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For a two-terminal modified Aharonov-BohmAB) ring with a quantum dot inserted in one arm and
threaded by a magnetic flux, thase rigidityis observed experimentally in the linear response regime, and
also established theoretically. We show that this phase rigidity can be broken, even in the linear response
regime, by applying a time-varying field on the dot, together with the magnetic flux through the AB ring. This
provides another way of observing the continuous variation of the transmission phase through a two-terminal
mesoscopic systemiS0163-18209)50444-X]

INTRODUCTION Obviously, the phase shii¢, (n=1, 2, ...) can only take
two values, either O ofr. Namely, the phase of the two-
Recently, in a set of breakthrough experiments, Yacobyerminal AB ring has to be rigid, or change abruptly hyas
et al! and Schusteet al? successfully performed the mea- the accumulated phase in one arm is being vdtied.
surements of the transmission phase through a mesoscopic |s it possible to obtain a continuous phase variation for a
modified Aharonov-Bohm(AB) ring, with a quantum dot two-terminal AB ring? It cannot be a simple AB ring of
(QD) inserted in one arm and a magnetic flux threadectourse, but modified to include an inelastic scattering chan-
through the center of the ring. In addition to the flux as apg| o that the unitary condition for the scattering matrix, one
source of phase shift in the bare AB ring, the inserted QD the conditions mentioned above, will not lead to phase

operating in the Coulomb blockad€B) regime, becomes igigity. With this idea in mind, we consider in this paper a
another source O.f phase Sh.'f.t' In tunneling thr_ough the QD.two-terminaI modified AB ring threaded by a magnetic flux
an electron acquires an additional phase, leading to a shift i
the AB oscillations’ By varying the gate voltagey, one
can measure this phase shift as a functionvf Surpris-
ingly, instead of a continuous variation of this phase shift, in
the experiment of Yacobgt al.* they found a bimodal be-
havior: the phase shift is zero for all valuesvgfon one sige
of the CB resonance and for all values on the other side. T a2 2
This peculiar behavior, known as thlase rigidity has been I=e /hf de; [ltir(e et nho,d)*fL
studied extensivel§.’

This phase rigidity is a general property coming from the —|trile, e+ nhiw, $)[*FR],
two-terminalnature of the setup in the measurement by Ya- . i
coby et al, which is based orime-reversal symmetrgnd ~ Where » is the frequency of the MW fieldt g(e,e
current conservatiofi In fact, time-reversal symmetry re- +nfiw,¢) is the transmission amplitude for electrons com-
quirest, r(e, @) =t (€, — ¢), Wheretz(e,¢) (a,=L,R) ing from the left lead with energy, and to the right with
is the transmission amplitude from terminalto 8, € is the ~ energy e+nfiw. The time-reversal symmetry ensures
energy of the electron, an@i=27d/d, (dy=h/e). From tri(€,e+nfiw, d)=t g(e+nfiw,e,—¢). However, to
current conservatiotunitary condition of scattering matrix ~ maintain the phase rigidity one must requi¥g|tg (€€
one has |t r(e @)|?=|tri(e,#)|28 Then one finds +nfiw,¢)|*==,t r(e+nhw,e ¢)]? which is not valid in
|tLR(€v¢)|2: It r(€e,— ¢)|2_ Namely, the transmission prob- the presence of an inelastic channel. To see this, we examine

ability |t_r(€,¢)|? is an even function ofs. Consequently, the following equations from the unitary condition of a scat-

And with a QD inserted in one arm. To introduce the inelastic
scattering, we apply a time-varying microwaidW) field

on the QD. In the presence of MW field, the time averaged
current is given by

the linear conductanc& (and the currentis also an even tering matrix: Sari (e e+ nhw,d) >+t r(e €
function of ¢, and its Fourier expansion is +tnho,¢)*=1 and Z|r (et+nfiw,e ¢)|*+ 2 [tr (e
+nhw, e ¢)|?=1, wherer is the reflection amplitude. In the
G() =Gt S G.codnd+ .. 1 absence of the MW fle!d, _these two equations give
(4)=Co En: nCOSNG+ 0n) @ Itr(€, @)=t r(€, ¢)|? which is needed for the phase ri-
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gidity. When the MW field is present, similar relations do plitude for an electron through a quantum dot applied by a
not hold any more. Therefore, the phase rigidity is brokenMW field,® but their main interest is focused on a simple
even for a two-terminal modified AB ring. By using the non- two-terminal systenia dot coupled to two leagiswhich is
equilibrium Green’s functionNNGF) method, we obtained not relevant to the problem of phase rigidity.

the time-averaged curremtand the linear differential con- IThIe tcgr][ent ‘;Lom thlet!eft |??ﬁ it”t? Ithe sgstem Catn bef
— — _ _ calculated from the evolution of the total number operator o
ductanced1/dV, and found thatd1/dV as a function ofp is b

e . . the el f the left lead. Th find its of
a periodic but not an even function. Consequently, for thliiﬁo‘?ﬁtrons of the left lead en one fir(@s units of

two-terminal modified AB ring, the phase shift of the oscil-

lation, 6¢4, can vary continuously. . de
It is worth mentioning that a continuous phase variation I (H)=—2e |mf dtlf —e ' UIT Y (e)

observed in the linear response regime in the experiment by —o 2w

Schusteret al? is due to thefour-terminal nature of the

setup, which relaxes the symmetry requirements, so that all

values of phase shift are allowdAlso note that in the - ; _ -1; ;

: ) in which f g (€) ={exd (e—eV (r)/ksZ]+ 1} " is the Fermi
t_heory of Bruder, |_=a_z|o, and SchoeIFeM_;ney obta|_n_ed aCon-  gistribution function of electrons in the leftight) lead, and
tinuous phase variation for a two-terminal modified AB rlng,FL(E) is a matrix linewidth function defined bf_L_(R)
in which the system is imonlinear response regime.e., 4
finite bias voltage and the QD isstrongly correlated In

§2k(p)2w§(e— ek(P))WL:(‘,L)W{((p), wherei,j=0,1. The ma-
contrast, the above mentioned phase rigidity is related oni{fix Green’s functionG"=(t,t,) in Eq. (3) is defined by
to thelinear response regime

X[G<(tvt1)+fL(e)Gr(t!tl)]}! (3)

[(tt)=—i0t—t){c(t).c/(t)}) and  Gj(tty)
=i{cl(t)ci()}).
We now proceed to solve the Green’s functi@s(t,t’)
andG'(t,t"). First, we solve the retarded Green'’s functions
The system under consideration is a two-terminal modi-G'(t,t’) by using the Dyson equation. By taking the wide-
fied AB ring threaded by a magnetic fluk and with a  bandwidth approximation, which has been widely used in
quantum dot inserted in one arm. To simplify the calculationmesoscopic systent$!!the linewidth functionl™-(I'R) be-
but still capture the essential physics, we shall restrict oureomes independent of the energy and the self-energy
selves to considering the tunneling in the neighborhood of &'(t,t’) can be obtained as follows:
single Coulomb oscillation peak. Therefore, we assume that
only one nondegenerate electronic energy level in the QD is i
involved, and the spin degree of freedom of the electron and X'(t,t')=— Eé(t—t’)
the intradot Coulomb interaction can be neglected, as in Ref.
9. The Hamiltonian of the system is written as

MODEL AND FORMULATION

L, PR
oo Lot o€l ¢)
L, R i ,
Iig+lie ' Iy

where Fjj=Fh+Fﬁ. The quantityg'(t,t’) in the Dyson
‘ ‘ . ‘ equation describes the Green’s function for the electron in
H(t) =2 eajact > €pbpbp+ €9CoCot+ €x(t)CiCy the ring when the coupling between the ring and the two
kel peR . . .
leads is off. It can be obtained exactly:

+

> whalc;+ > wiblco+ > wie'’blc,
K P P (4)

g (tt)= —iﬁ(t—t,)éijexr{ —iftdffj(f)
t!

+H'C']’ @ wherei,j=0,1. It should be emphasized that the Green's

: . _ o functiong’(t,t") depends on two time variablésndt’, not
wherea,(a,) andby(b,) are the creatiortannihilation op- their difference. In order to solve the Dyson equation, we
erators of the electron in the left and right lead, respectivelytake the Fourier transforth
The third term describes the bare arm of the ring. The fourth
term models the quantum dot which is regulated by a gate A de
voltagev,. Here we assume that a time-varying MW field is F(t,t) =, e'”“"lJ Z—e"E(t‘tl)Fn(e), (5)
applied on the quantum dot. We also assume that the adia- . 7
batic approximation holds so that the MW field can be de'whereF represents any one of tI@, g, or 3, ande is
scribed by an oscillating potential and it only causes the[he frequency of the MW field Deﬁoti,n (,)EF (
single-electron energy spectrum a rigid shfft! e,(t) =€, q y ol " Bimn( € n-m(€

. . ) ) +mw), the Fourier transformation of the Green'’s function

+ A cosot, €, is the time-independent single electron energy ((t,t") and the self-energE'(t,t') are then easily ob-
without the MW field. The last term in E@2) represents the gt 9 " _yr
tunneling between the ring and the leads. To account for th@medr' a}ndr th? Dy;on equation  becomet,,= g
magnetic flux® through the center of the AB ring, the ma- +Ekgmk2kkG.k“’ n which the argument has been Sup-
trix elements between the dot and the right lead is set to bBressed. By iterating the Dyson equation, and taking the ap-
wye'? as in Ref. 5, wherav; is the matrix element in the proximation,
absence of the magnetic field, agd=27D/D,.

It should be mentioned that Jauho and Wingreen investi- 00y —1_ 042
gated, very recently, the phase shift of the transmission am- nEm (EnEm) nEm 5”'“/ (Em)" ©
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WhereE{Ee— €j+lw+il};/2 (j=0,1), which is reasonable
for 0>T1"¢y. We then obtain matrix elements of the Green’s
function G, (€) as

5mn

r _
mn;00~ ~

(9;

-1 r or r
mm;OO) _Emm;01gmrrt112mm;10

r

— ' r =r
mn; 01 Gmmoozmm:Olgmn;ll’

r _r r r
Gmn;lO_ gmn;llznn;lOGnn;OO’

r _=r =r r r r =r
Gmn;u—gmn;lﬁzk: Imk 11>kk: 16Ckk: 00> kk:019kn: 115 (7)

in  which  Qhnoo(€)=m/ES  and  ghniie)
=3 ke m(A @) n(Alw)/EY . By taking the reverse
Fourier transformation of Eq(7), the Green’s function
G'(t,t’) can be obtained immediately.

The next step is to solve the distribution Green’s function

G=(t,t) by wusing the Keldysh equation:G=(t,t)
= [[dt,dt,G(t,t;) 2= (t1,t,) G3(t,,t). Under the wide-
bandwidth approximation, the self-ener@/~(t;,t,) be-
comes

where

d . ~
27(ty,tp)= f iie_'s(tl_tZ)[fL(G)FLﬂL fr(e)IR( )],
Fgo F§19i¢

TR("’):(P?OM !

SubstitutingG'(t,t;) andX=(t,,t,) into the Keldysh equa-
tion, one easily obtain&=(t,t'). Finally, substituting the
Green’s functionsG=(t,t) and G'(t,t’) into Eq. (3), the
time-dependent current (t) can be obtained straightfor-
wardly. Hence, the time-averaged currénts obtained as
follows:

®

— de
= —ef ZTr( 21Im[I'Go(e)f(e)]
+ReX, TEG o()[f ()T +fR(e)TR( )]

x[Gr_no(e)]T}. 9

The expression of the averaged currEnEq. (9), is the

BREAKING OF PHASE RIGIDITY BY A TIME- . ..
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FIG. 1. (@ The linear conductanagl/dV vs the gate voltage,
for ¢=0. (b) The phased¢; vsvy. Wherew=1, [§=Tf=T1;
=T} =0.1, £=0.2, ande; =0 atv,=0. The solid, dashed, and
dotted curves correspond &0 @=0.7, 0.5, and 0, respectively. The
inset in(a) is a schematic diagram of the two-terminal modified AB
ring. The inset in(b) is the transmission probability, g vs ¢ at
zero gate voltagev;=0) ande=0. The other parameters are the
same as the solid curve.

obtain the behavior of the phase sh#ft);. In numerical
studies, we take the units ef=% =1, and make further sim-
plifications as follows{(i) Consider two symmetric barriers,
i.e., =T andI'},=T%,; (i) temperature7=0; (i) set
Vg=0 for the right lead, which does not change the physics
due to the gauge invariané&lt should be emphasized that
the nondiagonal linewidth§5{® and I':{P are associated
with the diagonal linewidths through the relation
Iy =TtPr® | Therefore, in numerical calcula-
tion, one only needs to choose the diagonal linewidth param-
etersI'5F and 'R

Figure Xa) shows the linear conductancd/dV vs the
gate voltagev. In the absence of the MW fieldhe dotted
curve, a resonance peak with slight asymmetry emerges.

central result of this work. It can be applied to the arbitraryThe asymmetry structure is from the interference between
strength of the time-dependent MW field. Note that, by theGj; (i,j=0,1) and the Green’s function of leads. This inter-
way, if one decouples the connection to the bare arm of théerence is a Fano-like interference as mentioned in the
ring (i.e., letw)=w5=0), then the system will reduce to a Kondo system by Thimnet al."**°In fact, without MW field

simple two-terminal system with one dot coupled to twoand ¢=0, we haved|/dV=e/2m(x+ p)2/[ p?+2px+x3(1

leads, and our averaged current formula, @9, will reduce  +p?)], with x=(eq—€)/(I'oy/2) and p=(e;— €)/(I'11/2).

to the same result of Ref. 11. While in the presence of the MW fielghe solid and dashed

curves, some additional peaks show up at the locations of

nhew (N=*=1,+2,...) away from the original resonance

peak, indicating the photon-assisted tunnel(iAT) pro-
Now let us apply the averaged current formula, E2),  cesses. The additional peaks are also slightly asymmetric due

only in the linear response regime, to investigate the depeno the sideband of levek, participating in the Fano-like

dence ofl onv, [v, regulates the energy level of the quan- interference also.

tum dot by €;(vq) =€1(0)—evy] and ¢, and through that The behavior of the phase shift of the linear conductance

NUMERICAL STUDIES
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FIG. 2. The conductancdl/dV vs ¢ at thesev, around the
original resonance peak in the solid curve at Fi@).1The param-

eters are same with the solid curve at Figa)1Curve 1 to curve 5
corresponds tovg=0.1, 0.05, 0.02,-0.01, and—0.05, respec-

tively.
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rate of the rising decreases with the increas@bb. (i) At
vg=€1+ho, there is a peakor a dip, corresponding to a
photon absorptiorfor emission, with a half-peak-width de-
termined by the linewidth™ ;.

Physically, the phase rigidity breaking for our two-
terminal modified AB ring in a linear response regime origi-
nates from the inelastic scattering which introduces a degree
of freedom in the scattering process. In the presence of the
MW field, the electron tunneling through the quantum dot
can exchange the energy afnfiw (n=1, 2,...)with the
MW fields, leading to the opening of inelastic tunneling
channels. An incident electron from the left lead with the
energye tunneling into the QD, can scattéransmit or re-
flect) into an outgoing channel with the energy ef=¢
*nho (€' #¢€), by absorbing or emitting photons. Conse-
quently, the transmission probabilityl, g== |t r(€,€
+nhw,$)|? will not be an even function ofp. This is
clearly shown in the inset of Fig(li), where we have plotted
transmission probabilityl| g vs ¢ for a specific energy

=0. Correspondingly, the differential conductantiédV is

dI/dV vs ¢ is presented in Fig. 2, showing the conductance© longer an even function ap, and hence the phase shift

d1/dV vs ¢ for different gate voltage 4, around the origi- d¢p, can vary continuously.
nal resonance peak corresponding to different points in the
solid curve of Fig. 1a). All curves exhibit periodic oscilla-
tions with the period of Zr, but with different phase shifts.
One can clearly see that the first-order phase shjft of the We have investigated the phase shift behaviors in a two-
oscillations does have a continuous variation, not taking onljierminal modified AB ring with a quantum dot inserted in
two values(either o or ), i.e., the phase rigidity is broken. one arm. We showed that the phase rigidity can be broken by
By taking a Fourier expansion fatl/dV vs é as in Eq.(1), applying a MW field on the dot, and a continuous phase shift

the phase shifisé, can be obtained analytically, which is €a" be obtaineql through the measurement of the linear con-
plotted in Fig. 1b). Without the MW field(the dotted curve ductanc_e for this twoitermm_al AB system. These _behawors
the phase shift is rigid and an abrupt phase increases;, by are attnbuteq to the_lnelastlc scattering channel introduced
on passing through the resonance peak. These results areQ4 the MW field applied to the dot.

complete agreement with the experinfeand the previous
theoretical resultd-’ In the presence of the MW fieltthe
solid and dashed curvgshowever, the phase can vary con-
tinuously, i.e., the phase rigidity lsroken From the numeri- We gratefully acknowledge the financial support of a
cal results one can clearly see the following features for thiCRCG grant from the University of Hong Kong, the research
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