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Electron-positron momentum density in diamond, Si, and Ge
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The electron-positron momentum densities in diamond, Si, and Ge are calculated using a first-principles
method. Comparison of the theoretical momentum densities with the experiment shows that the electron-
positron correlation effects are very important in Si and Ge, while this effect is negligible in diamond because
the electrons are tightly bound. Our analysis shows that only the upper two bands, which consissf the
hybridized orbitals, contribute to the structures at the low-momentum region of the momentum density. Dia-
mond does not show these structures at the low-momentum region is due to its smaller lattice constant and
weak electron-positron correlation effects.

I. INTRODUCTION so clearly seen in Si and Ge, have vanished in the case of
diamond®
Diamond, Si, and Ge all have a diamond lattice structure In the late sixties Erskine and McGervey experimented
as a result of thesp® hybrid orbitals forming tetrahedral with the nearly-free-electron model to explain the structure
bonding patterns which match the symmetry found in theof the momentum distributions in Si and &&his model
diamond structure. It is observed that diamond has the largegibes not take the bonding features or the orbitals, but cor-
band gap, and that this gap narrows from diamond to silicomectly samples thé dependence by taking the area of the
to germanium, and finally vanishes for tin, exhibiting a me-Jones zone along different crystallographic directions. With
tallic nature. This happens because the heavier the elemetiis simple model some of the features in the momentum
the more energy is required to promote an atom from thdlistributions are reproduced and ascribed to the polyhedral
ground state, the?p? configuration, to the bondingsp®>, ~ Shape of the Jones zone. However, this model could not ac-
configurationt count for the features in the low- and high-momentum re-
The angular correlation of positron annihilation radiations9ions of the momentum distributions. Moreover, the first 2D
(ACPAR) is a powerful method for studying the electronic ACPAR data on Ge showed that the momentum distributions

structure of solid$,because the positron mainly samples thestr?ngl¥hd?¥;]ated from th? ti'_mp'e jolr'.estﬁonlerfgjlgi’Rmd"
valence electrons. In particular this technique is helpful jncating that the success of this model in the re-

. . S . ults was largely a result of averaging in integration. How-
studying the covalaent b_ondlng featqres n dllamond,. Sh an&ever, Liu, Berko, and Mills, using the 2D ACPAR while
Ge because thep® orbitals are mainly distributed in the

. rving th me marked discrepancy for have foun
bond region. The electron momentum distributions alon observing the same marked discrepancy for Ge, have found

X o A ood agreement with the Jones zone symmetry in diamond.
various crystallographic directions in Si and Ge have bee Stroud and Ehrenreich were the first in the late sixties to

studied by a number of researchers from the early stage Qfresent the theoretical 1D ACPAR data in Si based on the
the apphcatlon6 of the one-dimensiongliD) ACPAR  phang structurd® In their method they used empirical local
measurements.® Apart from a few differences among the pseudopotentials to obtain the electron wave functions, and
data of several groups, the overall shape of the momentuxperimental electron charge densities to obtain the positron
distributions in Si and Ge are found to be the same. Thevave function. Their theoretical data had an excellent agree-
common features seen afe the momentum distributions ment with experimental data. The 1D ACPAR data on Ge
are highly anisotropic in different crystallographic directions, calculated with the electron wave functions obtained from
(i) there are temperature-dependent valleys a[df9g] and the empirical nonlocal pseudopotentials and the positron
[110] directions and a hill along thel11] direction, andiii)  wave function calculated in the frozen-core approximation
there are humps at the high-momentum region alidrig] also showed excellent agreement with the experimental
and [111] directions. Subsequent two-dimension&D) data!* However, since the momentum distributions in dia-
ACPAR measurements in Si and Ge by several grbips mond have not yet been calculated, the reason for the ob-
have confirmed the above findings. In general the threeserved difference in 2D measurements cannot be understood.
dimensional momentum density is very successfully recon- Fujiwara and co-workers proposed a many-body theory
structed from the two-dimensional ACPAR data, and showdor calculating the electron-positron interaction in a lowest-
many fine structures compared to that obtained from 1D andrder ladder graph in a lattice on the basis of the two-band
2D ACPAR data. It is observed that the main features insystem'? From this theory it was concluded that there is an
ACPAR and momentum density data in Si and Ge are almostnhancement of the annihilation rate on the zone face, and
the same, and can be interpreted in a similar way. Howevethat the high-momentum components are dehanced due to
the momentum distributions in diamond are quite differentintraband and interband transitions, respectively. Comparison
from those in Si and Ge. The valleys and peaks in the lowof the experimental 1D ACPAR data with theory based on
momentum region of the momentum distributions, which areghe independent particle model approximati¢if®M) of
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Stroud and Ehrenreich confirmed this theoreticaltron wave function from its initial shape and the enhance-
prediction!? In Ge this many-body effect was also studied, ment of densities of individual electronic states on the posi-
and a similar conclusion was arrived*aBased on this pic- tron site}* In the IPM approximationy,,= 1. Although the
ture Liu, Berko, and Mills suggested that the reason for thdorm of y,(r) is well known in metals, its form in semicon-
flattened momentum density in diamond is because the vaductors is not yet known. The individual core states lie
lence electrons are tightly bound to the nucleus, and do nateeply below the bottom of the conduction band. Therefore
participate to the same extent in the electron-positron intery,, (r) is replaced byy(r) for calculating the momentum
action. We point out, however, that such explanations, irdensity for core states. In the present work the contact den-
regard to the low-momentum regions of the momentum density of Puskaet al., which is applied to calculate the positron
sity, can at best be only one factor in explaining the compleifetime in various semiconductors, is usedGilgien et al.
fine structures found in Si and Ge. The reason for this is thahave used thig(r) for the valence electrons in E(.2) to
the bonding mechanisms in the interstitial regions are alsaalculate the electron-positron momentum denity.
reflected in the low-momentum region of the momentum dis- The calculation of the electron and positron wave func-
tributions, the different structures in the momentum distribu-tions needs the complete many-body problem of interacting
tions for a particular direction being ascribed to the nature oklectron and positron treated in the two-component density-
bonding in that directiod® For cubic semiconductors it has functional theory. In the present work a single positron in
been shown that the valleys arise from the admixturerof many-electron system is taken into account. For a delocal-
and 7 bonds, while the peaks are due to purébonding. ized positron the positron density is vanishingly small at ev-
Therefore it must be concluded that the features in the lowery point of the infinite latticé’ so that the two-component
momentum region are due to both the bonding mechanismgensity-functional theory reduces to the following practical
and the electron-positron many-body effects. scheme. The self-consistent electronic structure is first calcu-

The present work, using the first-principles calculation,lated without the positron, and then the electron charge den-
aims to see whether the vanishing of the structures in theity is used to calculate the long-range attractive electron-
momentum densities in diamond is due to band-structure efpositron Coulomb potential and the short-range correlation
fects or to correlation effects. To do this, a band-by-bandotential.
momentum densities are calculated in diamond, Si, and Ge. We have used thab initio pseudopotential technique in
This is because the band-by-band valence charge densitiestite momentum space formalism to calculate the electron
Si computed in the pseudopotential theory have shown thatave functions. In this calculation, the norm-conserving
the third and fourth bands asg® hybridized and participate ionic pseudopotentials of Bachelet, Hamann, and Sehlu
in bonding, whereas the first band is isotropic and the secondre used® The exchange-correlation potential is of
band lies in between these two types. Comparison of th€eperley-Adler type, as parametrized by Perdew and
theoretical momentum density based on the IPM with thezunger*>?° The electron wave function can be described as
experimental momentum density will clearly separate the ef-
fect of the electron-positron interaction effects in diamond, 1 (K G) 1
Si, and Ge. wnk<r>=T§ Co(G)e ke, 23

In Sec. Il the method of calculating the ACPAR and mo- Q
mentum density is presented. In Sec. Il the calculated 10wvhere the symbols have their usual meanings.
ACPAR will be compared with the available experimental The positron-ion potential is calculated in the frozen-core
data. The calculated momentum densities will be comparedpproximation, which considers a repulsive Coulomb poten-
with the experimental data to bring out the electron-positrortial term due to the nucleus and an attractive potential due to
many-body correlation and the electron bonding features. Itthe core electron&: Although this potential is divergent at

Sec. IV we summarize the conclusions of this work. the origin, the positron wave function can be represented by
plane waves like the electron wave function because it has no
Il. THEORY oscillations in the ion core region. The electron-positron cor-

) ) ] relation potential is of Arponen-Pajanne type, as param-
The two-dimensional angular correlation data are eXwetrized by Boronski and NieminéA?* We have also taken
pressed ds the factor arising from the band gap of the semiconducfors.
The thermalized positron wave function is expressed as

N(px,py)=f p?(p)dp,, (2.) 1
\P+(r)=\/—5% D(G)e'®", (2.4)

where the electron-positron momentum density is given by
The two-photon momentum density in E.2) in the IPM

2
p2y(p)=(%) E Mk f eP Iy . (r) can be reexpressed in terms of E(&3) and(2.4) as
™ nk
1 2
2 2Y(p)== C(K)D(G—K
T (O 22 PY(P)= 52 M | 2 CaK)D(G=K)
X 8(p—k—G). (2.9

HereV . (r) andW¥_(r) are the occupied electron and posi-
tron wave functions, respectively, ang, is the occupation The positron wave function in the presence of the electron-
probability. v, (r) describes both the distortion of the posi- positron correlation can be expanded like in E2j4) as
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1 ' the cubic harmonic function is expressed as a linear combi-
T, (r)Vy(r)= \/——E D" G)e'C . (2.6)  nation of spherical harmonic functions as
O°G
|
Traditionally the momentum density is either calculated di- Ki=aloYio+ > al,——Yim+Yi_m), (2.19
rectly from EqQ.(2.5) or in the symmetry-related angular mo- m=1 \/E

mentum components as done by Seth and Elli; the o : . . .
present work we have adopted a recently developed SCher?vge?ieslng;:gngglsuh:s the various irreducible representations

where the symmetry-related angular momentum componen Like the two-dimensional angular correlation data de-

of the momentum density are calculated using electron angcribed in Eq(2.1), the one-dimensional angular correlation
positron wave functions in the plane-wave expansio iz, 9

n .

basis?®?% In this approach the autocorrelation function, data are given by

which is the Fourier transform of the momentum density, is ,

calculated first: N(pz)=f f sz(p)dpxdpyzh'lz 9 (PK|(B, @),
I

_ (2.1
BZ’(r)=f p?¥(p)e’"d3p. (2.7)

Substituting Eq(2.5) into Eq. (2.7), we obtain

where

, gn(pz):JO pii(P)Pi(p,/p)dp,, (2.17
1 .
2Y(r)= — _ i(k+G)-r
B(r) Q% 77”"% ‘; Cnk(K)D(G=K)) e The core momentum density can be calculated replacing the
(2.9 Bloch wave function by the free-atom wave function in Eq.

. . . . (2.2), which will take the form
For incorporating the enhancement factor into this expres-

sion, D(G) is replaced byD®*™G). The factore'*® " can arle _ 2
be expanded in spherical harmonics as pS(p)= 8.3 2 )\if V()W (r)ePrddr] ,
I

(2.18

i(k+G)-r_ e *
elr® _477% (R +GINYim(20) Yim(Qicr ). where the summation is over all different core states. One
(2.9 can notice that we have taken a faciqrwhich represents
o o ) the partial positron annihilation rate. This factor was recently
Substituting this into Eq(2.8), we obtain used by Alataleet al.to account for the proper weights of the
contribution of each orbita®

B2(r)= 2, Bf(N)Vin(), (2.10 ()
I
)\i:f P+(r)7(f)wdf- (2.19
where P
) In this equationp(r) and p.(r) represent electron and posi-
4 tron densities, respectively. In the IPM approximatignis
2Y ()= il _ )
Bim(r) Q' % 7’““% ; CrdK)D(G=K) taken to be unity. We have taken the free-atomic orbitals of
_ Clementi and Roetti in this calculatidi.
X1 (k+GINYi(Qxs ) (2.11) We have taken the lattice constants of diamond, Si, and

Ge to be 3.56, 5.431, and 5.65 A, respectively. For both
positron and electron wave functions in Si and Ge, 600 plane
waves have been taken, while for diamond 800 plane waves
were found necessary. Tlkesummation was carried out in
the special point scheme of Chadi and Cohen using 60
pzy(p)zj B2¥(r)e P "d%r. (2.12  points¥®
The momentum density without any core contributions
Expandinge """ in a similar manner that in Eq2.9), and  has a sharp cutoff at the Jones zone face, whereas the mo-
substituting in Eq(2.12), we obtain mentum distribution, whether calculated for 1D or 2D
ACPAR methods, falls slowly. As a result of the sharp drop it
) 5 is not a straightforward task to obtaipZ2(p) from the
p y(D)ZIE Pim(P)Yim(Qp), (213  Fourier-Bessel transform method, because outside the zone
" face region there will exist unphysical auxiliary oscillations
where in the momentum density. These oscillations depend very
much on the range af taken in the Fourier-Bessel transfor-
YN [P a2y ’ mation, and with appropriately largevalues the oscillations
Pim(p)=4m(—1) o Bim(Nii(qr)radr.  (2.14  can pe minimized, but never reduced identically to zero at
high moments. An optimal procedure here is to use a non-
In this calculation cubic harmonic functions consistent withnegativity constraint in the Fourier-Bessel transform so as to
the Oy, group are used. Following Mueller and Priesttéy, obtain the appropriate momentum density. In the present

For including the enhancement factor into this expression
one needs to replac®(G) by D*™(G) given in Eq.(2.6).
Inversion of Eq.(2.7) yields
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Momentum Distributions [Arb. Units]
Arb. Unit

Momentum Density (Arb. Units)

il [111)

P, [mradj
FIG. 1. Experimental and theoretical 1D ACPAR along|th&0]
direction of Si. The solid and dashed curves represent the theory
with and without inclusion of correlation effects, respectively, while
the experimental data of Fujiwara and Hyodo are shown by solid
dots.

0 5 10 15

work we have used the range 1ofn all BZ(r) calculations P [mrad] P [mrad]

to be 51 a.u., with 0.1 a.u. steps, and found that the oscilla-

tions are small enough to be negligible. The total momentum FIG. 3. Experimental and theoretical momentum densities pro-
density is a combination of angular-momentum-dependenected along th¢100], [110], and[111] directions in diamondleft)
momentum densitie,sfn”{(p), and needs a convergence test asand Ge(right). The solid and dashed curves represent the theory
far as the number of angular momenta taken into consideith and without inclusion of correlation effects, respectively, while

ation is concerned. From our experience we have found thdfe experimental data of Liu, Berko, and Mills are shown by solid
dots.

the first four angular momentum compone(itsO, 4, 6, and
| 8) are sufficient to reconstruct the total momentum densities
| in all cases.

The theoretical and experimental 1D ACPAR data are nor-
malized to unity for comparison. The theoretical valence and
core momentum densities along different crystal directions
are added, and then both the theoretical and experimental
momentum momentum density data are normalized to unity
for comparison.

0.04 -

0.00

B¥(2)

Ill. RESULTS AND DISCUSSIONS

The electron-positron correlation effect is seen most
clearly along thg 110] direction, with the zone face pointing
in this direction. Thus, in general, along this direction there
- 1 is a drop in the momentum distributiértComparison of the
r o 1 theoretical 1D ACPAR data calculated in the IPM approxi-
0 5 10 15 mation with the experimental data at the zone face reveals
Z@u) the elegtron-positron enhancement efﬂécﬁo_wever, some
precautions are necessary to preserve this information in the
FIG. 2. Experimental and theoretical two-photon autocorrelation€Xperimental data while taking measurements. Specifically
function along the[110] direction of Ge. The solid and dashed the sharp slope in the momentum distribution at the zone
curves represent the theory with and without inclusion of correlaface is both smeared by the convolution of the angular reso-
tion effects, respectively, while the experimental data of Fujiwaralution of the spectrometer and the positron thermal motion.
and Hyodo are shown by solid dots. In order to avoid these problems Fujiwara and Hyodo took a

-0.04 -
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o .diamond with the normal along t810] direction. The dashed line
FIG. 4. Calculated momentum densities and the countermap iNenotes the Jones zone.

Ge with the normal along thgd10Q] direction. The dashed line de-

notes the Jones zone. high-momentum region due to the dehancement effect. How-

ever, when correlation effects are included, the agreement
high-resolution 1D ACPAR measurement at low temperaturdetween experiment and theory in this region is excellent,
to see the effect of electron-positron enhancement at the zom®nfirming the dehancement of the core momentum distribu-
facel? These authors compared their data with the location. With regard to the momentum distribution at the zone
pseudopotential theory of Stroud and Ehrenréftim, which  face the agreement is not good, showing the same fall with
core contributions were not included. Since our calculationand without the enhancement factor. This indicates that the
based as it is on thab initio method, contains all known enhancement prescription of Gilgien al. is not appropriate
physical interactions together with the electron-positron enfor valence electrons. Finally we note that our theory does
hancement factor, it is worthwhile comparing our theory withnot explain the small hump seen at 9.5 mrad in the experi-
the experimental data. The unit-normalized 1D ACPAR datanental data which is attributed to the positron-ion interaction
calculated with and without the correlation effect are pre-by Arutyunov®
sented in Fig. 1 together with the unit-normalized experi- The other method of looking at the enhancement effect is
mental data of Fujiwara and Hyodo. The theory is seen tdo verify the zero positions of the autocorrelation function
reproduce the main features of the experimental data wellong the[110] direction. It is known that the data based on
with the inclusion of correlation effects, showing betterthe IPM approximation show zero positions exactly at the
agreement with the experimental data in the low-momentuntattice points, while the same for the experimental data are
region. Of great interest is the observation that in the highshifted to the righf-**In Fig. 2 two-photon autocorrelation
momentum region the calculation without correlation effectsdata are presented for our present theory and the experimen-
reveals a departure of the theory from the experiment at th&al data of Fujiwara and HyodS.We once again observe
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FIG. 6. Calculated momentum densities in Ge with the normal alondj1ib@ direction for the first, second, and fourth bands.

that the zero positions in the experimental data are shifted tm the low-momentum region; we shall comment on this be-
the right, and more importantly that the theoretical data withow. The higher-momentum broadening in diamond com-
and without the correlation effect as prescribed by Gilgienpared to Ge is simply understood in terms of the smaller
et al. show the same zero positions. lattice constant. Surprisingly, however, in diamond with its
In ACPAR studies the momentum density is always inte-simpler core contribution, the mismatch between theory and
grated along some crystal axes, and the detailed nature of tlexperiment is more prominent in the high-momentum region
correlation effects is consequently lost when a comparison ithan in Ge. It is interesting to note from Fig. 3 that the core
made between theoretical and experimental data. Thereforepntributions is isotropic neither in diamond nor in Ge, a fact
in Fig. 3 we have compared our theory with the experimentathat is difficult to explain on any theoretical basis, and which
momentum densities for diamond and Ge along [tb@0],  we ascribe to a possible systematic error in the experimental
[110], and[111] projections as obtained by Liu, Berko, and data of the high-momentum region. A notable difference be-
Mills.® In both diamond and Ge, along all projections thetween the momentum density data of Tanigdwafa Fig. 6 of
theoretical data with correlation effects show slightly moreRef. 8 strengthens the view that systematic errors are
momentum broadening than without correlation effects. It ispresent in the data of Liu, Berko, and Mills. From the above
noted that in Ge both theory and experiment show significanbbservation of the 1D and 2D ACPAR data, it is clear that the
dips in the low-momentum regions for th&00] and[110] present calculation cannot explain the sharpness of the mo-
projections, whereas in contrast the experimental data alongentum density. The simple conclusion is that the enhance-
the [111] projection show no dip, in disagreement with ment factor of Gilgienet al. cannot be applied to valence
theory where one is present. Another remarkable feature islectrons is semiconductors. As a final point we mention that
that the momentum broadening in the experimental datéor diamond the theoretical data without the enhancement
along[100] and[111] projections for both diamond and Ge is factor also have a flat top as in the experimental data sug-
less than that predicted by theory, while the exact oppositgesting, that the electron-positron correlation effect for va-
pertains to thg¢110] projection. Figure 3 also reveals an im- lence electrons is not so important in diamond because the
portant difference between diamond and Ge, in that both thelectrons are more tightly bound. Calculations of the effect
experimental and theoretical data for diamond show no dipf the correlation potential on the wave function and the



53 ELECTRON-POSITRON MOMENTUM DENSITY IN DIAMOND. .. 1257

i Hf | ', fw
i "u’f "l.“ﬂ

|!"“h : ',u..,»:,‘

i mmmu’;‘,,,,,','}},m,,": i
i

i ,'
mlmmmum } |1',l
L

o
I""""c"i'
'll."y".'ﬁ'
I ,',|
'l

I

i

iy
““’wmm, it

i i 'h'l':

LJJ fu’:mmf,”,‘ﬂ’!n,'u* ml}m |
” J?Wa” 'I:'"".‘l'l"l'u
ﬂﬂ‘u ” I, I' mm
H""?"Iﬂ“’ i

]l
D
.‘;:,

ﬂ I
"m«q M"‘m

l
m ,a*"mm \{\‘1‘“ ‘
|},‘.’f«n‘»’ ‘n'\\q‘
’ "',’1." .‘fq'o'a‘n':’:'m“\n‘
cl"H
:‘ u‘t'“' Mn‘.\‘“

n""n'?n'u'.‘.'»‘?»‘u

t i
,'o'o:::.‘.‘.,‘.'.' .

WNN
i mn,ﬂl I|| 'm"‘"l""":l"“'.l':.:‘ln.l'"ll':""
M m,, / ; ““'||“ i
il f!ﬁ'.':!ﬂlﬁf;,'ﬁ&‘siiﬁ}'}‘ﬁuﬁ‘ﬂ“ i

FIG. 7. Calculated momentum densities in diamond with the normal alonfl®@ direction for the first, second, third, and fourth
bands.

positron lifetimes in diamond, Si, and Ge also show that thehat although our calculations do not explain the detailed
effect of correlation on diamond is much smaller than on Sistructure of the experimental data, they do correctly give the
and Ge*2 dip and valley structures found at the peak in Ge and flat top
With regard to the structure of the momentum density inin diamond. In order to understand this, in Fig. 6 we have
the low-momentum region, Chiba and Akahane in their lin-plotted for Ge the contributions from each band to the mo-
ear combination of the atomic orbitals CAO) calculation  mentum density. From this figure the first band is seen to be
noted that the upper three bands are mamlgtates, and isotropic, and cannot contribute to the observed structure.
have suggested this will lead to the inversion of orbitals inFurthermore, while the second band has low momentum
the nearest-neighboring sites, the momentum density frorpeaks, they are directed in th&00] direction, and thus we
two sites canceling each other and contributing very little toconclude that this band also does not contribute to the ob-
the total momentum densify. Saito, Oshiyamo, and Tani- served structure. The third and fourth bands are the only ones
gawa, exploiting this idea, were able to explain the structureéhat contribute to the shape of the features seen at the low-
of the peak positions in the momentum density using groupmomentum region in the momentum density data. Figure 7
theoretical method® We point out here, however, that the shows the contributions from each band in diamond. The
same reasoning would also lead to the expectation of suckame general picture emerges of the first band being isotro-
peaks being present in diamond, where experimentally thepic, the second band being symmetric about[tH#)] direc-
are not observed. Although we have not been able to take thé&n, and the third and fourth bands exhibiting symmetry
correlation effects for the valence electrons correctly intoabout the[110] direction. However, the structures are much
account in our calculations, we have successfully obtainesveaker than for Ge, giving an overall flat isotropic momen-
structures at the peak in the momentum density data, and thism density.
leads to a much clearer interpretation arising in terms of the The above structures seen in the third and fourth bands of
electron bonding. both Ge and diamond are easily understood by considering
We show the momentum density plot for both Ge andthe nature of the bonding, the latter having a strong influence
diamond in Figs. 4 and 5, respectively. These plots are to ben the low-momentum region of the electron momentum
compared with the experimental data of Liu, Berko, anddensity. In cubic semiconductors it has been shown that there
Mills® and Tanigawacf. Fig. 6 of Ref. 8. It may be seen is a(p,p) bond at the first bond length, and that the interac-
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FIG. 8. Calculated anisotropic momentum densities in(Igg)
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FIG. 9. The momentum density at th€00] projection for dia-
mond and Ge calculated at the lattice constant of 3.56 A.

comes a dip. We have obtained the anisotropic momentum
density data by dropping tHe=0 contribution in Eq(2.13),

and show in Fig. 8 the contour plots of the momentum den-
sities in Ge and diamond. As expected, the peak and dip
positions are seen both in Ge and diamond. However, the
small lattice constant in diamond causes a much stronger
overlap of thesp® orbitals compared to Ge, so that in mo-
mentum space the diamond data show a more diffused be-
havior than in Ge.

Recently Benkabouet al. have calculated pressure-
dependent electron-positron momentum densities in Si, and
found that with decreasing lattice spacing the momentum
densities become flattened at the t6@he reduction in the
lattice constant expands the momentum distribution and thus
affects the peak positions of the momentum density. The
bonding strengths of the and 7 bonds also change signifi-
cantly. These two changes combine to alter the shape of the
momentum density data. To illustrate the effect of lattice
spacing, in Fig. 9 we have shown the momentum density in
the [110] direction, with the lattice constant of Ge replaced

and diamondright) are shown with positive and negative contours by that of diamond. In the same figure we have also plotted
denoted by solid and dashed lines, respectively. The dotted linghe momentum density of diamond. From this comparison it

denotes the Jones zone.

tion of the second-neighbdp,p) bonds is equivalent to in-
troducing a(p,p)7* bond between neighboring atortsAs a
result of this there is a stron@,p)c bond along thd111]
direction, and an admixture dfp,poc and (p,p=* bonds

along the[110] directions. Pattison, Hansen, and Schneidet
have shown that in the anisotropic 3D autocorrelation func
tion in diamond and Si Compton profile data there is a dip a

the first bond length along thEl11] direction due to the

(p,p)o bond, and a peak at the second bond length along th

[110] direction due to thép,p)7 bond*® Since the momen-

is clear that the momentum density of Ge has a greater mo-
mentum spread than that of diamond, indicating that simple
lattice scaling is not strictly valid. Moreover, the momentum
density in Ge shows oscillations which arise from the fact
that the lattice constant of Ge cannot be reduced to such a
small value without the crystal structure changifidiever-
heless an important conclusion is drawn that the present
calculation shows that with a compressed lattice constant the
ip at the low-momentum region in the momentum density
vanishes. The flattening in the peak in diamond might arise
fé;om its small lattice constant.

IV. CONCLUSION

tum density is obtained as a Fourier transform of the 3D

autocorrelation function, the dip along th#&11] direction
becomes a peak, and the peak along[fti] direction be-

In this work the momentum densities of diamond and Ge
and the 1D ACPAR of Si are carried out. The 1D ACPAR
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shows that the enhancement factor as proposed by Gilgighat the core-orthogonalization effect which is neglected in
et al. is not correct. However, for core electrons this is aour calculation is not so important for the momentum density
correct method. The analysis shows that the electron-positrostudies, because the positron avoids the core region. The
enhancement effect is quite necessary to explain the sharpanishing of the dip in diamond could arise from its small
ness of the momentum densities. Unfortunately such a forattice constant and weak electron-positron interaction. Work
mula does not exist at present, and is very much required tg in progress to separate the effect of the ionic bond on the

formulate a formula because there are currently much activmomentum density in compound semiconductors.
ity in momentum distribution studies. Detailed studies of the
enhancement factor in metals have shown that both the den-

sity parameterg and the electron energids,, above the
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