (solid line), mB0=0.1 meV
(dashed line) and mB0=0.2 meV (dotted line). Here v=1.8 meV
and other parameters are the same as Fig. 1. The left inset:JL

e vs e
at different frequencies:v=0.2 meV (solid line), v=0.5 meV
(dashed line), andv=1.4 meV(dotted line). The right inset:JL

e vs e
at much larger frequencies:v=1.5 meV (solid line), v=2.0 meV
(dashed line), v=2.5 meV (dotted line), and v=3.0 (dash-dotted
line). The other parameters are the same as Fig. 1.
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