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Exact ground state in an orbitally degenerate Hubbard model
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(Received 22 September 1997; revised manuscript received 12 November 1997

We present an exact solution on the ground state of a one-dimensional orbitally degenerate Hubbard model
in the case of strong coupling, and the phase diagram in terms of electron filling and relevant parameters. The
ground state is nondegenerate apart for spifi2symmetry and a fully saturated and metallic ferromagnet
except the case of the quarter filling, at which a ferromagnetic Mott insulator transition occurs. The phase
diagram shows coexistence of ferromagnetism and spin-triplet pairing superconductivity when the Hund cou-
pling is sufficiently larger. A mechanism for spin-triplet pairing superconductivity and its possible relevance to
the quasi-one-dimensional organic superconductor are prop&@ts3-18208)00311-7

I. INTRODUCTION
HU=_ 2 (1_5)/7’ o’a")U'yy’ni,'y,o'ni,y’,o"
Orbital degrees of freedom enrich the phase diagram of a Lyy'o!
strongly correlated electron system. Interplay of orbital and
spin degrees of freedom produces a series of novel physical ~ H,=-— > Jw'(CiT,y,aCi,y,a'CiT,y/,ofCi,y',a
phenomena, such as metal-insulator transition, spin and or- iy=y' 0,0

bital ordered states, and transport property anomaly. How-

ever, the complexity of strong correlation in these systems
prevents us from a complete and deep understanding Qfherec!  andc; ,, are creation and annihilation operators
physical properties by means of conventional approaches. Af%r an 7

a theoretically simplified model, the orbital degenerate Hub- ) at :ilt?ecitrgz \mt;f) m(7£:1 TZ’)l)rég Isc(t:i?/gpllmrﬁinstarrrnyogfel
bard model is attracting recent attention. Various approxima?’ . N=~L.e), Tesp Y. .
nsists o\, sites and 2 orbitals on each site. In this paper

tions and computation methods, such as the perturbative prc?—o . . . . .
jection technique, slave-boson, and dynamical mean field’® consider a’ one-dimensional chain and téehe hop-
theory, and the quantum Monte Carlo method, are attempte@ing matrixt}” = —té, ., i 1, (ii) the on-site interaction
to investigate the systef! We expect to extract some rig- of the same orbitaU,,= U, (iii) the on-site interaction of
orous results from the theoretical model, which are believedhe different orbitalu .., =U" (y#y’), and(iv) the Hund
to be helpful for us to test the validity of approximate andcoupling between electrons of different orbitdls, =J (y
numerical results. #v'). Define the spin operator of electrorf ,
Physically, metallic ferromagnetism is one of the most=Emgrc{w(a)gv,,/ci,w, (where o are Pauli matricesIn
important, but fully mysterious phenomena in condensedhis model the total spin operat&,==2; ,S , commutes
matter physics. Recently, the understanding of ferromagwith the Hamiltonian[S;,H]=0 and is a good quantum
netism in strongly correlated electron system has made a lastumber. The maximum of total spin i&,/2 (N, is the num-
of progresse&>~"However all rigorous results are restricted ber of electrons andN.<2N,). We call a state with the
to the insulating case. Relation of superconductivity and fermaximum of total spin a fully saturated ferromagnet. Due to
romagnetism is a long standing probléfiThe coexistence spin SU2) symmetry, the state is alwayd{+ 1)-fold de-
of superconductivity and ferromagnetism is prospective forgenerate. Another hidden symmetry is of orbital degree of
both theoretical curiosity and application. It would breakfreedom: Ti’gzEy'y,cifw(a)w,ci'w,. These operators
through the limit of the conventional Bardeen-Cooper-also obey SI(P) algebra just as spin operators do. The total
Schrieffer(BCS) theory of superconductivity, and will pro- orbital spin commutes with the Hamiltonian when there is no
vide a promising routine for looking for a superconductor hopping between different orbitals H, .

t t
+€{ 4.6Ciy' 07 Ci 0/ Ciry )

with a high critical magnetic field. _ In this paper we present a set of exact solutions on the
An explicit form of the Hamiltonian for an orbitally de- ground state of a one-dimensional orbital degenerate Hub-
generate Hubbard model is written as bard model in the case of strong coupling by means of the

variational principle and the Bethe ansatz. We obtain a phase

(1) diagram for this system. The ground state is a metallic fer-
romagnet, except for the quarter filled case, in which a fer-
romagnetic Mott-insulator transition occurs. In the case of
where the strong Hund coupling between electrons on different or-
bitals, we discuss the coexistence of ferromagnetism and su-

perconductivity, and its possible relevance with recent ex-

H,= Z tivjV’ciT’Wcj’w, pgrimental observatipn of superconductivit_y in a qua;i-qne-

iy .o dimensional sample in the presence of a high magnetic field.

H=H+Hy+H;,

0163-1829/98/5(1.1)/64745)/$15.00 57 6474 © 1998 The American Physical Society



57 EXACT GROUND STATE IN AN ORBITALLY ... 6475

Il. THE GROUND STATE SOLUTION X0y XN Ve NGO 0N oy =y, = O

A. Bxact solution of the ground state for all i<j. The boundary conditions do not depend on spin

Even for the one-dimensional case, it is still very difficult indices. The conditions fatr; = oj comes from the Pauli ex-
to solve the model exactly or to extract rigorous results fronmclusion principle, and the conditions fef,= — o;; from the
the model. Some numerical and analytical calculations wergtrong coupling limit on the same orbital. An observation in
done. In the present paper, we limit our discussion to théq. (6) is that the eigenvalueE are independent of spin
case of strong coupling, i.el)— 4+ so that the double distribution: the wave functions with different spin distribu-
occupancy of electrons on the same site of the same orbital #fons satisfy the same set of equations. In other words, the
excluded. An equivalent Hamiltonian of E€]) in the large  spin degree of freedom is decoupled completely with the
U limit is reduced to charge and orbital degrees of freedom in the wave function,
which is similar to the one-band Hubbard model in the large
U limit.*® The wave function can be written in the form

H=Hy+ 2 Ha, 2)
f(Xl, PR ,XN;’yl, P ,’}/N;O'l, PR ,O'N)
where
=0(X1, .-« XN3Y1s - - YN P(0, - on). (7)
_ S . - ¢ is an arbitrary function of spin distribution. Substituting
Ha ti,,zw (1705, 0)Ciy,oCiv o017 M y.0) Eq. (7) into Eq. (6) we obtain
+Uet 2 PoNiyeNigePo, 3 —t 2 g(Xgy e XiF Sy XN YL - y) (U= D)
i,y#vy 0,0 i,0,y
Ha=d 2 Po(e],,C 001y iy X2y G178y )80 i)
y?ﬁy',(r
+ =EQ(Xq, .o XN YV1r -« - 2YN)S 8
_CiT,y,oCi,y,oTi,yr;Cj,y',o)PDr (4) g(Xz Ns Y1 ) (8

with

PD:Hi’y(l_.ni’%Tr?i’%l) andUeﬁ:U _J ]

To establish a rigorous result, let us consitigrandH, O(X1y « oo XNIYLr - - ,yN)|Xi:Xj 'vi:vjzo
=2;H,;, respectively. In the variational principle if we can o ) )
find a state which is simultaneously the lowest energy statfPr all i <j. These equations fa are equivalent to those for
of both H, andH,, then it must be the ground state I8t a one-band Hubbard model with,; if we regard the orbital

We first introduce a set of basis for this system. Assumdndices ing as usual spin indices in the one-band Hubbard
N, electrons ony=1 orbital, andN, electrons ony=2 or- model. The solution fog is expressed by means of the Bethe
bital. N=N;+N,. The N; electrons ony=1 orbital with ~ ansatz &
spinoq,0;, ... oy, are located ak;<X,<<-- <Xy, The N
N, electrons on y=2 orbital  with  spin O(X1s oo XN VL - e YN =D [Q,P]exr{iE kPjXQj
ON,+1,0N,+2, - - - ,ON are located aty, +1 <Xy, +2< " P =1
<Xy - A state on this basis is expanded as

)

where P and Q are two permutation of (1,2..,N). The
coefficients Q,P] are not independent of each other:

|\P>:{X-}{ i{oi} ii
i [Q.P1=Yim TQ.P'];
Xf(xl,...,XN;'yl,...,')/N;O'l,...,O'N) . . el
el ot ot 0) 5 Yi'Hl:(smkr.]—smkr.n)P : .—|Ueﬁ/2
X1 Y1:017%2, 2,02 XNSYNGONET nm (sink,— sink,,) + iU ¢/2
where|0) is the vacuum state. The Schiinger equation for where P=(P;, ... ,P;=n,P;.;=m,...,Py) and P’
fin Hy (notH) is =(Py, ...,P{=m,P/ . ;=n, ... Py.
Now we come to considet,; . For each site, there are

—t_z F(Xgs oo Xt B oo XYL e YNLTLs « e e i) four configurations of electrons after we exclude the double

iy occupancy of electrons on the same site of the same orbital:
empty, single occupancy and double occupancy of electrons
on the same site of different orbitals. The double occupancy
is characterized by spin singlet and spin triplet. The interac-
tion energy ofH,; on a single site ig for double occupancy
XE(Xgs oo XNGYL - YNGOL o) of spin singlet, and zero for other three configurations. Hence

the lowest energy ofH, for electronsN<2N, is always
ON) (6) . . . .

zero, and the state does not consist of on-site spin singlet.
with the boundary conditions Suppose| ¥ (g,#)) one of the lowest energy states kdf;

+Uer>, Sy 5 (1= 3y )
i<j

=Ef(Xl, P ,XN;’yl, . ,’yN;O'l, e
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with an arbitrary spin distributiorp. g is the lowest energy
wave function in Eq(9). The average energy ¢f, on this
state is expressed as

(V(Q.AIHT(Q8)= 2 8 xp(Xi X)X ),

where

PO X)= 2 G5 (Xgy e Xy o X)X
Xy K#1,]
Xg(Xl, P ,Xi, P ,Xj, s yXN)ZOY

s(xi X)) =(Bl(1=P|¢).

Pij is the permutation operator of spinsiaandj. The ei-
genvalue is+1 when spins on andj form triplet, and is
— 1 when spins form singlet. Physicallg(x; ,x;) is the pos-
sibility of forming a spin singlet at site;=x; (i#]) and
p(X;,X;) is the possibility of double occupancy of electron at
site x;=X; . For finite Ugg=U"—J, p(X;,X;) is not zero in
the lowest energy statep(x;,xj;)=n/4 when Ug=0.
p(X;,Xj)=n/2 as Ug; approaches-«, and 0 asU¢ ap-
proaches+. To obtain the lowest energy ofi,, all
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the double occupancy and the Hund coupling allows permu-
tation of spin indices of electrons on the same site. Combi-
nation of(a), (b), and(c) allows permutation of spin indices
of electrons on the same orbital when the system is not half
filled, i.e.,No.=2N . Successive applications ), (b), and

(c) prove that all basis are connected.

From (i) and (ii), we come to conclude that under the
conditions the ground state &f is nondegenerate. All coef-
ficients are in the ground stafsee Eq.(5)] :

f(xq, .. o) >0.

.,XN;’yl, ...,’)’N;O'l, ..

The property provides us with an alternative way to show
ferromagnetism in the ground state. We construct a state
with all constant coefficients, | ¢). This state possesses the
maximal total spinNg/2 if No.<2N, .22 Since overlap be-
tween the ground state and the state is always nonzero,

(P|p)y=c f#0,

>
it dvidod

and both states are eigenstates of the total spin, they must
have the same total spfA.

lll. THE PHASE DIAGRAM OF THE GROUND STATE

s(x;,Xj) have to be zero. This condition can be satisfied by a
fully saturated ferromagnetic state. Hence we have to choose Except for the fully saturated ferromagnetism in the

¢ the state with maximum of the total spin so tht(g, ¢))
is the lowest energy state &f,.

Since the the ferromagnetic stat(g,¢)) is the lowest
energy state of botii; andH, in Eq. (2) simultaneously,

ground statg¥') of H, other physical properties related to
the charge and orbital degrees of freedom are determined by
solution g, which depends on the effective interactibhy

and the electron filling. Formallg can be determined by Eq.

according to the variational principle, we draw a conclusion(g). This solution has been discussed extensif&lyor

that the stat¢W (g, ¢)) is the ground state dfl in Eq. (1) in
the case of larg®) limit. (The conclusion of ferromagnetism

Ugs>0,i.e.,U'>J, g is a solution for a positivé) Hubbard
model, and wherJ 4<0, g is a solution for a negativé

in the ground state is also true when the system containgypbard model. Whebl’ =0, g is a solution of free fermion

more than two orbital$.

B. Nondegeneracy of the ground state

The ground state is nondegenerate wher0, U’ is finite
and N.<2N, . This is proved by using Perron-Frobenius

theoren?! The theorem states that for a real, symmetric, and

square matrixM ={m;;} if (i) all its off-diagonal matrix el-
ements are nonpositien; <0 for any (#])], and(ii) for
anyi,j we can always find an integer such that M");;

gas with orbital degeneracy.

Using the technique of bosonizatiéhthe low-energy
charge and orbital density excitations are described by the
effective Hamiltonian

H~H:.+H,, (10

where

On U eff
" oSBT
27«

#0, its eigenvector with lowest value is unique and all ele-
ments in the vector are positive. In my problem here the
Hamiltonian can be expressed in the form of sqaure matrix
on the basis | choose. The Hamiltonian matrix satisfies the

He=y | axZ+ (500742 -

conditions of the Perron-Frobenius theorem.
(i) Nonpositive off-diagonal matrix elements: Exprdss

Ueff

2m2a?

H0=%J dX[ T2+ (9¢ho)°AZ]+ cog VB o).

in a square matrix on the basis we choose. The nonzergc and ¢0 are the Charge and orbital fie|d57 respective]y_

diagonal matrix elements afg’ andJ due to the on-site

density-density interaction and the Hund coupling betweens massless except for the case of quarter filling, ire
electrons in different orbitals, respectively. The nonzero off-_ N/N,=1. This indicates that the low energy charge exci-

diagonal elements aret due to the hopping terms, and
—J due the Hund coupling. As botht and —J are nega-
tive, all nonzero off-diagonal matrix elementstdfare non-
positive.

(ii) All basis are connected through: (a) the hopping
terms connect all lattice site)) finite U’ allows the on-site
double occupancy of electrons on different orbitals, ér)d

A2=1+Ug/7 and A2=1—U/ . The charge excitation

tation has no gap, and the system will be metallic.

A. Ferromagnetic Mott-insulator transition: Quarter filling

In the case of quarter filling, the charge excitation is mas-
sive whenU >0, but massless wheld4<0. The energy
gap forU4>0 is expressed exactly as
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A whereuv is the Fermi velocity and is the compressibility,

! - : ; Uett and&>0. Meanwhile the correlation function of single elec-
5 v b <o trons decays exponentially:
U I E =0 <\I,|CiT,'y,0'Ci+n,7',(r’|\P>_)5%7’60,(r’e7n/§v as n—o,
I I >0 This indicates that the ground state has strong instability of

; superconductivity. In a realistic sample the quasi-one struc-

0 > n ture or small hopping between one-dimensional chains could
0 1 2 suppress the quantum fluctuation and enhance the tendency

FIG. 1. The phase diagram of the one-dimensional model for thd© f(?rm supe_rconductIVIty. Hence the gound state g .
charge and orbital isospin degrees of freedom in a fully saturated=0 IS @ coexistence of ferromagnetism and superconductiv-
ferromagnetic state. The solid line is o1 andJ<U’, and rep-  Iy-
resents an insulating state. Phases | and Il are an solution for a
positiveU Hubbard model, and phases Il and IV are for an attrac- IV. DISCUSSIONS

tive U Hubbard model. There is a quantum phase transition near the . . o
dashed line a=U’. Phases | and Il are related to each other The coexistence of ferromagnetism and superconductivity

through the particle-hole transformation, as are phases Il and Iv.IS & phenomenon in condensed matter. There have been a lot
of theoretical investigations of spin-triplet pairing
() superco_rlductivit)?.7‘30 (Liquid °He is a spin-triplet
LY de>0, superfluid®®) Shelton and Tsvel® presented a one-
w dimensional example that superconductivity of spin triplet
pairs occurs in the case of finit¢ by using the bosonization
where\ =U /4t and J;(w) is the first Bessel function ac- technique. As far as | know there is no discussion on coex-
cording to Lieb-Wu solutiod® The gap disappears when istence of ferromagnetism and superconductivity. At present
U#<0. Hence there is a ferromagnetic Mott-insulator tran-there is some indirect experimental evidence to support the
sition when the system is quarter filled. The low energycoexistence of ferromagnetism and superconductivity. Re-
equation for the orbital excitation is very similar to that for cent experiment on a quasi-one dimensional organic super-
the charge excitation at quarter filling, but the signs of inter-conductor (TMTSF)PF; by Lee et al3? shows that super-
action are opposite. Wheld >0, the orbital excitation is ~conductivity survives in a high magnetic field. In a spin
massless, but wheld.4< 0, the orbital excitation is massive, Singlet pairing superconductor, electron pairing takes place
i.e., the low-energy orbital excitation has a gap. In fact thebetween electrons with opposite spins, but electron spins
charge excitation at quarter filling and orbital excitation has dend to align parallel in a magnetic field. The limit of the
dual relation under a partial particle-hole transformation,paramagnetic limiting field for breaking an isotropic pairing
which will map a positivel . case to a negative case mean-is given by H,=1.84T. where T. is the critical
while the the charge excitation is mapped onto the orbitafemperaturé® Compared with spin-singlet pairing, the spin-
excitation and vice versa. A schematic phase diagram i¥iplet superconductor is not limited by this magnetic field
shown in Fig. 1. althoughH,, is usually much larger than the critical field
H..?° (TMTSF),PF; is a type-ll superconductor. Lest al.
measured the critical magnetic fieldl., along thec direc-
tion and found thaH, is much larger tham,, which sug-
A more interesting phenomenon in the ground state ocgests that full polarization of electron spins takes place in the
curs in the case ofl .4<0. Apart from spin S2) symme- sample.
try, there is an additional S@) symmetry for orbital degree Here we make a theoretical speculation, although more
of freedom. We have shown that the orbital excitation has a&vidence is needed to relate our work with the superconduc-
gap whenU 4<0. A physical argument is that wheldgs  tivity in (TMTSF),PFs;. Our soluble model provides a pos-
<0 electrons with opposite orbital spins and parallel spinssible mechanism of superconductivity with fully polarized
tend to form spin triplet and orbital singlet. If we want to spins. When we consider the Hund coupling between elec-
make an orbital excitation, we must break a pair, which willtrons on different chainfin (TMTSF),PF; it should be on
cost a finite energy. Following Bogoliubov and Korepfn, chains, not orbitals electrons on different chains tend to
we find that the correlation functions of electron pairs withform a spin-triplet pair, which has a lower energy than spin
spin triplet and orbital spin singlet decays in a power law singlet pair. When the Hund coupling is stronger that the
on-site interactiorlJ’, the electrons with parallel spins on
different chains will “feel” an attractive interaction, which
will drive the electrons to form spin-triplet, and orbital spin-
singlet pairs, further to form superconductivity. In presence
of an external magnetic field the spin fluctuation is sup-
with pressed and it is easier to form a ferromagnetic state, in
which the attractive interaction is enhanced. In other word,
the external magnetic field will enhance the superconductiv-
ity in our model, not suppress superconductivity as in a con-
ventional BCS superconductor.

A=4tfm[w)\—tanf'(w)\)]
0

B. Coexistence of ferromagnetism and superconductivity

1
<\P|C;r,l,0'ci1.,2,o'ci+n,2,a'Ci+n,l,U|\P>_)51 as N—o,

N[ =
A
N
Il

_UFK$1,
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In summary, we obtain the exact solution of the nonde-strong coupling will lead to proof that ferromagnetism and
generate ground state of an orbital degenerate Hubbamgliperconductivity coexit. In this case we expect that super-
model in the strong coupling limitapart for (S+1)-fold  conductivity survives in the presence of a relatively higher
SU(2) degeneracy We showed that the state is fully satu- magnetic field.
rated ferromagnetic. At quarter filling, a ferromagnetic Mott
insulator_ocpurs, which depends on the diffgrence between ACKNOWLEDGMENTS
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