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Breaking of phase rigidity by a time-varying field for a two-terminal modified
Aharonov-Bohm ring

Qing-feng Sun
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

and Department of Physics, Peking University, Beijing 100871, China

Jian Wang
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

Tsung-han Lin
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

and Department of Physics, Peking University, Beijing 100871, China
~Received 17 May 1999; revised manuscript received 7 September 1999!

For a two-terminal modified Aharonov-Bohm~AB! ring with a quantum dot inserted in one arm and
threaded by a magnetic flux, thephase rigidityis observed experimentally in the linear response regime, and
also established theoretically. We show that this phase rigidity can be broken, even in the linear response
regime, by applying a time-varying field on the dot, together with the magnetic flux through the AB ring. This
provides another way of observing the continuous variation of the transmission phase through a two-terminal
mesoscopic system.@S0163-1829~99!50444-X#
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INTRODUCTION

Recently, in a set of breakthrough experiments, Yaco
et al.1 and Schusteret al.2 successfully performed the mea
surements of the transmission phase through a mesosc
modified Aharonov-Bohm~AB! ring, with a quantum dot
~QD! inserted in one arm and a magnetic flux thread
through the center of the ring. In addition to the flux as
source of phase shift in the bare AB ring, the inserted Q
operating in the Coulomb blockade~CB! regime, becomes
another source of phase shift. In tunneling through the Q
an electron acquires an additional phase, leading to a sh
the AB oscillations.3 By varying the gate voltagevg , one
can measure this phase shift as a function ofvg . Surpris-
ingly, instead of a continuous variation of this phase shift
the experiment of Yacobyet al.,1 they found a bimodal be
havior: the phase shift is zero for all values ofvg on one side
of the CB resonance andp for all values on the other side.3

This peculiar behavior, known as thephase rigidity, has been
studied extensively.4–7

This phase rigidity is a general property coming from t
two-terminalnature of the setup in the measurement by Y
coby et al., which is based ontime-reversal symmetryand
current conservation.8 In fact, time-reversal symmetry re
quirestLR(e,f)5tRL(e,2f), wheretab(e,f) (a,b5L,R)
is the transmission amplitude from terminala to b, e is the
energy of the electron, andf52pF/F0 (F05h/e). From
current conservation~unitary condition of scattering matrix!,
one has utLR(e,f)u25utRL(e,f)u2.8 Then one finds
utLR(e,f)u25utLR(e,2f)u2. Namely, the transmission prob
ability utLR(e,f)u2 is an even function off. Consequently,
the linear conductanceG ~and the current! is also an even
function of f, and its Fourier expansion is

G~f!5G01(
n

Gncos~nf1dfn!. ~1!
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Obviously, the phase shiftdfn (n51, 2, . . .! can only take
two values, either 0 orp. Namely, the phase of the two
terminal AB ring has to be rigid, or change abruptly byp as
the accumulated phase in one arm is being varied.6

Is it possible to obtain a continuous phase variation fo
two-terminal AB ring? It cannot be a simple AB ring o
course, but modified to include an inelastic scattering ch
nel so that the unitary condition for the scattering matrix, o
of the conditions mentioned above, will not lead to pha
rigidity. With this idea in mind, we consider in this paper
two-terminal modified AB ring threaded by a magnetic flu
and with a QD inserted in one arm. To introduce the inelas
scattering, we apply a time-varying microwave~MW! field
on the QD. In the presence of MW field, the time averag
current is given by

Ī 5e2/hE de(
n

@ utLR~e,e1n\v,f!u2f L

2utRL~e,e1n\v,f!u2f R#,

where v is the frequency of the MW field,tLR(e,e
1n\v,f) is the transmission amplitude for electrons co
ing from the left lead with energye, and to the right with
energy e1n\v. The time-reversal symmetry ensure
tRL(e,e1n\v,f)5tLR(e1n\v,e,2f). However, to
maintain the phase rigidity one must require(nutRL(e,e
1n\v,f)u25(nutLR(e1n\v,e,f)u2, which is not valid in
the presence of an inelastic channel. To see this, we exam
the following equations from the unitary condition of a sca
tering matrix: (nur LL(e,e1n\v,f)u21(nutLR(e,e
1n\v,f)u251 and (nur LL(e1n\v,e,f)u21(nutRL(e
1n\v,e,f)u251, wherer is the reflection amplitude. In the
absence of the MW field, these two equations g
utRL(e,f)u25utLR(e,f)u2 which is needed for the phase r
R13 981 ©1999 The American Physical Society
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gidity. When the MW field is present, similar relations d
not hold any more. Therefore, the phase rigidity is brok
even for a two-terminal modified AB ring. By using the no
equilibrium Green’s function~NGF! method, we obtained

the time-averaged currentĪ and the linear differential con

ductanced Ī /dV, and found thatd Ī /dV as a function off is
a periodic but not an even function. Consequently, for t
two-terminal modified AB ring, the phase shift of the osc
lation, df1, can vary continuously.

It is worth mentioning that a continuous phase variat
observed in the linear response regime in the experimen
Schusteret al.2 is due to thefour-terminal nature of the
setup, which relaxes the symmetry requirements, so tha
values of phase shift are allowed.3 Also note that in the
theory of Bruder, Fazio, and Schoeller,7 they obtained a con
tinuous phase variation for a two-terminal modified AB rin
in which the system is innonlinear response regime~i.e.,
finite bias voltage! and the QD isstrongly correlated. In
contrast, the above mentioned phase rigidity is related o
to the linear response regime.

MODEL AND FORMULATION

The system under consideration is a two-terminal mo
fied AB ring threaded by a magnetic fluxF and with a
quantum dot inserted in one arm. To simplify the calculat
but still capture the essential physics, we shall restrict o
selves to considering the tunneling in the neighborhood o
single Coulomb oscillation peak. Therefore, we assume
only one nondegenerate electronic energy level in the QD
involved, and the spin degree of freedom of the electron
the intradot Coulomb interaction can be neglected, as in R
9. The Hamiltonian of the system is written as

H~ t !5 (
kPL

ekak
†ak1 (

pPR
epbp

†bp1e0c0
†c01e1~ t !c1

†c1

1H(
k, j

wk
j ak

†cj1(
p

wp
0bp

†c01(
p

wp
1eifbp

†c1

1H.C.J , ~2!

whereak
†(ak) andbp

†(bp) are the creation~annihilation! op-
erators of the electron in the left and right lead, respectiv
The third term describes the bare arm of the ring. The fou
term models the quantum dot which is regulated by a g
voltagevg . Here we assume that a time-varying MW field
applied on the quantum dot. We also assume that the a
batic approximation holds so that the MW field can be d
scribed by an oscillating potential and it only causes
single-electron energy spectrum a rigid shift:10,11 e1(t)5e1
1D cosvt, e1 is the time-independent single electron ener
without the MW field. The last term in Eq.~2! represents the
tunneling between the ring and the leads. To account for
magnetic fluxF through the center of the AB ring, the ma
trix elements between the dot and the right lead is set to
wp

1eif as in Ref. 5, wherewp
1 is the matrix element in the

absence of the magnetic field, andf52pF/F0.
It should be mentioned that Jauho and Wingreen inve

gated, very recently, the phase shift of the transmission
,
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plitude for an electron through a quantum dot applied b
MW field,9 but their main interest is focused on a simp
two-terminal system~a dot coupled to two leads!, which is
not relevant to the problem of phase rigidity.

The current from the left lead into the system can
calculated from the evolution of the total number operator
the electrons of the left lead. Then one finds~in units of \
51)10,11

I L~ t !522e ImE
2`

t

dt1E de

2p
e2 i e(t12t)Tr$GL~e!

3@G,~ t,t1!1 f L~e!Gr~ t,t1!#%, ~3!

in which f L(R)(e)5$exp@(e2eVL(R))/kBT#11%21 is the Fermi
distribution function of electrons in the left~right! lead, and
GL(e) is a matrix linewidth function defined byG i j

L(R)

[(k(p)2pd(e2ek(p))wk(p)
i* wk(p)

j , where i , j 50,1. The ma-
trix Green’s functionGr ,,(t,t1) in Eq. ~3! is defined by
Gi j

r (t,t1)52 iu(t2t1)^$ci(t),cj
†(t1)%& and Gi j

,(t,t1)
5 i ^$cj

†(t1)ci(t)%&.
We now proceed to solve the Green’s functionsG,(t,t8)

andGr(t,t8). First, we solve the retarded Green’s function
Gr(t,t8) by using the Dyson equation. By taking the wide
bandwidth approximation, which has been widely used
mesoscopic systems,10,11 the linewidth functionGL(GR) be-
comes independent of the energye; and the self-energy
Sr(t,t8) can be obtained as follows:

Sr~ t,t8!52
i

2
d~ t2t8!S G00 G01

L 1G01
R eif

G10
L 1G10

R e2 if G11
D ,

where G j j 5G j j
L 1G j j

R . The quantitygr(t,t8) in the Dyson
equation describes the Green’s function for the electron
the ring when the coupling between the ring and the t
leads is off. It can be obtained exactly:

gi j
r ~ t,t8!52 iu~ t2t8!d i j expF2 i E

t8

t

dte j~t!G , ~4!

where i , j 50,1. It should be emphasized that the Gree
functiongr(t,t8) depends on two time variablest andt8, not
their difference. In order to solve the Dyson equation,
take the Fourier transform12

F~ t,t1!5(
n

einvt1E de

2p
e2 i e(t2t1)Fn~e!, ~5!

whereF represents any one of theGr , gr , or Sr , andv is
the frequency of the MW field. DenotingFmn(e)[Fn2m(e
1mv), the Fourier transformation of the Green’s functio
gr(t,t8) and the self-energySr(t,t8) are then easily ob-
tained, and the Dyson equation becomesGmn

r 5gmn
r

1(kgmk
r Skk

r Gkn
r , in which the argumente has been sup-

pressed. By iterating the Dyson equation, and taking the
proximation,

(
n,m

~En
0Em

0 !21'(
n,m

dnmY ~Em
0 !2, ~6!
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whereEl
j[e2e j1 lv1 iG j j /2 ( j 50,1), which is reasonable

for v@G00. We then obtain matrix elements of the Green
function Gmn

r (e) as

Gmn;00
r 5

dmn

~ g̃mm;00
r !212Smm;01

r g̃mm;11
r Smm;10

r
,

Gmn;01
r 5Gmm;00

r Smm;01
r g̃mn;11

r ,

Gmn;10
r 5g̃mn;11

r Snn;10
r Gnn;00

r ,

Gmn;11
r 5g̃mn;11

r 1(
k

g̃mk;11
r Skk;10

r Gkk;00
r Skk;01

r g̃kn;11
r , ~7!

in which g̃mn;00
r (e)5dmn /Em

0 and g̃mn;11
r (e)

5(kJk1m(D/v)Jk1n(D/v)/E2k
1 . By taking the reverse

Fourier transformation of Eq.~7!, the Green’s function
Gr(t,t8) can be obtained immediately.

The next step is to solve the distribution Green’s funct
G,(t,t) by using the Keldysh equation:G,(t,t)
5**dt1dt2Gr(t,t1)S,(t1 ,t2)Ga(t2 ,t). Under the wide-
bandwidth approximation, the self-energyS,(t1 ,t2) be-
comes

S,~ t1 ,t2!5E de

2p
ie2 i e(t12t2)@ f L~e!GL1 f R~e!G̃R~f!#,

where

G̃R~f!5S G00
R G01

R eif

G10
R e2 if G11

R D . ~8!

SubstitutingGr(t,t1) andS,(t1 ,t2) into the Keldysh equa-
tion, one easily obtainsG,(t,t8). Finally, substituting the
Green’s functionsG,(t,t) and Gr(t,t8) into Eq. ~3!, the
time-dependent currentI L(t) can be obtained straightfor
wardly. Hence, the time-averaged currentĪ is obtained as
follows:

Ī 52eE de

2p
TrH 2 Im@GLG00

r ~e! f L~e!#

1Re(
n

GLG2n0
r ~e!@ f L~e!GL1 f R~e!G̃R~f!#

3@G2n0
r ~e!#†J . ~9!

The expression of the averaged currentĪ , Eq. ~9!, is the
central result of this work. It can be applied to the arbitra
strength of the time-dependent MW field. Note that, by
way, if one decouples the connection to the bare arm of
ring ~i.e., let wk

05wp
050), then the system will reduce to

simple two-terminal system with one dot coupled to tw
leads, and our averaged current formula, Eq.~9!, will reduce
to the same result of Ref. 11.

NUMERICAL STUDIES

Now let us apply the averaged current formula, Eq.~9!,
only in the linear response regime, to investigate the dep
dence ofĪ on vg @vg regulates the energy level of the qua
tum dot by e1(vg)5e1(0)2evg] and f, and through that
e
e

n-

obtain the behavior of the phase shiftdf1. In numerical
studies, we take the units ofe5\51, and make further sim-
plifications as follows:~i! Consider two symmetric barriers
i.e., G00

L 5G00
R and G11

L 5G11
R ; ~ii ! temperatureT50; ~iii ! set

VR50 for the right lead, which does not change the phys
due to the gauge invariance.13 It should be emphasized tha
the nondiagonal linewidthsG01

L(R) and G10
L(R) are associated

with the diagonal linewidths through the relatio
G01

L(R)G10
L(R)5G00

L(R)G11
L(R) . Therefore, in numerical calcula

tion, one only needs to choose the diagonal linewidth para
etersG00

L(R) andG11
L(R) .

Figure 1~a! shows the linear conductanced Ī /dV vs the
gate voltagevg . In the absence of the MW field~the dotted
curve!, a resonance peak with slight asymmetry emerg
The asymmetry structure is from the interference betw
Gi j

r ( i , j 50,1) and the Green’s function of leads. This inte
ference is a Fano-like interference as mentioned in
Kondo system by Thimmet al.14,15In fact, without MW field
and f50, we haved Ī /dV5e/2p(x1p)2/@p212px1x2(1
1p2)#, with x5(e02e)/(G00/2) and p5(e12e)/(G11/2).
While in the presence of the MW field~the solid and dashed
curves!, some additional peaks show up at the locations
n\v (n561,62, . . . ) away from the original resonanc
peak, indicating the photon-assisted tunneling~PAT! pro-
cesses. The additional peaks are also slightly asymmetric
to the sideband of levele0 participating in the Fano-like
interference also.

The behavior of the phase shift of the linear conducta

FIG. 1. ~a! The linear conductanced Ī /dV vs the gate voltagevg

for f50. ~b! The phasedf1 vs vg . Wherev51, G00
L 5G00

R 5G11
L

5G11
R 50.1, e050.2, ande150 at vg50. The solid, dashed, and

dotted curves correspond toD/v50.7, 0.5, and 0, respectively. Th
inset in~a! is a schematic diagram of the two-terminal modified A
ring. The inset in~b! is the transmission probabilityTLR vs f at
zero gate voltage (vg50) ande50. The other parameters are th
same as the solid curve.



c

th

.

n
.

s

y
re

n-

th

he

-
i-
ree
the
ot

g
he

ft

wo-
in

by
hift
con-
ors
ced

a
ch
ion,

RAPID COMMUNICATIONS

R13 984 PRB 60QING-FENG SUN, JIAN WANG, AND TSUNG-HAN LIN
d Ī /dV vs f is presented in Fig. 2, showing the conductan
d Ī /dV vs f for different gate voltagevg , around the origi-
nal resonance peak corresponding to different points in
solid curve of Fig. 1~a!. All curves exhibit periodic oscilla-
tions with the period of 2p, but with different phase shifts
One can clearly see that the first-order phase shiftdf1 of the
oscillations does have a continuous variation, not taking o
two values~eithero or p), i.e., the phase rigidity is broken
By taking a Fourier expansion ford Ī /dV vs f as in Eq.~1!,
the phase shiftdf1 can be obtained analytically, which i
plotted in Fig. 1~b!. Without the MW field~the dotted curve!,
the phase shift is rigid and an abrupt phase increases, bp,
on passing through the resonance peak. These results a
complete agreement with the experiment1 and the previous
theoretical results.4–7 In the presence of the MW field~the
solid and dashed curves!, however, the phase can vary co
tinuously, i.e., the phase rigidity isbroken. From the numeri-
cal results one can clearly see the following features for
continuous phase variation:~i! The phase shiftdf1 continu-
ously rises by almostp for vg across a resonance peak. T

FIG. 2. The conductanced Ī /dV vs f at thesevg around the
original resonance peak in the solid curve at Fig. 1~a!. The param-
eters are same with the solid curve at Fig. 1~a!. Curve 1 to curve 5
corresponds tovg50.1, 0.05, 0.02,20.01, and20.05, respec-
tively.
e

e

ly

in

is

rate of the rising decreases with the increase ofD/v. ~ii ! At
vg5e17\v, there is a peak~or a dip!, corresponding to a
photon absorption~or emission!, with a half-peak-width de-
termined by the linewidthG11.

Physically, the phase rigidity breaking for our two
terminal modified AB ring in a linear response regime orig
nates from the inelastic scattering which introduces a deg
of freedom in the scattering process. In the presence of
MW field, the electron tunneling through the quantum d
can exchange the energy of6n\v (n51, 2, . . . ) with the
MW fields, leading to the opening of inelastic tunnelin
channels. An incident electron from the left lead with t
energye tunneling into the QD, can scatter~transmit or re-
flect! into an outgoing channel with the energy ofe85e
6n\v (e8Þe), by absorbing or emittingn photons. Conse-
quently, the transmission probabilityTLR[(nutLR(e,e
1n\v,f)u2 will not be an even function off. This is
clearly shown in the inset of Fig. 1~b!, where we have plotted
transmission probabilityTLR vs f for a specific energye
50. Correspondingly, the differential conductanced Ī /dV is
no longer an even function off, and hence the phase shi
df1 can vary continuously.

SUMMARY

We have investigated the phase shift behaviors in a t
terminal modified AB ring with a quantum dot inserted
one arm. We showed that the phase rigidity can be broken
applying a MW field on the dot, and a continuous phase s
can be obtained through the measurement of the linear
ductance for this two-terminal AB system. These behavi
are attributed to the inelastic scattering channel introdu
by the MW field applied to the dot.
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