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A Thomas-Fermi-Dirac-von Weizsicker density-functional formalism is used to study the effects
of many-electron Coulomb interactions on quantum transport through two-dimensional semicon-
ductor nanostructures. The electron density is obtained by direct minimization of the total energy
functional, and an effective potential for the electrons is determined as a functional of the density
self-consistently. Transmission coefficient and conductance are computed with the effective potential
included. The electron density distribution as well as the effective potential are strongly affected
by the average electron density and the distance between the two-dimensional electron gas and the
positive background charge. The transmission property of a stadium-shaped open quantum-dot sys-
tem is investigated by varying these system parameters. The electron ballistic transport problem is
solved in the presence of the many-electron effective potential and results are compared to that of
the single-electron approximation. Some important differences are observed.

I. INTRODUCTION

In the past several years, considerable research efforts
have been focused on the study of ultrasmall semiconduc-
tor structures, such as quantum wires and dots. With
characteristic dimensions on the 100-nm scale, these
systems have been fabricated from semiconductor het-
erostructures, which constrain the electrons to move in
essentially a two-dimensional plane. The dimensionality
of a two-dimensional (2D) electron gas can further be re-
duced to one or zero dimensions and a very rich variety of
artificial solids are thus obtained.! This further reduction
of dimensionality or confinement can now be routinely
achieved by ionic etching or using metallic gates.? It is
important to understand the electronic transport prop-
erties of these nanostructures with reduced dimension-
ality from both the fundamental physics point of view?
and the prospects of device applications.* With a char-
acteristic structure size comparable to the electron Fermi
wavelength, the transport problems are usually treated
as a quantum ballistic scattering process. In a theo-
retical investigation of ballistic transport, one computes
transmission coefficients, which are related to conduc-
tance through Landauer formula® for two-probe systems,
and through Biittiker formula® for multiprobe systems.

In most theoretical studies of quantum ballistic trans-
port, some approximations are needed to simplify the
calculation. For instance, one usually treats the confine-
ment of the device structure using a hard wall poten-
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tial. The single-electron and effective-mass approxima-
tions are also usually applied. Much progress has been
made in these studies with qualitatively excellent and
some times quantitatively good agreement with exper-
imental measurements.® For instance, the experimental
observation of Hall anomalies in quantum dots can be
well explained by a ballistic resonant transport model;”
the correlations in the magnetoconductance fluctuation
of a classically chaotic billiard® maybe computed from
single-electron scattering in such a structure;® the optics
analogy of electron wave propagation through quantum
wire systems can be investigated in detail'®™2 for its de-
vice applications.!3

Given the success of our basic understanding of the bal-
listic quantum transport, it is desirable to move forward
and examine some of the approximations in theoretical
calculations. The purpose of this paper is to report our
study of the effects of electron-electron Coulomb interac-
tions to this transport regime.l4

It is well known that many-electron interactions can
change the effective confining potential profile of a de-
vice structure. Since the outcome of quantum scattering
depends on the shape of the confining potential, the elec-
tronic transport properties of nanostructures will be af-
fected by electron-electron interactions. For closed struc-
tures, the most used approach to include Coulomb in-
teraction is the density-functional theory.'® Using this
method, Kumar et al. showed that the confining poten-
tial of a square-shaped quantum dot is actually circu-

2738 ©1995 The American Physical Society



52 MANY-ELECTRON EFFECTS ON BALLISTIC TRANSPORT

larly symmetric and parabolic.'® Further simplification
using the Thomas-Fermi approximation has also been
applied.!” Recently, Zaremba and Tso!'® studied the col-
lective excitations of a quantum-well structure using a
Thomas-Fermi-Dirac-von Weizsacker density-functional
formalism; and Sun and Kirczenow studied the forma-
tion of quantum wires from electrostatic confinement.!®

On the other hand, for open device structures with
inhomogeneous electron systems, one deals with a scat-
tering problem and it is difficult to include the Coulomb
interactions. For a quasi-one-dimensional structure, the
outgoing wave can be related to the incoming wave by
a transfer matrix and this leads to some simplifications
for studying the many-electron effects. One solves, for
each incoming wave with momentum up to the Fermi
level, the Schrodinger equation which includes the self-
consistent potential as determined by the electron den-
sity. This is done for many incoming waves and the so-
lutions of the Schrédinger equation are used to compute
the electron density, which in turn determines the self-
consistent potential. This process is iterated until self-
consistency is achieved and the transmission coefficients
are then obtained. Gawlinski and co-workers2® applied
this approach to the study of resonant tunneling diode,
which is a one-dimensional structure. They concluded
that in certain cases, the buildup of space charge inside
the quantum well leads to changes of the confining poten-
tial and the peak-to-valley ratio of the tunneling current
could be substantially altered by the electron-electron
interactions.?? While this approach is applicable in one-
dimensional systems, it is very difficult to apply, if not
impossible, to real two-dimensional structures. The main
difficulty is due to the extremely large computational ef-
fort needed even for one dimension. Another problem is
that there is no efficient two-dimensional transfer matrix
to relate the outgoing wave to the incoming wave.

In the following, we shall present an approach to
study the effects of electron-electron Coulomb interac-
tion to ballistic transport in two-dimensional systems.
The approach is based on a Thomas-Fermi-Dirac—-von
Weizsicker?! density-functional formalism. We first self-
consistently solve the effective mean-field potential for
the electrons for a given average electron density in a
confined two-dimensional geometry. This is achieved by
a direct minimization of the total energy functional.?2:23
With the effective potential, the transmission coeffi-
cients are then computed using a finite-element numerical
scheme for solving the Schrédinger equation and trans-
port properties are extracted. This approach allows us
to include the direct Coulomb, electron ion, as well as
the exchange-correlation interactions, and is completely
general as for the device geometries. Compared with the
one-dimensional method mentioned above, the savings
of computational effort result for the following two rea-
sons. First, instead of solving the Kohn-Sham equation,
we have used the direct minimization scheme, which is
much more efficient.?? Second, we do not solve the trans-
mission problem for each possible incoming wave sep-
arately, rather we compute the effective potential first
and then study the transmission problem, which includes
this effective potential. We have applied this approach to
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the study of transport through a stadium-shaped quan-
tum dot structure connected to two external quantum
wires. By comparing transmission coefficients with and
without electron-electron interaction, we conclude that
the interaction alters transport properties quantitatively
and, furthermore, the exchange interaction plays a very
substantial role.

The paper is organized as follows. In the next sec-
tion, a sketch of 2D Thomas-Fermi-Dirac—von Weizsacker
density-functional formalism is given with a simple
derivation of the von Weizsicker term for completeness.
In Sec. III, we use this formalism for the calculation
of electron density and potential profile for a stadium-
shaped quantum dot connected to two external quan-
tum wires. In Sec. IV, the transmission coefficients is
computed and results compared with those of the single-
electron approximation. Finally, a short summary is pre-
sented in Sec. V.

II. THE DENSITY-FUNCTIONAL FORMALISM

The total energy of a many-electron system in stan-
dard density-functional theory is given by the following
expression:

Eln] = El{%:}]
> L drep? (r) (—§v2) Gir) +UR, (1)

il

It

where
Uln] = Eee[n] + Eexch[n] + Ecors[n] + Eext[n] . (2)

Here, n = n(r) = Y, [4:(r)|? is the local electron density
at position r, computed from the occupied single-electron
wave functions ;. U[n] is the potential energy expressed
as a functional of the density n(r) in the local density
approximation. It includes the direct Coulomb energy
FEee, the exchange energy Fexch, the correlation energy
Ecorr, and Eey accounts for interaction with external
fields, which includes the electron-ion interaction. Here,
units are set such that e = 1 and A%/m* = 1, where
m* is the electron effective mass. Using parameters for
gallium arsenide, we have m* = 0.067m,, and dielectric
constant € = 13.18. Therefore, the 2D electrons have
an effective Bohr radius ap = eh®/m*e® = 104.1 A and
effective Rydberg R; = m*e*/2¢2h? = 5.25 meV. The
energy unit in the above equation is 2R} = 10.5 meV.
The ground state energy is obtained by minimizing
E[n], with respect to the electron density m, and this
leads to the well known Kohn-Sham equation.!® Instead
of solving the Kohn-Sham equation to minimize E[n], we
shall use an idea first proposed by Car and Parrinello,??
which minimizes E[n] by a direct method (see below).
Furthermore, we notice that in E[n] only the kinetic en-
ergy depends on the electron wave functions explicitly:

Bun = ¥ [arvie) (137) 0. @

thus, the computational effort in minimizing the energy
functional will be drastically reduced if Ey;, is also ex-
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panded in terms of the local electron density n(r). As
mentioned above, for solid state structural and elec-
tronic calculations, such a gradient expanded kinetic-
energy functional gives very good results compared with
both full wave function calculations and experimental
measurements.'®23 In the following, a brief derivation of
such an expanded kinetic-energy functional form is given
for the 2D electron gas.

Following the procedure given in Ref. 24, the kinetic
energy can be written in the form,

Eyin = //n(r)f(kplr —r'|)n(r')drdr’ , (4)

where kg is the Fermi momentum for the average electron
density ng of the system. If we consider a noninteracting
system with a density having only very small deviation
from the homogeneous gas caused by a small potential
perturbation v(r), the total energy of system can thus be
written as

Eioy = //n(r)f(kpfr —r'|)n(r')drdr’
+ / v(r)n(r)dr — E; / n(r)dr , )

where v(r) is the external field and Ey is the Lagrange
multiplier to keep the total number of electrons fixed.
Minimizing the energy functional, we get

2 / Flkelr — ' n()dr +v(x) —B; =0.  (6)

Assuming the perturbation form from the uniform den-
sity, i.e., n(r) = ng + An(r), we have the following two
equations:

2m0 /f(kp|r —|)dr' —E; =0, 7)

2 / F(krlr = ) An()d +v(x') =0, 8)
or in k space,
2F(k)AN(k) = -V (k) , (9)

where F(k), AN(k), and AV (k) are Fourier transforms
of f, An, and v, respectively. Comparing with the linear

response theory,25 we have
1
F(k) = —~ 10

where G(k) is the Green’s function?® and for large k,

G(k) = =1 ~ VI~ [@Fr/E)

2k% | 2kE  4kS
~2 Tttt e (11)

On the other hand when k is zero, from Ref. 25, G™1(0) =
m. Now we introduce the function w(k),

w(k) = G 1(k) — j + = (12)
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Thus, F(k) is rewritten as

1 ()+7rk o
2G(k) 4k% 4

Using the above expression, the kinetic energy can be
written as

Eyin = l//"n(r)w(h'—r'|)n(r’)drd1"
——/ n¥(r)dr + & /| k)|2—dk (14)

F(k) = (13)

Since for 2D homogeneous electron gas ng = k% /(27), we

have
by k 1
z / |n(k)[2ﬁdk= 1 / |Vn(r)[2d®
[Vn@)® s

~ 8 S (15)

where the last approximation is valid up to quadratic
order. Finally, we arrive at

Ey, = % [/n(r)w(lr - r'|)n(r')d3rd3r'

IVn(r)? s

where w(k) is given by Eq. (12). When the variation of
the density is slow, one has

/n(r')w(lr —r'|)d3’ = n(r) /w(|r —r'|)d3r’

=n(r)W(k=0) = —n(r) (17)

So the first two terms of Eq. (16) give the Thomas-
Fermi term for 2D electron gas and the last term is the
corresponding von Weizsacker correction; finally, we have

Frin = /dr[ n?(r) +,\|V;‘((:)”2], (18)
where A = 1/8.

The first term in the potential energy (2) is the direct
Coulomb interaction energy,

_ /dr/d n(r)n(r1)

r—r1|
For 2D electron gas, the exchange and correlation ener-
gies can be written as2®

Eexch = _/\mn3/2(r) ’
n3/2(r)
Eeorr = —0.9775 [ d y
cor / "1+ 7.8165n1/2(r)
where A, = 1.0638. The last term Fex; of (2) accounts

for contributions from external potentials. In our case,
it includes the potential from the positive charge back-
ground, whose charge density is such that the total net
charge is zero; it also includes the external confining po-
tential, which could be provided by metallic gating for
the device geometry.
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Although it is straightforward to include all the terms
listed above for the total energy functional, in the follow-
ing we shall neglect the correlation energy, because it is
numerically small compared with other terms. Collecting
all terms, the total energy is written as

En]= /dr [%nz(r) + )\IlnT—L(—(;_r))—lz — )\zn:’/z(r)]

19

where the last term gives Fey.

To obtain the electron density distribution of the
ground state the total energy functional E[n] is mini-
mized, with respect to n under the constraint that the
number of electrons is kept constant, i.e.,

/drn(r) = N. (20)

Since n is non-negative, it is often convenient to use x
with n = x? as the variable. Requiring

$E[x]/0x(r) =0 (21)
and from Eq. (19), we have
r')

r/|

2
21y —V3ix+2x / dr’ |>:_(

_3Azxz+vext(r) =0 )

(22)

which must be solved under the constraint (20).

For complicated two-dimensional device structures,
solving the nonlinear partial differential equation (22) is
difficult and inefficient. As mentioned in the Introduc-
tion, instead of solving this equation, we directly min-
imized E[n] using a simple steepest descent method by
iterating the local function x(r) until the total energy is
minimized. This is achieved by the following equation
subjecting to the constraint (20):

SE([x]
Sx(r) ’

where the function x(r) of the (m + 1)th iteration is ob-
tained from its values at the mth iteration. Here, A is
a “time” step for the iteration which was chosen small
enough to maintain the stability of the iteration proce-
dure, but large enough for fast convergence. Omne can
easily see that at convergence, i.e., x™*1(r) = x™(r),
Eq. (23) reduces to Eq. (21), thus this procedure is
equivalent to solving Eq. (22). Finally, after the elec-
tron density n(r), which minimizes E[n], is obtained, the
effective potential for the electrons can be computed,

XD = 4 m) _ A

(23)

Ve (r) = (Bee[n] + Eexch[n] + Fext[n]) . (24)

o
On(r)
Vegr will then be used to compute the transmission coef-
ficients and other transport properties of a device struc-
ture. In the next section, this formalism is applied
to study ballistic transport through a stadium-shaped
quantum-dot system. Boundary conditions for iterating
(23) will also be discussed.
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IIT. DENSITY AND EFFECTIVE POTENTIAL
OF A QUANTUM DOT

We now apply the approach outlined in the previous
section to calculate the effective potential of an open
stadium-shaped quantum dot. Recently, this structure
has attracted much attention®® because it provides a
testing ground for the studies of quantum chaos via bal-
listic electron transport properties. The schematic view
of the structure is shown in Fig. 1, in which the quantum
wires and the stadium-shaped dot are divided into five
regions labeled I-V.

When quantum wires are connected to a device struc-
ture, they form an open system where electrons are al-
lowed to flow in and out of the device. Here, we assumed
that the quantum wires extend far to the left of region I
and to the right of region V. We need to fix the boundary
conditions at the left end of region I and the right end of
region V, i.e., at the open ends of the leads to the quan-
tum dot. Note that in the quantum wires very far away
from the scattering region, the electron density distribu-
tion should be close to that in an infinitely long uniform
quantum wire. Thus, we may fix one of the boundary
conditions by n(zo,y) = nint(y), where ro = (o, y) is the
coordinates of the open ends, and niu¢(y) is the charge
density in an infinitely long quantum wire with the same
average density ng. Obviously, ni,¢ is only a function of
the y coordinate. As another boundary condition, we re-
quired that the charge densities match smoothly at the
open ends, Vn(r)|r=r, - & = 0, where & is the unit vector
along the z direction.?” With these boundary conditions,
the procedure outline in the last section can be carried
out.

To be specific, we have chosen the width of the quan-
tum wire @ = 10ag = 1041 A, the radius of the circular
part of the stadium is a/2, and the length of the rect-
angle part along y direction is 7a/5. To implement the
algorithm numerically, the regions I-V were discretized
with 5480 uniformly distributed grid points. The dis-
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FIG. 1. Schematic view of the stadium-shaped quantum
wire structure. Here, the width of the wire is a = 10ap
and the radius of the circular part of the stadium shape is
r = bap, with ap the effective Bohr radius, ap = 104.1 A.
The rectangular part of the stadium shape has a length 14ap.
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tances from the two open ends of the quantum wires to
the dot region are both 2a, while the width of the sta-
dium is a. At this distance, it is a good approximation
to apply the boundary condition to the two open ends of
the discretization region, as will be shown by the results
obtained in the following. The density distribution at
the two open ends was obtained by solving the density-
functional problem for a uniform quantum wire.

Figures 2(a) and 2(b) show the lateral density and po-
tential profile across a uniform quantum wire with an
average electron density no = 0.5/a% in unit of the effec-
tive Bohr radius ag = 104.1 A. The distance between the
2D electron gas and the positive background charge, i.e.,
the electrons-ions distance is taken as z = 3ap. Hard
wall boundary conditions are assumed at the walls for
the quantum wire, which provides confinement for the
electrons. The general feature of quantum wire den-
sity and potential are quite similar to results of a Kohn-
Sham density-functional approach obtained by Sun and
Kirczenow,'® where they considered the case of electron
confinement by pure Coulomb attraction from the pos-
itive ion charges. The effective potential is determined
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FIG. 2. Density and potential profiles along the y direc-

tion in the quantum wire. Length in unit of ap, potential
in the unit of 2R, = 10.5 meV. (a) The electron density.
Parameters used: average density no = 0.5/a%; distance be-
tween electrons and the positive charge background z = 3ag.
(b) The effective potential profile (solid line) corresponding
to the density in (a). The dotted line is the effective poten-
tial resulting from only the direct Coulomb interaction. The
dashed line is the exchange potential.
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by the combined profile of direct Coulomb potential, ex-
change potential, as well as the hard wall confining poten-
tial as one can see from Eq. (24). Also shown in Fig. 2(b)
are effective potential contributions from direct Coulomb
interaction, and the exchange potential due to the Dirac-
exchange term in Eq. (19). We can see that the exchange
term gives rise to a negative potential, while the direct
Coulomb interaction is positive and leads to a overall
positive potential for the quantum wire. For this uniform
quantum wire, we notice that the Dirac-exchange energy
results in a very flat negative potential, indicating that
a Hartree calculation should be a good approximation in
this case. It is clear that the direct Coulomb and ex-
change interactions are strongly affected by the distance
z between the electron gas and the positive ion dopant
charges, and also by the average linear electron density
n; in the quantum wire. With the decrease of z screen-
ing effects get stronger, leading to a reduction of direct
Coulomb energy and a growing relative contribution of
the exchange energy, which could even give an overall
negative effective potential inside the wire.

With the effective potential obtained, the electron sub-
band energy of the quantum wire can be computed. In
the unit of 2R}, the first and the second subband energies
are 5.492 and 5.549, respectively. The Fermi energy of
the quantum wire is determined by

2 [2m*(Ef—E,-)]1/2
| K -

E (25)

E;<E;

where Ey is the Fermi energy, E; is the ith subband
threshold energy, and n; is the linear density of the quan-
tum wire. We obtained E; = 5.494. The fact that the
Fermi energy is very close to the first subband threshold
energy is an indication of strong confinement due to the
hard wall condition. This is also true for smaller electron
densities. For my = 0.1/a%, corresponding to a linear
density of n; = 1.0/ap, the first and second subband en-
ergies are 0.985 and 1.076 respectively, while the Fermi
energy is Ey = 0.989, still very close to the first subband.

Having computed the density profile of a uniform quan-
tum wire thus fixing the boundary conditions as discussed
above, we can now iterate Eq. (23) for the energy func-
tional minimization of the entire structure including the
quantum dot. Typically convergence was obtained with
about 2000 iteration steps. Figure 3 is a plot of the den-
sity distribution in region II, III, IV, with no = 0.5/a%
and z = 3ap. The density profile in the leads becomes
uniform along the z direction very rapidly away from the
region III, indicating that the open boundary conditions
specified above are extremely well satisfied. Also, we no-
tice that the density variation is generally smooth and
small, except near the hard wall boundary, where den-
sity drops to zero. This suggests that the Thomas-Fermi-
Dirac-von Weizsacker formalism, which is based on the
assumption of small density variations, is an appropriate
approach for quantum wire structures even with sharp
geometry distortion like the one considered here.

Figure 4(a) shows the effective potential profile along
the line bisecting the quantum dot and perpendicular to
the wires, with and without the exchange term. It is
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FIG. 3. Three-dimensional plot of the electron density
profile (the vertical axis) for regions II, III, IV of Fig. 1. The
average density no and electron-ion distance z are the same
as in Fig. 2(a).

quite similar to that for uniform quantum wire, Fig. 2.
The potential inside the quantum dot is very smooth and
varying only slightly, except near the hard wall boundary,
where a narrow potential valley is created. This valley
has the effect of attracting electron to its positions, a
reflection of Coulomb repulsion. Figure 4(b) shows the

10.0 T T T T

(a)

9.0 -

70 # -

Veﬂ‘

60 :"'.‘ .
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40 |y

3.0 | 1 |
0.0 5.0 10.0 15.0

5.52 T T T T T

(®)

5.48 ! L L L !

10 15 20 25 30 35 40
X
FIG. 4. Lateral potential profiles with (solid line) and

without (dotted line) the exchange interaction. The parame-
ters no and z and units of axis are the same as in Fig. 2. (a)
Along the y direction bisecting the stadium-shaped dot. (b)
Along the z direction across regions II, III; IV on the center
line of the quantum wire.
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FIG. 5. Potential profiles for different electron-ion dis-
tances z = 3ap (solid line), z = ap (dotted line), and
z = 0 (dashed line). The average electron density is fixed
at no = 0.5/a%. The units are the same as in Fig. 2(a).

effective potential across the quantum-dot region along
the bisecting line of the quantum wire. The electron den-
sity inside the dot region is greater than that outside and
correspondingly there is a potential well inside the dot, as
shown in Fig. 4(b). This will affect the electron transport
behavior, as we will discuss later. We found that the ex-
change interaction does not seem to substantially change
the density distribution, but it contributes substantially
to the total energy. Another effect of the exchange is
that it makes the potential well along z-direction steeper
[Fig. 4(b)], thus affecting the transmission behavior.28
It is of practical interest to see how the changes in dis-
tance between the background ion charges and the elec-
tron gas will affect the results. We have calculated three
different cases with this distances to be z = 3ap, z = ap,
and the limiting case of z = 0, respectively, keeping aver-
age electron density no = 0.5/a%. As mentioned above,
this has considerable effects on the density and poten-
tial profiles in the dot. For larger z the screening effect
is reduced, thus, the direct Coulomb interaction pushes
electrons outward building a larger density near the wall
boundaries. This leads to a deeper and steeper poten-
tial valley near the wall boundary. Along the bisecting
line of the quantum dot in the z direction, Fig. 5 shows
the potential profile with z decreasing from z = 3ap to
z = 0. We found that the potential well structure inside
the dot changes to a potential barrier when the distance is
decreased.2® The general trend is that with the increase of
z the positive direct Coulomb potential increases rather
quickly, while the exchange is almost unaffected. We
conclude that the combined effects of confinement from
the walls of the quantum dot and the electron-electron,
electron-ion interactions can make rather different shapes
of the effective potential along the quantum wires cross-
ing through the quantum dot. This can cause important
differences in transmission through the structure.

IV. EFFECTS TO THE BALLISTIC TRANSPORT

In many cases the electron transport in nanostructures
at low temperature have been treated as a quantum bal-
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listic transmission problem, i.e., free of impurity scatter-
ing and electron-phonon interactions. Therefore, the bal-
listic transport problem is solely determined by the scat-
tering of electron from the confining potential of a specific
structure. In the single-electron approximation, the con-
fining potential is provided by the geometry boundary
of a nanostructure. With Coulomb interactions evalu-
ated within a mean-field picture, we may study ballistic
transport of an electron through the effective potential as
described in the last section. Since the effective poten-
tial is a combined result from external confinement, the
electron-electron and the electron-ion interactions, this is
a first approximation within the mean-field approach to
investigate the Coulomb effects to ballistic transport.

In order to solve the Shrédinger equation for the scat-
tering problem including a complicated potential, we use
a finite-element numerical scheme,3%3! which divides the
structure into probe regions and the scattering region
(quantum dot). The wave function inside the scatter-
ing region is expressed using finite-element expansion,
while the probe region can be solved numerically as a 1D
problem. Matching of the wave functions and their nor-
mal derivatives at the regional boundaries leads to linear
algebraic equations, which are solved to give transmis-
sion coefficients as well as other quantities of interests.
Usually about 3000 nodal points have been used in the
quantum-dot region for the finite-element discretization.
For details of this scheme, see Refs. 30, 31.

Figure 6 shows the transmission coefficients versus in-
cident electron energy with and without the Coulomb ef-
fects. We only calculated transmission coefficients within
the range of the first transport subband. The effective
potential is obtained for the average density ng = 0.5/a%
and electron-ion distance z = 3ap. To compare the
transmission coefficients of the two cases (with or without
the electron-electron interaction), we have shifted all the
quantum wire eigenvalues (the subband threshold ener-
gies) for the many-electron case by a constant factor, so

1.00 T T T

= o050 |-
0.00 L L L
1.00 125 1.50 175 2.00
kw/r
FIG. 6. Transmission coefficient including the Coulomb

effects (solid line) and the corresponding result of the single-
electron approximation (dotted line). The transmission coef-
ficients are plotted against kW/m, where k is determined by
the incident electron energy E, E = h%k?/2m*. W = 10ap
is the width of the quantum wire. The effective potential is
obtained for parameters z = 3ap and no = 0.5/a%.
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that the first subband threshold energy aligns with that
of the single-electron value E; = h®n2/2m*W?2. This
constant shift does not affect the physics. Figure 6 shows
that the energy range for electron transporting purely in
the first subband is smaller when Coulomb effects are in-
cluded. For the single-electron approximation, the first
subband is from kW/m = 1 to kW/m = 2, while it is
from kW/m = 1 to kW/m = 1.6 in the many-electron
case. The fact that the energy range of the first subband
transport can be changed significantly is a consequence
of the more general result that the eigenenergy spacing
of the quantum structure is changed after including the
Coulomb effects. Also, as we have seen in the last sec-
tion, the effective potential is always smoother than the
hard wall confinement alone, thus, the sharp constric-
tions and corners often seen in model calculations of bal-
listic transport will be rounded off by Coulomb effects.
These may have important implications for understand-
ing of many transport phenomena. For example, in the
study of quantum chaotic motion of electrons in a ballis-
tic structure,3:%'8 one uses the nature of the statistics of
quantum level spacings to classify the motion as regular
or chaotic.®® Since electron-electron Coulomb interaction
changes the single particle levels, it may alter the level
statistics, such that a nonchaotic billiard for a single elec-
tron may become chaotic, as the effective potential due
to many electrons can be quite different from the billiard
shape.

Besides the energy range change, there are more fluc-
tuations in the transmission coefficient (thus also in the
conductance) for the case with Coulomb effects, com-
pared with the generally smooth pattern of the single-
electron transport. The fluctuation is a result of quantum
interference and is determined by the scattering of elec-
tron wave from the effective confining potential of a par-
ticular structure. The greater fluctuation is an indication
of the effective potential variation for the many-electron
case, as opposed to the simple hard wall single-electron
confinement. Also in many circumstances, the transmis-
sion variations are related to the existence of quasibound
states (resonant states), this is especially true in cases
with sharp conductance peaks or dips.3* The more rapid
fluctuation thus may also suggest a richer quasibound
state spectrum when a many-electron effective potential
is included.

The solid line in Fig. 7(a) is the transmission curve
for a lower average electron density of ng = 0.1/a% or
equivalently 1.0 X 10! /cm?. We find that it is smoother
and with a larger energy gap between first and second
subband thresholds, compared with the higher density
case of ng = 0.5/a% (dotted line). With reduced elec-
tron density, the Coulomb effects are reduced and the
conductance of the structure should be closer to that of
the single-electron approximation, as observed here. As
discussed in the last section, a reduction of the electron-
ion distance also reduces the electron-electron Coulomb
interaction, due to stronger screening. This should have
the same effect as reducing no. In Fig. 7(b), we compare
the transmission coefficients for the same ng, but with
different 2. Indeed for the case with smaller distance
(solid line), z = ap, the transmission curve is smoother
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FIG. 7. (a) A comparison of transmission obtained us-

ing effective potentials for no = 0.1/a% (solid line) and for
no = 0.5/a% (dotted line) with z = 3ap. (b) A comparison
of transmission obtained using effective potentials for two dif-
ferent electron-ion distances z = ap (solid line) and z = 3aB
(dotted line), with the average density no = 0.5/a%.

and the energy interval between the first and second sub-
band threshold energy is larger, in comparison with the
case of z = 3.0ap (dotted line).

V. SUMMARY

We have studied the effects of many-electron Coulomb
interaction to the effective potential profile of an
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open two-dimensional quantum dot structure, using a
Thomas-Fermi-Dirac—von Weizsacker density-functional
formalism. A direct minimization of the total energy is
very efficient in obtaining the ground state energy and the
electron density profile. The method used here is com-
pletely general and is not restricted to two probe quan-
tum structures. An external magnetic field can also be
included at least at the Hartree level. The computational
effort is moderate.3®

Apart from the direct Coulomb interaction energy, we
found that the exchange interaction contributes signifi-
cantly to the effective potential. The average electron
density, as well as the distance between electrons and
positive charge background have substantial influences
on the effective potential. As the average density is in-
creased, the direct Coulomb interaction energy increases
rapidly, while the exchange interaction changes relatively
slowly and is more significant in the case of lower density.
The effects of the many-electron interaction on the ballis-
tic electron transport is studied by including the effective
potential obtained from the density-functional approach
into the scattering problem. The single-electron scatter-
ing by the effective potential inside the stadium-shaped
quantum dot is solved using a finite element numerical
approach. The transmission coefficient thus obtained is
compared to the corresponding result without the many-
electron effects. It is found that the energy interval be-
tween the first and second subband energy threshold has
changed significantly. Also, the fluctuation in the trans-
mission coefficients is quite different with or without the
many-electron potential. However, when the density of
the electron gas or the distance between electron gas and
the positive charge background is reduced, many electron
effects on the ballistic transport are reduced. In this case,
the feature of conductance variation is more close to the
results of a single-electron approximation.
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