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Emittance fluctuations in a mesoscopic diffusive conductor
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We report a first principles analysis of low frequency dynamic conductance fluctuations for disordered
two-dimensional mesoscopic conductors. In the transport regime where dc conductance shows the familiar
universal conductance fluctuations, we discovered that the low frequency emittance also fluctuates with an
amplitude that is independent of the impurity scattering strength, showing a degree of generic behavior. When
the impurity density is increased such that the dynamic response of the conductor changes from inductivelike
to capacitivelike, the emittance distribution is found to cross over from Gaussian-like to non-Gaussian-like; the
latter is qualitatively consistent with random matrix theory.

One of the most striking phenomena of transport in me- Gup(0)=Gop(0) i wE 5+ O(w?). (1)
soscopic regime is the observed universal conductance
fluctuations (UCF’s). These fluctuations are not time depen-E,; measures the dynamic response of the system to an ex-
dent noise but are reproducible signatures of quantum inteternal time dependent perturbation: the response is capacitive
ference. The physics of the sample-to-sample dc conductandeE11 is positive while it is inductive wheik,; is negative.
fluctuations and their universal behavior have been the suf=or a conductor capacitively coupled to an external gate,
ject of active research for more than a decaged is now 1S just the electrochemical capacitariceFor a one-
well understood. From a larger physical point of view, the dcdimensional(1D) diffusive conductor, the average value of
conductance of a conductor is the zero frequency limit of the=11 IS discussed in a recent review of tiker and C_:h”St?R _
ac admittanc® , 4(), wherea and label the leads of the and was found to be zero by solvmg th_e classical diffusion
conductor. Since for a diffusive conduct@,;(0) shows equation for which the weaklloc.ahzanon e'ffe'ct was ne-
UCF’s in the mesoscopic regime, it is very interesting to askgle((:jt.ed.dWheRn fthGefwearI]( Io_callzappn e:]fect IS m%udfe_zd, as
What are the sample-to-sample statistical properties of the az:z)izlg:?) In Ret. © for chaotic cavities, the averagepfis
admittance? o . :

For a multiterminal mesoscopic condutor, theoreticalfreFor a disordered conductor described by the elastic mean

. o . . _~“free pathl and conductor linear sizk, the quantityl/L has
analysis of its linear dc conductance is considerably S'mpl'been considerdd as the fraction of all thevl transmission

fied due to the fact thaB,(0) depends only on the equi- channels in the disordered sampeg., in 20 for which the
Ilbrlum elect_rostatlc potential but not on Fhe_ potential that iSt;ansmission probability is of order unity, i.e., thebky
established in the presence of transport inside the conductoLM(”L) channels are the open channels responsible for
Analysis of the ac admittand®, () has proven to be quite conduction. The conventional UCF phenomenon can be
nontrivia* as it is a functional of the potential buildup in- viewed as a reflection of the sample-to-sample fluctuations
side the conductor. Because of this dependence, one expeegSthe numbel® M ;. For highly disordered samplés<L;

the sample-to-sample statistical properties3f;(w) to be  they have large resistance and therefore we expect a capaci-
less universal than those Gf,5(0). Experimental studies of tivelike dynamic response. On the other hand, when the de-
dynamic conductance fluctuations in mesoscopic rings havgree of disorder is reduced the response can be inductivelike.
been reported by Pieper and Pric&heoretical investiga- Hence we expect the distribution function f&r,, which
tions have been carried out on a number of topics related twill be calculated below, to change as the degree of disorder
fluctuations of dynamic conductance, including the fluctuatchanges, indicating a crossover from that reflecting a capaci-
ing admittance of chaotic cavitiés,random matrix analysis tive response to that of an inductive response.

of capacitance distributiohtransfer matrix studies of low To be specific we consider single electron transport
frequency quasi-one-dimensional systémand dynamic through a 2D conductor whose disorder is provided by an
magnetoconductance fluctuatiofls. impurity scattering potentiaV,(r) ==, y;6(r —r;), wherevy,

In this paper, we present a theoretical investigation ofis the strength of théth impurity located at position; . For
sample-to-sample statistical properties of the low frequencgimplicity we fix y;= y as an input parameter of the analysis.
admittance. Our analysis is based on the theory dfilBr,  The emittance of a 2D conductor with a single impurity has
Prere, and Thomas,and our calculation is from first prin- been calculated exactly before using scattering matrix
ciples by evaluating the internal potential response from thé¢heory*° but a direct extension of this approach to an
density of state'$ (see below, rather than using the approxi- N-impurity problem is very difficult. We hence developed a
mate constant capacitance charging model. In particular w&reen’s function technique to solve this problem. The low
focus on the quantity called the emittanég,;, defined'by  frequency emittance can be Writtenleafaﬁz dN,z/dE
the low frequency expansion of the admittance, —D,p, where the terndN,;/dE is the global partial den-
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sity of statesGPDOS." The termD 4 is due to the Cou-
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where M (r) and #°(r) are the N-impurity and zero-

lomb interaction of electrons inside the sample, and it can bénpurity wave functions, respectively. Moreover, the func-

computed from the local density of statésWith the
Thomas-Fermi approximation one can prifve

3 [dn(a,r)/dE][dn(r,B)/dE]

Da,ﬂ:f d*r dn(r)/dE @
where the local density of statesdn(a,r)/dE
=dn(r,B8)/dE in zero magnetic field” and®

dn(a,r) dn,g(r)
dE —§ dE @
and the local partial DOE.PDQOS is given by
dn,4(r) 1 8s st
af _ T o 3 _ a3
dE 4wiTr<Saﬁ5U(r) 50(r) 6| @

Finally, the GPDOS is calculated from the LPDOS by appro-

priate spatial integration over the conductor,

K

From the theoretical formalism outlined above, a first

AN _

rdnaﬁ(r)
dE '

dE

©)

principles analysis of emittance necessarily requires the cal- sU(r)

culation of functional derivatives of the scattering matrix

with respect to a variation of the scattering potential land-

scape, e.g., Ed4). In this work this is achieved by a Green’s
function formalismt® Briefly, for a 2D conductor with the
N-impurity scattering potentiaV/,(r), we first calculate its
Green'’s function by iterating the Dyson equation

N
GMN(rr) =GO r")+ yZl GOr,r)GMN(r; 1),
(6)

where GV(r,r') and GO(r,r') are theN-impurity and
zero-impurity Green’s functions, respective®(r,r’) is
simply the Green'’s function for an infinitely long quasi-1D
ballistic quantum wirgalong thex direction,*®

eikn|xfx’\

G(O)(r,f/):nZl d)n(y)(ﬁn(y,)Tkn’

whereg,(y) is thenth mode of the transverse wave function

tional derivative of the scattering wave function can be
calculated® by investigating its linear response to an infini-
tesimal perturbationsU(r)=46U&(r—r"), where sU—0.

We apply the Lippmann-Schwinger equation to obtain an
expression for the full wave function response to this pertur-
bation, and then expand this expression in termglbf The
first order term gives the functional derivative of the wave
function, which is found to be

SyN(r)

=GNy’ (N)
sur =N e,

9

The scattering matrix and its functional derivatives can
now be extracted from the scattering wave function. In
closed form we obtain

N el (KX +knxj)
sln,lm:jylzz1 'BﬂmmTkn’
N e (KX = knxj)
Sn,1m= 5nm+“2:1 'BﬂmmTkn'

N

OSin 1 . _
ne Alnm+ E BmeeJrlani
i,j=1

=2

I=1

¢.<y>< )w&“)(r),

OSn,1m
oU(r)

=1

N
¢|<y><Amm+ijE_l Bijnmeiani) Y (r).

In these expressions,

Kn
A= \/k:mqbn(yiwm(yj)ymi,- :

AInmE 5In/\/(_iklx)/(2ikl);

Blhm=A1"

i exp(ik[x;—x|)/(2ik,2ik,);

#N(r) is the N-impurity scattering wave functiofEq. (8)]
with an electron incoming from lead 1 in mode

With the above analytical results we can proceed to plot
the emittancé , ; and its fluctuations for impurity scattering.
For comparison we have also calculated the dc conductance
fluctuations from the scattering matrix derived above. For a
given impurity configuratiodr;} wherei=1,2,... N, gen-

and k,, the corresponding momentum of the electron. Theerated randomly and distributed uniformly, we evaluate the

Dyson equation can be solved exactly and we obtain

N
GMN(r,r)=GOr,r"+y 2 GOr,r)M;GO(r;,r"),
ij=1

(7
where the matridV;=[&; — y7;1~* and ;=G O(r; r)).

quantity M;; by direct matrix inversion. The rest of the ex-
pressions are calculated onbg; is known. The transverse
modesg,(y) are the usual sine functions, and we have fixed
the incoming electron energy so that there are 18 propagating
subbands in the quantum wire whose contributions are
summed. The sample-to-sample statistical analysis is carried
out by averaging many independent impurity configurations

With the Green’s function calculated this way we obtain they; each giverN.

scattering wave function via the Lippmann-Schwinger equa-

tion. The result is

N
w<N><r>=w<°><r>+yi§1 GO, rpM;;pOr)), (8

Figure 1 plots the typical sample-to-sample emittance
fluctuations forN=300 andy=50. This is to be compared
with the usual dc conductance fluctuatiofiesed which
have an amplitude-e?/h, i.e., the UCF situation. For this
degree of disorder it is apparent tha; fluctuates between
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FIG. 1. Typical sample-to-sample fluctuations of the emittance

E,; with fixed the impurity numbeN=300 and strengthy=50. 9

Inset: sample-to-sample fluctuations of the dc conductance giving 2 3.0

rise to UCF's.

negative and positive values, indicating that the dynamic re- 20 0 20 20 pos 80 100
sponse of the disordered conductor depends on the impurity ¥

configuration. The implication is that for disordered mesos-

copic conductors the ac current can be leading or lagging the _FIG..Z(.j_For bo;r(a)_and(b), sqduarest\(lj= 100 ime’l'“'ri“eS{CirC'es’
ac voltage quite randomly from sample to Sample. N=125; diamondsN=150. (a) dc conductance fluctuations as a

The amplitude of the fluctuations is analyzed 35“\02 function of the impurity scattering strength A clear signature of

. .. UCF’s is observed withh G~0.86?/h without dependence om
A2\ /AN2 -
=(A%)—(A)?, whereAis G5, andEy; . The statistical aver and weak dependence &h (b) Emittance fluctuationaE,; as a

age is over energy as well as independent impurity configugnction of y: for large enoughy, AE,;, is essentially independent

rations. In Fig. 2 we plot the fluctuation amplitudes as aof -, put it strongly depends on the impurity density.
function of the impurity strengthy for several different im-

purity numbersN. 500 impurity configurations were aver- P(E;;) from first principles, where the internal response is
aged for eachy. Figure 2a) clearly shows that whery is  calculated through the LPDOS as discussed above. Figure 3
large enoughMA G, is essentially independent of. For N showsP(E;;) obtained from our numerical analysis for dif-
>75 and up toN=500, which we have studied\G,; ferentN values. Over 9000 independent impurity configura-
~0.8e%/h with less than 10% difference for differet’s  tions were averaged for eadt. We focus on the regime
[see Fig. 2a)], which is consistent with the expected UCF where the dc transport shows UCF's. Whérnis small, e.g.,
value for 2D systems (0.86/h).2 In this regime, Fig. ) N=100, P(E;y) centers at negativ&,, indicating a pre-
indicates tha\E,, is also independent of, showing a de- dominantly inductive dynamic respongeee Fig. 8)]. This
gree of universal behavior for the dynamic response withis consistent with the fact that the system is rather conductive
respect to the impurity scattering strength. However, becauder this degree of disorder. The distribution function is quite
E1; depends on the electrostatic potential buildup inside theymmetric. AsN is increased to 300, the larger degree of
conductot as reflected by the functional derivative in the disorder makes the system less conductive, and the distribu-
LPDOS (4), AE4, is expected to be a sensitive function of tion is shifted to center near zefBig. 3(b)]. While the dis-
the degree of disorder provided by the impurity number tribution is still quite symmetric, it is now wider, indicating a
Our results confirm this picture as shown in Figh)2 larger fluctuation amplitudAE;;, as was seen in Fig.(1.

An important quantity is the distribution functid®(E,). = WhenN is increased further?(E;;) not only shifts to the
Of the two contributions td&;, namely, the external charge center at positive values dt,;;, it becomes asymmetric
injection due to the time dependent disturbance and the ifFigs. 3c) and 3d)]. For largeN the disordered system is
ternal response due to Coulomb interactions, the externdéss conductive; therefore we expect a capacitive dynamic
contribution is given by the global partial density of statesresponsde.g., a parallel plate capacitor has zero dc conduc-
which is related the electron dwell time of the scatteringtance. This is clearly shown by the shift of the distribution
region?’ The distribution function of the dwell time has been toward positive values of emittance. In this regard, we note
analyzed within the random matrix thed?y for chaotic  that the random matrix theory prediction of capacitance dis-
cavities and within the invariant embedding formalism for tribution for a one-probe chaotic cavity is also asymmétric.
1D disordered systenf$.Its universal properties have been Although it seems to be quite difficult to analytically derive
well studied?*?* However, the statistical property of the in- an expression foP(E1,), its behavior can be understood by
ternal response is much more complicated and it has beesonsidering theMq;~M(l/L) conductive channels of the
included within the constant capacitance charging modetlisordered sample. It is reasonable to assume that these con-
only for chaotic cavitie&:® Here we numerically investigate ductive channels contribute largely to the inductivelike re-
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FIG. 3. The distribution func-
o . ] ‘ o | . tion P(E;,). For (a) N=100; (b)
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(©) N=400 (d) N=500 metric form to asymmetric, as the
B dynamic response changes from
01 10T | inductive to capacitive. Parameter
v=100 is used.
0.05 - 4 o005t .
0 L Il L o i 1
-0.01 -0.005 0 0.005 0.01 -0.01 -0.005 0 0.005 0.01
E11

sponse. Hence, wheW ¢; is large[e.g., Fig. 3a)] due to a  termine these quantities for impurity scattering. In the UCF
smaller degree of disordeE; fluctuates around its mean regime the emittance fluctuations show some degree of ge-
(which is a negative numbefrom sample to sample, but neric behavior in that the fluctuation amplitude is insensitive
each sample is inductive and herfegE, ;) is expected to be to the scattering strength. It does depend, however, on the
symmetric. On the other hand, when disorder increases angegree of disorder through the impurity density, which is
the distribution shifts to the center at a positive meaEof  very different from the familiar UCF in the mesoscopic
[e.g., Figs. &), 3(d)], there are always samples with sub- transport regime. The distribution function of the emittance
stantial M (as long as transport stays in the mesoscopig,a5 heen found to be quite distinct depending on the dynamic
regimé due to quantum interference and statistical distribuyegponse of the conductor: for an inductivelike response the
tion of the impurities, and these samples will be inductive-gjstrihution is symmetric and centered in the negative region

like in their dynamic response. Hence we expB¢Eq) 10 of emittance; for a capacitive response it is asymmetric and
tail into the negatives; region due to these samples. There- qniered at a positive emittance.

fore P(E4) is asymmetric for a large degree of disorder, as
Fig. 3(d) shows.

In summary, we have analyzed the sample-to-sample fluc- We thank Professor Markus Biker for pointing out the
tuations of emittance for two-dimensional disordered mesoeontribution of the weak localization effect to the average
scopic conductors. Our analysis was from first principlesyalue of the emittance. We gratefully acknowledge financial
where both external injection and internal response wersupport from NSERC of Canada and FCAR of Quebec
computed from the space dependent partial density of state@].G.); and RGC Grant No. HKU 7215/99P from the Hong
and we have developed a Green'’s function technique to dé<ong SAR (J.W)).
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