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Viscous dissipative effects in isotropic brane cosmology
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We consider the dynamics of a viscous cosmological fluid in the generalized Randall-Sundrum model for an
isotropic brane. To describe the dissipative effects we use the Israel-Hiscock-Stewart full causal thermody-
namic theory. In the limiting case of a stiff cosmological fluid with pressure equal to the energy density, the
general solution of the field equations can be obtained in an exact parametric form for a cosmological fluid
with a constant bulk viscosity and with a bulk viscosity coefficient proportional to the square root of the energy
density, respectively. The obtained solutions describe generally noninflationary brane worlds, starting from a
singular state. During this phase of evolution the comoving entropy of the Universe is an increasing function
of time, and thus a large amount of entropy is created in the brane world due to viscous dissipative processes.
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I. INTRODUCTION

The idea@1,2# that our four-dimensional Universe migh
be a three-brane embedded in a higher-dimensional s
time has recently attracted much attention. According to
brane-world scenario, the physical fields in our fou
dimensional space time, which are assumed to arise as
tuations of branes in string theories, are confined to the th
brane, while gravity can freely propagate in the bulk spa
time, with the gravitational self-couplings not significant
modified. This model arose from the study of a sing
3-brane embedded in five dimensions, with the 5D me
given byds25e2 f (y)hmndxmdxn1dy2, which can produce a
large hierarchy between the scale of particle physics
gravity due to the appearance of the warp factor. Even if
fifth dimension is uncompactified, standard 4D gravity is
produced on the brane. Hence this model allows the pres
of large or even infinite noncompact extra dimensions a
our brane is identified to a domain wall in a five-dimension
anti–de Sitter~AdS! space time.

The Randall-Sundrum model was inspired by superstr
theory. The ten-dimensionalE83E8 heterotic string theory,
which contains the standard model of elementary parti
could be a promising candidate for a description of the r
Universe. This theory is connected with an 11-dimensio
theory, M theory, compactified on the orbifoldR103S1/Z2
@3#. In this model we have two separated ten-dimensio
manifolds. For a recent review of the dynamics and geo
etry of brane universes see@4#.

The static Randall-Sundrum solution has been extende
time-dependent solutions and their cosmological proper
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have been extensively studied@5–16#. In one of the first
cosmological applications of this scenario it was pointed
that a model with a noncompact fifth dimension is potentia
viable, while the scenario that might solve the hierarc
problem predicts a contracting Universe, leading to a vari
of cosmological problems@17#. By adding cosmological con
stants to the brane and bulk, the problem of the correct
havior of the Hubble parameter on the brane has been so
by Cline et al. @18#. As a result one also obtains norm
expansion during nucleosynthesis, but faster than normal
pansion in the very early Universe. The creation of a sph
cally symmetric brane world in AdS bulk has been cons
ered, from a quantum cosmological point of view, with t
use of the Wheeler-de Witt equation, by Anchordoquiet al.
@19#.

The effective gravitational field equations on the bra
world, in which all the matter forces except gravity are co
fined on the 3-brane in a five-dimensional space time w
Z2-symmetry, have been obtained by using an elegant g
metric approach, by Shiromizuet al. @20,21#. The correct
signature for gravity is provided by the brane with positi
tension. If the bulk space time is exactly anti–de Sitter,
nerically the matter on the brane is required to be spati
homogeneous. The electric part of the five-dimensional W
tensorEIJ gives the leading-order corrections to the conve
tional Einstein equations on the brane. The four-dimensio
field equations for the induced metric and scalar field on
world volume of a 3-brane in the five-dimensional bulk wi
Einstein gravity plus a self-interacting scalar field have be
derived by Maeda and Wands@22#. The effective four-
dimensional Einstein equations include terms due to sc
fields and gravitational waves in the bulk.

The linearized perturbation equations in the generali
Randall-Sundrum model have been obtained, by using
covariant nonlinear dynamical equations for the gravitatio
and matter fields on the brane, by Maartens@23#. The nonlo-
©2001 The American Physical Society17-1
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cal energy density determines the tidal acceleration in
off-brane direction and can oppose singularity formation
the generalized Raychaudhuri equation. Isotropy of the c
mic microwave background may no longer guarantee
Friedmann-Robertson-Walker~FRW! geometry. Vorticity on
the brane decays as in general relativity, but nonlocal b
effects can source the gravitomagnetic field, so that ve
perturbations can also be generated in the absence of vo
ity.

A systematic analysis, using dynamical systems te
niques, of the qualitative behavior of the FRW, Bianchi ty
I and V cosmological models in the Randall-Sundrum bra
world scenario, with matter on the brane obeying a baro
pic equation of statep5(g21)r, has been realized by Cam
pos and Sopuerta@24,25#. In particular, they constructed th
state spaces for these models and discussed what new c
points appear, the occurrence of bifurcations and the dyn
ics of the anisotropy for both a vanishing and nonvanish
Weyl tensor in the bulk.

All these investigations of brane cosmological mod
have been performed under the simplifying assumption o
perfect cosmological fluid. But in many cosmological situ
tions an idealized fluid model of matter is inappropriate,
pecially in the case of matter at very high densities and p
sures. Such possible situations are the relativistic transpo
photons, mixtures of cosmic elementary particles, evolut
of cosmic strings due to their interaction with each other a
surrounding matter, classical description of the~quantum!
particle production phase, interaction between matter and
diation, quark and gluon plasma viscosity, etc. From a ph
cal point of view the inclusion of dissipative terms in th
energy-momentum tensor of the cosmological fluid seem
be the best motivated generalization of the matter term of
gravitational field equations.

The first attempts at creating a theory of relativistic flui
were those of Eckart@26# and Landau and Lifshitz@27#.
These theories are now known to be pathological in sev
respects. Regardless of the choice of equation of state
equilibrium states in these theories are unstable and in a
tion signals may be propagated through the fluid at veloci
exceeding the speed of light. These problems arise due to
first-order nature of the theory, that is, it considers only fir
order deviations from the equilibrium leading to parabo
differential equations, hence to infinite speeds of propaga
for heat flow and viscosity, in contradiction with the prin
ciple of causality. Conventional theory is thus applicab
only to phenomena that are quasistationary, i.e., slowly va
ing on space and time scales characterized by mean free
and mean collision time.

A relativistic second-order theory was found by Isra
@28# and developed by Israel and Stewart@29# into what is
called ‘‘transient’’ or ‘‘extended’’ irreversible thermodynam
ics. In this model deviations from equilibrium~bulk stress,
heat flow, and shear stress! are treated as independent d
namical variables, leading to a total of 14 dynamical flu
variables to be determined. However, Hiscock and Lindbl
@30# and Hiscock and Salmonson@31# have shown that mos
versions of the causal second-order theories omit certain
vergence terms. The truncated causal thermodynamic
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bulk viscosity leads to pathological behavior in the late U
verse while the solutions of the full causal theory are@32# ~a!
for stable fluid configurations the dissipative signals pro
gate causally,~b! unlike in Eckart-type theories, there is n
generic short-wavelength secular instability, and~c! even for
rotating fluids, the perturbations have a well-posed init
value problem. For general reviews on causal thermodyn
ics and its role in relativity see@33# and @34#.

Causal bulk viscous thermodynamics has been ex
sively used for describing the dynamics and evolution of
early Universe or in an astrophysical context. But due to
complicated character of the evolution equations, very f
exact cosmological solutions of the gravitational field equ
tions are known in the framework of the full causal theo
For a homogeneous Universe filled with a full causal visco
fluid source obeying the relationj;r1/2, exact general solu-
tions of the field equations have been obtained in@35–37#. In
this case the evolution of the bulk viscous cosmologi
model can be reduced to a Painleve-Ince type differen
equation, whose invariant form can be reduced, by mean
nonlocal transformations, to a linear inhomogeneous o
nary second-order differential equation with constant coe
cients @38#. It has also been proposed that causal bulk v
cous thermodynamics can model on a phenomenolog
level matter creation in the early Universe@36,39#. Exact
causal viscous cosmologies withj;rs have been obtained
in @40#.

Because of technical reasons, most investigations of
sipative causal cosmologies have assumed FRW symm
~i.e., homogeneity and isotropy! or small perturbations
around it@41#. The Einstein field equations for homogeneo
models with dissipative fluids can be decoupled and the
fore are reduced to an autonomous system of first-order
dinary differential equations, which can be analyzed qual
tively @42,43#.

It is the purpose of the present paper to investigate
effects of the bulk viscosity of the cosmological matter flu
on the dynamics of the brane world. Since the effects of
extra dimensions and also the viscous effects are more
portant at high matter densities, we restrict our analysis
the extreme case of a stiff~Zeldovich type! cosmological
fluid, with pressure equal to the energy density. Hence
most important contribution to the energy density of the m
ter comes from the quadratic term in density, and during t
period the energy density of matter is proportional to t
Hubble parameter, in opposition to the standard general r
tivistic case with energy density proportional to the square
the Hubble parameter. In this case, and by assuming tha
bulk viscosity coefficient and the temperature dependenc
the cosmic fluid on the energy density are given by sim
power laws, the field equations can be solved exactly
several explicit functional forms of the viscosity coefficien

The present paper is organized as follows. The field eq
tions on the brane describing the evolution of a viscous c
mological fluid are written down in Sec. II. In Sec. III w
present the general solution of the field equations for a c
stant bulk viscosity and a bulk viscosity coefficient propo
tional to the square root of the energy density. The study
the stability of the equilibrium points of the dynamical sy
7-2
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tem associated to the evolution of the viscous cosmolog
fluid is performed in Sec. IV. In Sec. V we discuss and co
clude our results.

II. DISSIPATIVE COSMOLOGICAL FLUIDS ON THE
BRANE

In the 5D space time the brane world is located
Y(XI)50, whereXI ,I 50,1,2,3,4 are five-dimensional coo
dinates. The effective action in five dimensions is@22#

S5E d5XA2g5S 1

2k5
2

R52L5D
1E

Y50
d4xA2gS 1

k5
2

K62l1LmatterD , ~1!

with k5
258pG5 the five-dimensional gravitational couplin

constant and wherexm, m50,1,2,3 are the induced four
dimensional brane-world coordinates.R5 is the 5D intrinsic
curvature in the bulk andK6 is the intrinsic curvature on
either side of the brane.

On the five-dimensional space time~the bulk!, with the
negative vacuum energyL5 and brane energy momentum
the source of the gravitational field, the Einstein field eq
tions are given by

GIJ5k5
2TIJ , TIJ52L5gIJ1d~Y!@2lgIJ1TIJ

matter#.
~2!

In this space time a brane is a fixed point of theZ2 symme-
try. In the following capital Latin indices run in the rang
0, . . . ,4while Greek indices take the values 0, . . . ,3.

Assuming a metric of the formds25(nInJ1gIJ)dxIdxJ,
with nIdxI5dx the unit normal to thex5const hypersur-
faces andgIJ the induced metric onx5const hypersurfaces
the effective four-dimensional gravitational equations on
brane ~which are the consequence of the Gauss-Cod
equations! take the form@20,21#:

Gmn52Lgmn1k4
2Tmn1k5

4Smn2Emn , ~3!

whereSmn is the local quadratic energy-momentum corre
tion

Smn5
1

12
TTmn2

1

4
Tm

aTna1
1

24
gmn~3TabTab2T2!,

~4!

and Emn is the nonlocal effect from the bulk free gravita
tional field, transmitted projection of the bulk Weyl tens
CIAJB,

EIJ5CIAJBnAnB, EIJ→Emnd I
mdJ

n as x→0. ~5!

The four-dimensional cosmological constant,L, and the
coupling constant,k4, are given by

L5
k5

2

2 S L51
k5

2l2

6 D , k4
25

k5
4l

6
. ~6!
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The Einstein equation in the bulk, Codazzi equation, a
implies the conservation of the energy-momentum tenso
the matter on the brane

DnTm
n50. ~7!

Moreover, the contracted Bianchi identities on the brane
ply that the projected Weyl tensor should obey the constr

DnEm
n5k5

4DnSm
n . ~8!

Finally, Eqs.~3!, ~7!, and ~8! give the complete set of field
equations for the brane gravitational field.

For any matter fields~scalar field, perfect fluids, kinetic
gases, dissipative fluids, etc.! the general form of the bran
energy-momentum tensor can be covariantly given as

Tmn5rumun1phmn1pmn12q(mun) . ~9!

The decomposition is irreducible for any chosen fou
velocity um. Herer andp are the energy density and isotro
pic pressure, andhmn5gmn1umun projects orthogonal toum.
The energy flux obeysqm5q^m& , and the anisotropic stres
obeyspmn5p^mn& , where angular brackets denote the pr
jected, symmetric, and tracefree part:

V^m&5hm
nVn , W^mn&5Fh(m

ahn)
b2

1

3
habhmnGWab .

~10!

The symmetric properties ofEmn imply that, in general,
we can decompose it irreducibly with respect to a cho
four-velocity fieldum as

Emn52k4FUS umun1
1

3
hmnD1Pmn12Q(mun)G , ~11!

wherek5k5 /k4. In Eq. ~11! U is the effective nonlocal en
ergy density of the brane arising from the free gravitatio
field in the bulk,Pmn is the nonlocal anisotropic stress ca
rying Coulomb, gravitomagnetic, and gravitational wave
fects from the bulk, whileQ is the effective nonlocal energ
flux on the brane.

The effect of the bulk viscosity of the cosmological flu
can be considered by adding to the usual thermodyna
pressurep the bulk viscous pressureP and formally substi-
tuting the pressure terms in the energy-momentum tenso
peff5p1P. The particle flow vectorNm is given by Nm

5num, wheren>0 is the particle number density.
In the framework of causal thermodynamics, and limiti

ourselves to second-order deviations from equilibrium,
entropy flow vectorSm takes the form

Sm5sNm2
tP2

2jT
um, ~12!

wheres is the entropy per particle,t the relaxation time,T
the temperature, andj is the bulk viscosity coefficient.
7-3
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We consider that the heat transfer is zero,qm50 in Eq.
~9!, and also a vanishing effective nonlocal anisotropic str
and energy fluxPmn505Qm . Then the matter correction
are given by

Smn5
1

12
r2umun1

1

12
r~r12peff!hmn . ~13!

The line element of a flat Robertson-Walker metric is giv
by

ds252dt21a2~ t !~dx21dy21dz2!. ~14!

We also assume that the thermodynamic pressurep of the
cosmological fluid obeys a linear barotropic equation of st
p5(g21)r,g5const and 1<g<2. Under these assump
tions, the field equations and the conservation equations
the Bianchi type I brane gravitational field take the form

3H25L1k4
2r1

k4
2

2l
r21

6U
k4

2l
, ~15!

2Ḣ13H25L2k4
2@~g21!r1P#

2
k4

2

2l
@~2g21!r212rP#2

2U
k4

2l
, ~16!

ṙ13gHr523HP, ~17!

U̇14HU50, ~18!

where the Hubble parameterH is defined asH5ȧ/a. Nm
;m

50 leads to the particle number conservation equatioṅ
13Hn50.

The causal evolution equation for the bulk viscous pr
sureP is given by@33#

tṖ1P523jH2
1

2
tPS 3H1

ṫ

t
2

j̇

j
2

Ṫ

T
D . ~19!

Equation~19! arises as the simplest way~linear in P) to
satisfy theH theorem@i.e., for the entropy production to b
nonnegative,Sm

;m5P2/(jT)>0#. The Israel-Stewart theory
is derived under the assumption that the thermodynamic s
of the fluid is close to equilibrium, which means that t
nonequilibrium bulk viscous pressure should be small wh
compared to the local equilibrium pressure, that isuPu,p.

The growth of the total comoving entropyS(t) over a
proper time interval (t0 ,t) is given by@34#

S~ t !2S~ t0!52
3

kB
E

t0

t Pa3H

T
dt. ~20!

An important observational quantity is the decelerat
parameterq5dH21/dt21. The sign of the deceleration pa
rameter indicates whether the model inflates or not. The p
tive sign ofq corresponds to ‘‘standard’’ decelerating mode
whereas the negative sign indicates inflation.
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Since the effects of the extra dimensions are importan
very high densities, when the cosmological fluid behaves
a Zeldovich fluid withp5r (g52), as are also the dissipa
tive effects, we consider only the physical situation in whi
the quadratic term dominates in the energy equation~15!.
Therefore during the early period of evolution the ener
density of the Universe is given approximately byr
'3r0H, with 3r05A6l/k4

2.
In order to close the system of Eqs.~15!–~19! we have to

specifyT, t, andj.
First, following @44# we suppose that the relationt5j/r

holds in order to guarantee that the propagation velocity
bulk viscous perturbations, i.e., the nonadiabatic contribut
to the speed of sound in a dissipative fluid without heat fl
or shear viscosity, does not exceed the speed of light.
analysis of the relativistic kinetic equation for some simp
cases given by Belinskii and Khalatnikov@45#, Belinskii
et al. @44# and Murphy@46# has shown that in the asymptot
regions of small and large values of the energy density,
viscosity coefficients can be approximated by power fu
tions of the energy density with definite requirements on
exponents of these functions. For small values of the ene
density it is reasonable to consider large exponents, equ
the extreme case to one. For larger the power of the bulk
viscosity coefficient should be considered smaller~or equal!
to 1/2.

Therefore we assume the following simple phenome
logical laws for the bulk viscosity coefficient, temperatur
and relaxation time:

j5ars5j0Hs, T5br r5T0Hr , t5
j

r
5

Hs21

t0
,

~21!

where s>0, r>0, a>0, and b>0 are constants andj0

5a(3r0)s andt05j0
21.

In the context of irreversible thermodynamics,p, r, T and
the number densityn are equilibrium magnitudes which ar
generally related by equations of state of the formr
5r(T,n) andp5p(T,n). From the requirement that the en
tropy is a state function we obtain the equation

S ]r

]nD
T

5
r1p

n
2

T

n S ]p

]TD
n

, ~22!

which imposes the constraintr 5(g21)/g. Hence for a Zel-
dovich fluid we haver 51/2.

With these assumptions the bulk viscous pressureP can
be obtained from Eq.~17! in the form

P52r0S Ḣ

H
16H D . ~23!

The bulk viscous evolution equation~19! can be written
as

Ṗ1
1

t
P523rH2

1

2
PS 3H2

3

2

ṙ

r
D , ~24!
7-4
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and for a stiff cosmological fluid on the brane takes the fo

Ḧ

H
2

7

4

Ḣ2

H2
1~31t0H2s!Ḣ16t0H22s50. ~25!

By means of the substitutionH5y24/3, Eq. ~25! takes the
form

ÿ1~31t0y4s/3!y24/3ẏ2
9

2
t0y(4s25)/350. ~26!

By taking u5 ẏ and denotingv51/u, Eq. ~26! can be
transformed to a second type Abel nonlinear first-order
ferential equation:

dv
dy

2~31t0y4s/3!y24/3v21
9

2
t0y(4s25)/3v350. ~27!

By introducing a new variableh53y21/3, Eq. ~27! be-
comes

dv
dh

1~3134st0h24s!v22
34s11

2
t0h124sv350. ~28!

III. BRANE EVOLUTION OF DISSIPATIVE STIFF
COSMOLOGICAL FLUIDS

In the previous section we have formulated the ba
equations describing the dynamics of a dissipative stiff c
mological fluid on the brane. We have considered only
extreme case of very high densities, when the main con
bution to the energy of the matter is given by the quadra
term in the energy-momentum tensor, due to the form of
Gauss-Codazzi equations, and which leads to major cha
in the dynamics of the Universe. In this case the basic eq
tion describing the evolution of the Universe can be redu
to an Abel type equation~28!.

It is the purpose of the present section to consider so
exact classes of solutions of Eq.~28!, corresponding to some
particular values of the constants.

As a first case we assume that the bulk viscosity coe
cient j is a constant,j5j05const, corresponding to th
choice s50 in the equation of state of the bulk viscosi
coefficient. Fors50 the temperature and the relaxation tim
are functions of density, according to the equations of s
~21!.

For s50 the evolution equation~28! of the bulk viscous
pressure takes the form

dv
dh

1~31t0!v22
3

2
t0hv350. ~29!

By introducing a new variableh85(31t0)h and denot-
ing b53t0/2(31t0)2, Eq. ~29! takes the form

dv

dh8
1v22bh8v350. ~30!

By taking v5w/h8, Eq. ~30! is transformed into
12401
-

c
-

e
i-
c
e
es
a-
d

e

-

te

dw

dh8
5

w

h8
~bw22w11!. ~31!

Hence the general solution of Eq.~30! is given by

h85C
w

Abw22w11
ef (w), ~32!

whereC.0 is an arbitrary constant of integration,

f ~w!5
1

2E dw

bw22w11
, ~33!

and

f ~w!5
1

2AD
lnS 2bw212AD

2bw211AD
D , if b,

1

4
, ~34!

f ~w!52
2

w22
, if b5

1

4
, ~35!

f ~w!5
1

A2D
arctanS 2bw21

A2D
D , if b.

1

4
,

~36!

where we denotedD5124b.
Therefore the general solution of the field equations c

be expressed in the following exact parametric form, w
u51/w taken as parameter:

t~u!2t05C0E ~u22u1b!e24 f (u)du, ~37!

H~u!5H0

e4 f (u)

~u22u1b!2
, ~38!

a~u!5a0 exp@22C0H0f ~u!#, ~39!

q~u!54u/C0H021, ~40!

P~u!522r0

e4 f (u)

~u22u1b!2
~3H022u/C0!, ~41!

S~u!5S~u0!1
6a0

3r0AH0

kBT0

3E ~3C0H022u!exp@2 f ~u!~123C0H0!#

~u22u1b!2
du,

~42!

U~u!5U0 exp@8C0H0f ~u!#, ~43!

whereH05@C/3(31t0)#4, C0534(31t0)3/C4, andt0 , a0,
andU0 are constants of integration. In the new variableu the
function f is given by f (u)52221*(u22u1b)21du.
7-5
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The thermodynamic consistency of the model can be s
ied from the ratio of the bulk viscous and thermodynam
pressure, which is given by

l 5UPpU5 1

3
u52qu. ~44!

The second case we analyze corresponds to the ext
limit of very high densities whens51/2. Then Eq.~28! takes
the form

dv
dh

1~319t0h22!v22
27

2
t0h21v350. ~45!

Introducing two new functionsA(h)522h2/9t012/3
and B(h)522h/27t0 allows us to rewrite Eq.~45! in the
general form

dv
dh

52
v3

B~h!
2F d

dh

A~h!

B~h!Gv2. ~46!

By introducing a new variable

s5
1

v
2

A~h!

B~h!
, ~47!

Eq. ~46! can be written in the general form

dh

ds
5B~h!s1A~h!, ~48!

or, equivalently,

dh

ds
52

2

9t0
h22

2

27t0
sh1

2

3
. ~49!

Hence we have transformed the initial Abel type equat
into a Riccati equation. A particular solution of Eq.~49! is
given by

h59t0sD~s!, ~50!

and therefore the general solution of Eq.~49! is

h~s!59t0sD~s!1
D2~s!e2s2/27t0

C11
2

9t0
E D2~s!e2s2/27t0ds

,

~51!

whereD(s)5(s2127t0/2)21 andC1 is a constant of inte-
gration.

Hence we obtain the general solution of the gravitatio
field equations on the brane for a Zeldovich causal bulk v
cous fluid, with bulk viscosity coefficient proportional to th
square root of the density, in the following exact parame
form, with s taken as parameter:

t~s!2t056t0
21E h23~s!ds, ~52!
12401
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H~s!5
1

81
h4~s!, ~53!

a~s!5a0 expF E 2h~s!

27t0
dsG , ~54!

q~s!5
4s

h~s!
2

36t0

h2~s!
111, ~55!

P~s!5
2r0

81
h2~s!@3h2~s!12sh~s!218t0#,

~56!

S~s!5S~s0!2
4r0a0

3

81t0T0kB
E h~s!@3h2~s!

12sh~s!218t0#expF E 2h~s!

9t0
ds Gds, ~57!

U~s!5U0 expF2
8

27t0
E h~s!dsG . ~58!

IV. STABILITY ANALYSIS OF THE EQUILIBRIUM
POINTS OF THE VISCOUS COSMOLOGICAL FLUID

The general evolution equation of the bulk viscous c
mological fluid on the brane is given by Eq.~25!. From a
mathematical point of view it is a second-order nonline
differential equation of the formḦ1R(H,Ḣ)50, with
R(H,Ḣ)527Ḣ2/4H1(3H1t0H12s)Ḣ16t0H32s. There-
fore R(0,0)5 lim

H,X→0
R(H,X)50 and R(H,0)Þ0 for H

Þ0.
In order to study the stability of the equilibrium points o

the evolution equation of the viscous cosmological fluid
the brane, Eq.~25!, we shall rewrite it in the form of an
autonomous dynamical system, by introducing a new v
ableX5Ḣ:

dH

dt
5X, ~59!

dX

dt
5

7X2

4H
2~3H1t0H12s!X26t0H32s. ~60!

The critical points of this dynamical system are given
H5X50. They correspond to a Minkowskian space tim
(a5const51) and to a de Sitter inflationary phase, witha
5exp(H0t) andH05const. The system has no other critic
points besides the origin.

The Lyapunov functionV(H,X) associated to this system
can be chosen@47# as V(H,X)5X2/21*0

HR(s,0)ds and is
given by

V~H,X!5
1

2
X21

6t0

42s
H42s. ~61!
7-6
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The Lyapunov function~61! has the propertiesV(0,0)50
and dV/dt57X3/4H2(3H1t0H12s)X2. According to the
standard theory of this type of differential equation@47# the
equilibrium state (H50,X50) is stable if the conditions

HR~H,0!56t0H42s.0, for HÞ0, ~62!

and

]R~H,X!

]X
52

7X

2H
13H1t0H12s

5HF7

2
~q11!131t0H2sG>0, ~63!

holds, where the deceleration parameterq52X/H221.
Moreover, if the condition]R(H,X)/]X.0 is satisfied for
HXÞ0, the equilibrium state is asymptotically stable@47#.
The equilibrium state is unstable if]R(H,X)/]X,0 for
HXÞ0.

The stability criteria of the critical point can be formu
lated in terms of some conditions imposed on the decel
tion parameter. In the limit of large time,H→0 and the term
H2s.0 dominates in the expression of]R(H,X)/]X, mak-
ing it obviously non-negative. In the small time limit,H
→` and the condition of the stability of the critical point
7(q11)/213>0, or q>213/7. If q.213/7 the critical
point is also asymptotically stable. On the other hand foq
,213/7 the equilibrium point is unstable.

V. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered the evolution
causal viscous dissipative cosmological fluid in the bra
world scenario. As the only source of dissipation we ha
considered the bulk viscosity of the matter on the brane.
most important differences to standard general relativity
expected to occur in the limit of extremely high densitie
when the fluid obeys a Zeldovich~stiff! equation of stater
5p. In this case the Friedmann equation is modified due
the presence of the terms from extra dimensions, quadrat
the energy density, which dominates the other terms in

FIG. 1. Variation as a function of time of the Hubble parame
H of the brane Universe with confined dissipative cosmologi
fluid with constant coefficient of bulk viscosity for different value
of the parameterb: b51/6 ~solid curve!, b51/4 ~dotted curve!, and
b51/2 ~dashed curve!. The values of the constantsH0 , C0, andt0

are different for each curve.
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energy-momentum tensor, leading to an energy density of
cosmic fluid proportional to the Hubble parameter.

By assuming the usual equations of state for bulk visc
ity, temperature, and relaxation time, the field equations
be solved exactly for some specific choices of the constas
describing the bulk viscosity coefficient-energy density fun
tional relation.

For thes50 case corresponding to a constant bulk v
cosity coefficientj5const, the general solution of the fiel
equations for the viscous fluid on the brane world is given
Eqs. ~37!–~43!. Since the bulk viscous pressureP must be
negative,P<0, it follows that in order to satisfy this condi
tion the range of the parameteru must be restricted tou
P@0,2/3#.

In the limit of small times, we haveu→0 and one obtains
the following equations describing the evolution of the v
cous cosmological fluid on the brane:

a;tC0H0/2, H;t22C0H0t, r5p;t22C0H0t, q521,
~64!

P;2t21, U;t22C0H0, S~ t !;S~ t0!1t3(12C0H0)/2.

r
l

FIG. 2. Time evolution of the scale factora of the brane Uni-
verse with confined dissipative cosmological fluid with consta
coefficient of bulk viscosity for different values of the parameterb:
b51/6 ~solid curve!, b51/4 ~dotted curve!, and b51/2 ~dashed
curve!. The values of the constantsa0 , C0, andt0 are different for
each curve.

FIG. 3. Dynamics of the deceleration parameterq of the brane
Universe with confined dissipative cosmological fluid with consta
coefficient of bulk viscosity for different values of the parameterb:
b51/6 ~solid curve!, b51/4 ~dotted curve!, and b51/2 ~dashed
curve!. The value of the constantt0 is different for each curve and
the constantsC0 andH0 have been normalized so thatH0C051.
7-7
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The variations of the scale factor, Hubble parameter,
celeration parameter, bulk viscous pressure, and como
entropy of the constant bulk viscosity coefficient dissipat
cosmological fluid confined on the brane are presented
Figs. 1–5.

The evolution of the viscous brane Universe starts from
singular state, with infinite values of the energy density a
pressure and zero scale factor. The initial evolution is in
tionary, with a negative deceleration parameter. But in
large-time limit the dynamics becomes noninflationary, w
the deceleration parameterq.0. Therefore the inclusion o
viscous effects during the period when the quadratic term
energy density~coming from extra dimensions! dominates
the dynamics of the space time, provides an effective mec
nism for the ‘‘graceful exit’’ of the brane world from the
initial inflationary phase to a noninflationary era. Because
dissipative effects the entropy on the brane is increasin
time and a large amount of entropy is produced in the e
stages of the evolution of the brane Universe. The nonlo
energy density on the brane,U, is a decreasing function o
time, so the effects of the gravitational field on the bu
become rapidly negligible. But the criterion of the therm
dynamic consistency of the model,l 5uP/pu,1, is not gen-
erally satisfied in this model, as can be easily seen from

FIG. 4. Variation as a function of time of the bulk viscous pre
sureP of the brane Universe with confined dissipative cosmolo
cal fluid with constant coefficient of bulk viscosity for differen
values of the parameterb: b51/6 ~solid curve!, b51/4 ~dotted
curve!, andb51/2 ~dashed curve!. The values of the constantsH0 ,
C0, andt0 are different for each curve.

FIG. 5. Time evolution of the comoving entropyS of the brane
Universe with confined dissipative cosmological fluid with const
coefficient of bulk viscosity for different values of the parameterb:
b51/6 ~solid curve!, b51/4 ~dotted curve!, and b51/2 ~dashed
curve!. The values of the constantsH0 , C0 , t0, anda0 are different
for each curve.
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~44!. All the inflationary states clearly contradict the cond
tion. On the other hand it is possible to find some particu
of the parameterb leading to thermodynamic consistenc
during the noninflationary phase.

The time variations of the Hubble parameter, scale fac
deceleration parameter, bulk viscous pressure, and como
entropy for the brane Universe with a dissipative cosmolo
cal fluid with the bulk viscosity coefficient proportional t
the square root of the energy density (s51/2) are repre-
sented in Figs. 6–10.

The behavior of the Universe depends on the numer
values of the arbitrary integration constantC1 and of the
constantt0. For the chosen numerical values of these para
eters the Universe generally starts from a singular state, w
zero and infinite values of the scale factor and energy d
sity, respectively. In order that the model represents a di
pative fluid, with negative bulk viscous pressure, the para
eters must satisfy the condition 2s,18t0 /h(s)23h(s).
In opposition to the constant bulk viscosity case, the evo
tion is noninflationary for all times. Because of viscous d
sipative effects, a large amount of comoving entropy is c
ated on the brane and the entropy of the Universe
increasing due to viscous dissipation.

-
-

t

FIG. 6. Variation as a function of time of the Hubble parame
H of the brane Universe with confined dissipative cosmologi
fluid with the coefficient of bulk viscosity proportional to the squa
root of the energy density (s51/2) for different numerical values o
the integration constantC1 : C150.58~solid curve!, C150.62~dot-
ted curve!, andC150.66 ~dashed curve! (t050). The constantt0

has been normalized so thatt051.

FIG. 7. Time evolution of the scale factora of the brane Uni-
verse with confined dissipative cosmological fluid with the coe
cient of bulk viscosity proportional to the square root of the ene
density (s51/2) for different numerical values of the integratio
constantC1 : C150.58 ~solid curve!, C150.62 ~dotted curve!, and
C150.66~dashed curve! (t050). The constantt0 has been normal-
ized so thatt051.
7-8
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Figure 11 presents the time variation of the ratiol of the
bulk viscous and thermodynamic pressures, respectively.
all times uP/pu,1 and hence in this model the thermod
namical consistency condition of the smallness of the b
viscous pressure is satisfied for all times and for a large c
of admissible values of the integration constantC1 and oft0.

The effective nonlocal energy on the brane,U, is tending
rapidly to zero in the large time limit.

The general exact solution of the gravitational field eq
tions for a homogeneous flat FRW Universe filled with
causal bulk viscous fluid with the bulk viscosity coefficie
proportional to the Hubble functionj;r1/2;H has been ob-
tained, in the framework of the standard general relativ
~GR!, in @37#. The solution of the field equations can in th
case also be represented in an exact parametric form. T
are major differences between the general evolution of
dissipative cosmological fluids in the brane and GR mod
In GR the dynamics of the cosmological fluid described
the general solution is inflationary for all times, with th
thermodynamic consistency conditionuP/pu,1 violated

FIG. 8. Dynamics of the deceleration parameterq of the brane
Universe with confined dissipative cosmological fluid with the c
efficient of bulk viscosity proportional to the square root of t
energy density (s51/2) for different numerical values of the inte
gration constantC1 : C150.58 ~solid curve!, C150.62 ~dotted
curve!, andC150.66 ~dashed curve! (t050). The constantt0 has
been normalized so thatt051. The deceleration parameter satisfi
the conditionq.0 for all times.

FIG. 9. Variation as a function of time of the bulk viscous pre
sureP of the brane Universe with confined dissipative cosmolo
cal fluid with the coefficient of bulk viscosity proportional to th
square root of the energy density (s51/2) for different numerical
values of the integration constantC1 : C150.58 ~solid curve!, C1

50.62 ~dotted curve!, and C150.66 ~dashed curve! (t050). The
constantt0 has been normalized so thatt051. As required by the
model, the bulk viscous pressure is negative for all times.
12401
or

k
ss

-

y

ere
e

s.
y

during the entire expansionary evolution period. But in t
brane model the evolution is noninflationary, with the co
sistency condition satisfied, at least for a specific range
values of the parameterst0 andC1, which are unknown for
a realistic physical situation~of course for some particula
numerical values of these parameters, inflationary initial
havior or increasing energy density can also be obtain!.
During the general relativistic inflationary period the densi
temperature, bulk viscosity coefficient, and comoving e
tropy are rapidly increasing functions of time. In fact th
general solution of the GR field equations describe a tra
tion between two Minkowskian space times connected by
inflationary period. For some particular values of the para
eters one can also obtain general relativistic noninflation
solutions@37#.

The consideration of viscous dissipative effects in t
brane and general relativistic models in the extreme limit
very high densities could be a useful way to differentia
between the two cosmological scenarios. The different

FIG. 10. Dynamics of the comoving entropyS of the brane
Universe with confined dissipative cosmological fluid with the c
efficient of bulk viscosity proportional to the square root of t
energy density (s51/2) for different numerical values of the inte
gration constantC1 : C150.58 ~solid curve!, C150.62 ~dotted
curve!, andC150.66 ~dashed curve! (t050). The constantt0 has
been normalized so thatt051.

-

-
-

FIG. 11. Time variation of the absolute valuel of the ratio of the
bulk viscous and thermodynamic pressures,l 5uP/pu of the brane
Universe with confined dissipative cosmological fluid with the c
efficient of bulk viscosity proportional to the square root of t
energy density (s51/2) for different numerical values of the inte
gration constantC1 : C150.58 ~solid curve!, C150.62 ~dotted
curve!, andC150.66 ~dashed curve! (t050). The constantt0 has
been normalized so thatt051. For all times for the chosen set o
parameters the ratio of the pressures is smaller than 1.
7-9
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havior of the energy density of cosmic matter (r;H in
brane andr;H2 in GR, respectively! leads, via the bulk
viscous pressure evolution equation, to differences in the
namics of the very early Universe, which perhaps can se
as a tool for testing the viability of brane model cosmolog
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