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Geometric phase shift in quantum computation using superconducting nanocircuits:
Nonadiabatic effects
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The nonadiabatic geometric quantum computation may be achieved using coupled low-capacitance Joseph-
son junctions. We show that the nonadiabatic effects as well as the adiabatic condition are very important for
these systems. Moreover, we find that it may be hard to detect the adiabatic Berry’'s phase in this kind of
superconducting nanocircuits; but the nonadiabatic phase may be measurable with current techniques. Our
results may provide useful information for the implementation of geometric quantum computation.
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Quantum computation is now attracting increasing inter-Therefore, a generalization to nonadiabatic cases is impor-
est both theoretically and experimentally. So far, a number ofant in controlling the quantum gates. We find that the nona-
systems have been proposed as potentially viable quantugiabatic geometric phase shift can also be used to achieve the
computer models, including trapped ions, cavity quantunPhase shift in quantum gates. A remarkable merit of this gate
electrodynamics, nuclear magnetic resof®R), etc.[1].  is that there exists no limitation on the operation time.

In particular, a kind of solid-state qubits using controllable We first consider a single qubit using the Josephson junc-
low-capacitance Josephson junctions has been paid consid&@ns described in Ref5] (see thejth qubit in Fig. 3. The

able attentiof2—5]. A two-qubit gate in many experimental qubit consists of a superconductlng eIectrpn box formed by
implementations is the controlled phase shift, which may bé"n @ymmetric superconducting quantum interference device
achieved using either a conditional dynamic or geometrid SQUID) with the Josephson couplings, andE,, pierced
phase. A remarkable feature of the latter lies in that it dePY @ magnetic fluxb and subject to an applied gate voltage

pends only on the geometry of the path execU@l and V,=2enf/C, (here we omit the subscript and 2r is the

therefore provides a possibility to perform quantum gate op®ffSet charge In the charging regimewhereE, , are much

erations by an intrinsically fault-tolerant w4y, 8. smaller than the charging ener@y) and at low tempera-

Recently, several basic ideas of adiabatic geometric quar]iyres’ the s_ystem behaves as an artific_ial s_pin-l/ 2 particle in a
tum computation by using NMRE], superconducting nano- magnetic field, and the effective Hamiltonian re4i3]
circuits [5] or trapped iong9] were proposed. However, 1
since some of the quantum gates are quite sensitive to per- H=— EB- o, 1)
turbations of the phase factor of the computational basis
states, control of the phase factor becomes an important issl\JNenere(r are Pauli matrices. and the fictitious field
for both hardware and software. Moreover, the adiabatic evo- R ’
lution appears to be quite special, and thus the nonadiabatic B={E.cosa. —E~sina.E..(1—2n¢ 2
correction on the phase shift may need to be considered in {E;cosa, —E; sina, Een( U &)
some realistic systems as it may play a significant role in i _ 7 _

. ith EJ— \/(El_EZ) +4E1E2 CO§(W®/®O), tana—(El

whole proces$10-17. In this paper, we focus on the nona- E,)tan(w®/do)/(E4+E,), andd,=h/2e. In this qubit

diabatic geometric phase in superconducting nanocircuitﬁ_.'am"tonian charging energy is equivalent to g field

We indicate that the adiabatic Berry's phase, as well as th?vhereas the Josephson term determines the fields ir-ghe

single-qubit gate controlled by this phase, may hardly be ; ) I i
implemented in the present experimental setup. On the oth rla%e' By chang_lng/ﬁ( and @, the qubit Har;11|lto?|an dbe
hand, since the two-qubit operations are about fihes Scribes a curve in the parameter spg¢. Therefore, by

slower than the one-bit operatiof@3], the conditional adia- adiabatically changingi around a circuit infB}, the eigen-
batic phase is extremely difficult to be achieved. A seriousStates will accumulate a Berry's phagg= =+ (2/2, where the
disadvantange of the adiabatic conditional phase shift is tha&tgns* depend on whether the system is in the eigenstate
the adiabatic condition requires the evolution time to bedligned with or against the fielf6]. The solid angleQ,
much longer than the typical operation timg (=#/E;, which .repre.sents the magnetic field trajectory subtended at
with E, as the Josephson eneygwhich leads to an intrin- B=0, is derived as

sical time limitation on the operation of quantum gate.

_ JTBXﬁtBy—ByﬁtBX (3)

o [Bl(B,+[B]) "
* Author to whom correspondence should be addressed. Email ad-
dress: zwang@hkucc.hku.hk under the conditiorB(7) =B(0).
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However, the adiabatic evolution is quite special, and thusvhere
the generalization to nonadiabatic noncyclic cases is of sig-

nificance. We now recall how to calculate the Pancharatnam |+ (6,¢))=[e™'¥?cog6/2), €'*?sin(6/2)]",
phase. For a spin-1/2 particle subject to an arbitrary magnetic il ol T
field, each spin stathy)=[e '¢2cos(#/2), €'“?sin(6/2)]" lg_(0,0))=[—e"'**sin(02), €'**cog6/2)],

may be mapped into a unit vector n
=(sin# cose,sind sing,cosd), with n being an element of
a unit spheres?, via the relatiom= (|| ), whereT rep- i 02 24 si 4 0)/21sine: /2
resents the transposition of matrix. By changing the magnetic a-=sin(n=0)i2]cosgi/2+isin(n+ 6)/2]sinei/2,
field, the evolution of spin state is a curve & from an  \ith tany=E;(®=0)/E.y, tand;=[E;(t)/B,(t)]];~o, and

initial state @;,¢;) to a final state §;,¢;), and the Pan- tan‘Pi:[By(t)/Bx(t)“t:O- A phase difference between

charatnam phase accumulated in this evolution was found t - ‘o g
be[11] sz,,} can be introduced by changirtg. The phases ac

quired in this way will have both geometrical and dynamical
1 components. But the dynamical phase accumulated in the
y=— _f (1—cos@)de whole procedure can be removigdl], thus only the geomet-
2)c ric phase remains. By taking into account the cyclic condi-
tion n(0)=n(7) for |.), the final state in this case is given

a, =cog (n— 6;)/12]cose;/2—i cog (n+ 6,)/2]sine;/2,

+arctan— S”;((Pf_ il , (4 by[15]
f i
coty coty +coser— i) [wy=a, ey, (6.0))+a e Y (6.0)), (5

where y can be calculated from Ed4). The contribution
from the second term of Ed4) vanishes simply because
n(0)=n(7). Thus the geometric phase considered here is the
cyclic AA phase. The probability of measuring a charge
ge(nz 1) in the box at the end of this procedure is derived

where C is along the actual evolution curve &%, and is
determined by the equatiofn(t) = —B(t) X n(t)/%. This y
phase recovers the Aharonov-Anandam ) phase(Berry’s
phase in a cyclic (adiabati¢ evolution[11].

At this stage, we propose how to detect the nonadiabati
or adiabatic geometric phase in the charge qubit system. TH&
system is prepared in the ground state of the Hamiltonian at 2

ng=0 and ®=0, and then changes to the fictitious field P,= a+sin—'+a,cosﬁe*2i7 ) (6)

B(P(t),ng(t)), which is a periodic function of time with 2 2
the periodr. We consider the process where a pair of or-
thogonal stategy..) evolve cyclically (but not necessary
adiabatically. This process can be realized in the present p —[1-cog 5 6;)cos6;+sin(— 6;)sin 6, cos2y]/2
system. Noting that the adiabatic approximation is merely a (7)
sufficient (but not necessajycondition for the above cyclic

evolution, we here focus on a nonadiabatic generalization. Iwhen ®(0)=0. Note that Eq(7) recovers sif(y) in Ref.

This probability can be simplified to

this evolution, the initial state is given by [5] even in a nonadiabatic but cyclic evolutipt6]. Thus the
nonadiabatic phase may be determined by the probability of
lyiy=a |y, (0, 0))+a_ |y _(6;,¢1)), the charge state in the box at the end of this process. It is
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worth pointing out that the parameteysand 6, in Eq. (6) [or

Eq. (7)] are fully determined by the experimentally control-

lable parameter® andng, as in the adiabatic Berry’s phase 1.0
case[5].

It is remarkable that the probability obtained in E@).[or
Eq. (7)] may be directly detected by the dc current through
the probe junctionC}, under a finite bias voltag¥} [4]. 0.8
Assume that we have achieved one SQUID qubit as well as
the detector circuit, as shown in Fig. 1. By changifg and -
®; in time[0,7], the system oscillates betwef) and|1), o
and the final state would be determined by the geometrlco 0.6
phase. The measurable dc current through the probe junctiol _«
formulates by the processgd:) emits two electrons to the
probe, while|0) does nothing. Consequently, the probability
described by Eq(6) [or Eq. (7)] as well as the geometric
phase may be detected by the dc current.

The single-qubit gate may be realized by this geometric g
phase. For example, it is straightforward to check that thel=
unitary evolution operator, defined byy;)=US9 ), is 0.2
given by

0.4

ajectrories n

®

s cosy isiny
()= isiny cosy

0.0

wheng,=0 andg;=0. Clearly, the operation depends on the
geometric phaseg; y=w/2 andy= /4 produce a spin flip 0.0 0.2 0.4 0.6 0.8 1.0

(NOT operation and an equal-weight superposition of spin T/t

states, respectively. On the other hand, the phase-flip gate 0

qu_: exp(—2iy|1)(1]) (up to an irrelevant overall phasis FIG. 2. The trajectories, and B, versus time in process | for
derived by#;=0 and¢;=0. The noncommutable)}" and ¢ _=0.25, n, =0.20, E,=4E,=6.25ueV, and E.,=5.0(,

U39 gates are the two well-known universal gates for single-+ Ez)

qublt operation. The Berry's phase may be used to achieve

intrinsical fault-tolerant quantum computation since it de-dition, we need to answer a key question: whether the adia-
pends only on the evolution path in the parameter space. Theatic approximation is valid for the given parameters? As for

nonadiabatic cyclic phase is also rather universal in the senggrocess II[Eq. (10)] the parametergd(t),n5(t)) change as
that it is the same for a infinite number of possible ways of

motion along the curves in the projective Hilbert spat@). ®y E1+E2
Consequently, the nonadiabatic phase may also be used as a PM)=— arcta+El_ Eztar( wt) |,
tool for some fault-tolerant quantum computation.
We now illustrate how to achieve the cyclic state for . 1 E,ctgxo+thw
guantum gates in two processes. The parameters ny(t)= 5( - E—ch (10

(d(t),n5(t)) in process [Eq. (9)] change as
The fictitious field described by Eq10) guarantees that the
{4(Dmt l] telo Z) angle yo=arctafE;/(Bt)—%w)] (andn,) is time indepen-
T 2]’ "4 dent. It is found that the state described by the vectors
n(xo,— wt) in this process evolves cyclically with periad
e Lyt 1 T 17 =27/w [17], and the AA phase for one cycle is given by
™2\ 774/ [ te1z2: %) y=m(1—cosyg), which may be used to achieve the men-
tioned single-qubit gates geometrically. For the present sys-

(40, t/7+3D, 0 ), te

17 37 tem, the dynamic phase can be removed by simply choosing

o j) : w=—4(E;+E,)E,[ —4E,E,/(E1—E,)?])/msin(2y,) with

Er(x) the complete elliptic integral of the first kind.

1 t 3 37 The nonadiabatic effect should be importantrifis not

(0, Nym+ 4 E—nfjm) (;— Z) ] te Z,T). (9 short. We first consider the evolutions described by @j.

Figure 2 shows,(t) and B,(t)=B,(t)/|B(t)| versus time,

The path in the parameter spa@} swept out in this case is With the parameters being the same as those in[RgfThe
exactly the same as that proposed in RBf. Since the evo-  deviation ofn(t) from B(t)(= B(t)/|B(t)|) indicates clearly
lution in this process is cyclic only under the adiabatic con-whether or not the adiabatic approximation is valid, because
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n(t) almost follows the trajectory of the magnetic fidddt)  (®;.n$;) are the same, wherg is the geometric phase of
under this approximation. It is seen from Fig. 2 that thethe target qubit when the charge state of the control qubit is
adiabatic approximation is satisfied in the first case when. v; may be directly derived from E@4). It is worth to point
7>500r,, where 7o=%/(E;+E,)~84 ps. The adiabatic out that the state described by the veandy', — wt) with
condition for process Il is of the same order of magnitude. Ityo=atar E;/(B,—#w)] is still a cyclic evolution, and may

is worth pointing out that the coherence time achieved in e used to achieve the two-qubit operation. In terms of the
single SQUID is merely about 30407, [4], which is not  basis{|00),|01),|10),|11)}, the unitary operator to describe
long enough for the adiabatic evolution, implying that thethe two-qubit gate is given bjb]

adiabatic condition is not satisfied in the above two processes

. 0 0 a1 1
for realistic systems. But fortunately, the nonadiabatic phase U(y?,yjl)=dlaqe 7,6 ,e7",e'). 12
can be measured and used in achieving geometric quantum o o ) )
gates since no intrinsic time limitation is implied. The combination with single-bit operations allows us to per-

Conditional geometric phase accumulated in one subform the xor gate. The unitary operation for ther gate
system evolution depends on the quantum state of anothé@n be obtained byUxor=[l®UI (7/4)]U 2 3m2)[!
subsystem, which may be realized by coupling capacitively® U3%(7/4)]", with | as a 2<2 unit matrix. Thisxor gate
two asymmetric SQUIDSsee any neighboring pair of qubits together with single-qubit gates constitutes a universality:
in Fig. 1. If the coupling capacitancg;; is smaller than the they are sufficient for all manipulations required for quantum
others, the Hamiltonian reads computation[18]. Therefore, all the elements of quantum
\ computation may be achievable byonadiabatic geometric
- . N phase. Moreover, the large number qubits required for useful
H :;l Hi+ Zl (Hiji+1tH.c), (1D computation may be devised by a network similar to Fig. 1.

In conclusion, we study how to detect the nonadiabatic

whereH; refer to the uncoupled qubits defined in Et)pand  Phase in superconducting nanocircuits, and the possibility
A o1=E; i 1(n—n)(ne,—nC, ) with E. . touse the nonadiabatic phase as a tool to achieve the quan-
) ) i X, i+1 X,i+1 ) i+l tum computation.

=E¢Cii+1/C [5]. The gate voltage and magnetic flux can
qubit operation, e.gi, andj qubits are two-neighbor qubits \ pyan. This work was supported by the RGC Grant of

with the ith as the control qubit and thgh as the target Hong Kong under Grant Nos. HKU7118/00P and HKU7114/
qubit. The fictitious field on the target qubit is o2p, the Ministry of Science and Technology of China under
[Es(®))cosa;,—Ey(®)sine;,By],  with  B,=Ec(1  Grant No. G1999064602, and the URC fund of HKU. S.L.Z.
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state O or 1. Obviously, the geometric phagéor jth qubit  of Guangdong under Grant No. 021088, and the NNSF of
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