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Convergent N2-scaling iterative method of photoelectron diffraction and low-energy electron
diffraction for ordered or disordered systems
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We present results of a convergent iterative method of photoelectron diffraction and low-energy electron
diffraction. The computation time of this method scales\N&s whereN is the dimension of the propagator
matrix, rather tharN® as in conventional Gaussian substitutional methods. We show that the Rehr-Albers
separable-representation cluster approach or slab-type nonseparable methods can all be cast in this iterative
form. The convergence of this method is demonstrated for different materials. With the substantial savings in
computational time and no loss in numerical accuracy, this method will be very useful in future applications of
multiple-scattering theory, particularly for systems either involving very large unit ¢208—700 atomsor
where no long-range order is presdi80163-182@09)04003-5

Over the years, a major accomplishment in surface scipanded in a perturbation series to finite order. In this formu-
ence is the formulation of accurate multiple-scattering theolation, the number of scattering paths increases exponentially
ries for structural determinatior? However, current as the multiple-scattering\S) order increases. We show
multiple-scattering theories of low-energy electron diffrac-Now the Rehr-AlbersRA) cluster method can be cast into
tion (LEED) and photoelectron diffraction for systems with SOVing & system of linear equations, analogous to that of the
long-range order involve the solution of a matrix-vector S/aP method. We solve t%e system of linear equations by a
equation of the form{l—Mlx=y. Here,M is a (compley relaxation-iterative methodin our method, multiple scatter-

. ) ; : ; . ing is summed until numerical convergence to a preset accu-
square matrix of dimensioN, | is a unit matrix of the same 5.y is achieved and the computation time increasing linearly
dimension, and,y are (compley vectors of lengttN. The  ith the MS order. To demonstrate the application of the
“exact” solution x={I—M}"'y requires Gaussian reduc- method, we present results for photoelectron diffraction
tion and back substitution. These steps scal&lain com-  spectra of Ni clusters with different sizes, and for slab cal-
putational time. Because the number of atamzer unit cell  culations of LEED IV curves of the (2X2) Au on CU001)
appears in first order in the dimension, current slab-typesystem. In each case, the convergence of our method is dem-
multiple-scattering theories have computation times scalin@nstrated by comparing the results with those obtained by
asn®. The most complicated system studied so far by slat¥loWwer, conventional methods. _
multiple-scattering theory is the @il1) 7x7 surface. Using We first describe the treatment for a cluster. Following
symmetry, Tonget al2 reduced the 98 atoms in the surface Rehr-Albers; the phatoelectron-diffraction intensity - col-
double-layer unit cell to 24 atoms. Because of the cubic del—eCted by a detector &;=Rq is
pendence om, current slab multiple-scattering theories be-

o0 2
come impractical witm>50. |(|2)oc >3 G(Q—l>(§ R, ... R~=R ym,_eid| p2.
On the other hand, real surfaces and interfaces contain Ly Q=1 Lioo 710772 QT Pa
defects*® Many materials properties are affected or even ()

dominated by defects. Examples of defect-controlled properm Eq. (1), L; denotes the photoexcitation dipole-element’s
ties include the concentration of carriers in a semiconductofinal state k, is the electron’s wave number. The emitting
or the activity of a catalyst on a surface. Since it is neveryiom is atlio and the detector is éd: IiQ—wo.The master

possible to prepare a perfect surface or interface, then defegtigin is located at the vacuum-solid interface. The matrix
structures must be studied and understood. Additionallygiement from a core level to, is given bym,_ and s, is a
f f

controlled defects provide fundamental properties in artlf'_partial-wave phase shift. The MS orde 1) denotes the

cially grown materials; notable examples are the one-, two- ) . ) ;
and three-dimensional quantum-well structures. humber of sc?tterer(s.g.,t matriceg in 'each scf";ltterlng path.
he vectorsp;=k, (Ri—R;_;). By introducing the RA

To characterize defect structures, it is often necessary tb ) R
treat by multiple-scattering theory systems with over 300S€Parable representation®f, (p), the total propagator for
atoms either as a supercell in a slab method or as an isolatd@® (Q—1)th order can be written as
cluster. The purpose of this paper is to present results of a

convergent-iterative multiple-scattering method whose com- Gf_?,Sol '(R1,R,, ... Rg=Ry)

putation time scales abl® or less, rather thaN3. Our .

method is equally applicable to the slab approach or the clus- g(Prtratrq) Lo o

ter approach. One of the most widely used cluster methods is :a” patmﬁr "(p1)

the separable-perturbation approach of Rehr and Afbers. w2 e

the original formulation, multiple-scattering paths are ex- XF(p1p2)F(pn-180) T pq). 2
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For eachi, j pair, F(pip;) is a (\X\) matrix. Taken to the -
second order\=6. At second order, the RA method is con- I (k)
vergent for most systent§.If the initial state in the photo-
excitation has a high angular-momentum quantum number,
then\ =15 (third orde) or higher values may be required. In +2 FLf(ﬁj)Gij)
the following demonstration, we shall use=6. If higher 7
values of A are used, the Ot(;nle savings will increase  gor giveni, j, andl, the quantityF;; , , is a(6x6) matrix,
linearly with \. Using A=6, I'"{(pq) is a (6x1) column ¢ andg; are(6x1) column vectors. Thus, E5) is of the
vector whileI'1(5,) is a(1x6) row vector. The scattering  familiar form {I-M}x=y. As indicated earlier, the exact so-
matrix F(pjp;j) contains the temperature-correction factor| tion of Eq. (5) requires calculating={I—M} "1y and the
W(pip;), which is explicitly given in the work of Kaduwela, ¢omputation time scales &, whereN=6n2. A faster way
Friedman, and Fadlé¥/Direct evaluation of Eq(1) requires is to solve Eq(5) by iteration as follows:
a computation time that scales a%>. In the example given
in this paper, to achieve convergence for a singl€00l) XMt l=MxM+y. 7
layer, we neech=253 atoms and MS over 20. Thus, direct ) . ] . oy
summing of Eq.(1) requires a computation time scaling as Equation (7) is equivalent to expandingl—M}"" in a
(253 which obviously is impractical. power series, I.e.,
We shall cast Eq(2) into a set of linear equations and
obtain the solution by a relaxation-iterative method. To do X=(I+M+M-M+--)y. ®)
this, we define a single-scattering propagator as The expansion in Eq8) converges if and only if the mag-
nitude of the largest eigenvalue M, |\ |, is less than unit.
Otherwise, Eq(8) will diverge and produce unphysical re-
sults. However, it is possible to stabilize the iteration by
introducing two adjustments to the scheme.
(1) For the vectorx™"1, the latest values** for 1<i

We notice thatR; is the last scattering before the electron =) 8r€ used 1;E)+rlcalcula.t|ng the ele'meqﬁiﬁll. By using the
propagates to the detectorl%g The phase factoe*”"fh is latest valuesq"™ *, the right-hand side of Ed.7) becomes

X closer to the current value and this makes the iteration more

added to account for the propagation with damping Of,thestable. This step has the additional advantage that it does not
scattered electron from atoR; towards the detector. This require the simultaneous storagexdF'* andx™ as is nec-

factor is not incll_Jded in the RA formulation or the treatmentessary if Eq(7) is solved by conventional iteration.

of Kaduwela, Friedman, and Fadfeliecause they have as- (2) The second adjustment is to include a relaxation pa-
sumed a reak;. Because there is inelastic damping insidergmeterw such that we write

the solid,k; is a complex wave vector and its proper choice

across the solid-vacuum interface has been discussed XM= XM+ (1— w)x". 9
previously?'%Sincel'®(54) is a(6x1) column vectorg; is i1 o _ .

also a(6x1) column vector. We represent the total propaga-n EQ. (9), Xi"" ~ is the (m+ 1)th iteration obtained by using
tor, after full multiple scattering as;;, which is also a Step 1. If 6<w<1, we see that step 2 mixes and (1-w)

(6x1) column vector. InG;; the electron undergoes many Portions of themth and (n+1)th iteration results to make up
additional scattering events after leaving the atorRat If the new value. A choice ab between 0.5 and 0.9 makes the

we write the separable scattering matrix as iteration method convergent for all the materials tested, using
a typical inelastic damping of 4 eV &=0 K.
To demonstrate the relaxation-iterativgRl) method

> mLfe”"'f<r°°(ﬁd>rLf<ﬁd>e-ikf'Pv
Ly

2

(6)

e’ > B S B AT00 =\ a—iKiR
gij:p_F[kO(Rj_Ri)1k0(Rd_Rj)]F (pa)e”*rR. (3
j

L o eiko\E‘i*Eﬂ applied to clusters, we show in Fig. 1 the normalized
Fiji = F[ko(Rj—Ri) ko(RI—R)) | —=——= photoelectron-diffraction spectfg¢=(1—14)/1o] calculated
kole—Ri| for 49, 81, and 253 atom clusters of Ni. The Ni atoms are
arranged in a NDOJ) plane, with the emitting atom at the
=Fij a0, 4) center of a circle. Along thE001] direction, the radius of the

circle contains 4, 5, and 9 atoms, respectigycluding the
emitting atom for each cluster size. We use the same dy-
namical inputs chosen in a previous study: ilg.=swave,
inelastic damping=4 eV, and inner potential and tempera-
ture are set to zert¥. Figure 1, upper panel, shows the nor-
mal emissionyuster DY SOlVing Eq.(5) using the direct-
> {6 6jil — 6jkFij ki) Gri=gij - (5)  expansion method, i.e., E(B). We see that direct expansion
kil of M diverges for a Ni001) plane of 81 atoms or larger. For
the 49 atom cluster, the calculation does not diverge. How-
Equation (5) is one of the principal results of this paper. ever, the cluster is too small for its result to agree with that of
Once the total propagatorG;; are calculated, the an infinitely extended NDO1) plane, i.e.,xga. The curve
photoelectron-diffraction intensity for an emitter located aty., is calculated by the conventional slab method using the
R; is given by {I—M} 'y approach. In Fig. 1, lower panel, we show the

then, we can solve foG;; by the following set of linear
equations:
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Ni©o1)  6=0" T=0K tional solution of Eq.(5) by Gaussian substitution scales as
5.0 N3, even though there are many zeros in the left-hand side
—4@— slab method (infinite) matrix of Eq_(5)_
4.0 —B— perturbation cluster (49 atoms) We show elsewhere that the backward-summing method
—/\— perturbation cluster (81 atoms) introduced earliétt has the same convergence condition as
3.0 direct expansion, i.e., Eq8). Therefore, the backward-
summing method also diverges for a(B0l1) plane of 81
20 atoms under the same conditions. Steps 1 and 2 of the RI
method modifies the expansion matkikto a new expansion
1.0 A matrix:
; k ’ -1
5 00 W . : | M'=(l-wL) H{(1-w)l+ U}, 11
g \&J/ U V whereL, U, and|l are (NX N) matrices containing, respec-
£ -10 tively, the lower, upper, and diagonal elements of the matrix
g 50 M. We show elsewhere by choosing<®<1, the largest
= —@— slab method (infinite)
[=7

systems with long range order. The computation time scales
asn?, i.e., the number of atoms per unit cells. Thus, the RI
method is best suited for supercell slab calculations. For ex-
ample, in dynamical LEED calculations, the tofmatrix

for layeri within a composite layer is given by

1.0

eigenvalue oM'is less than unity even whdny|> 1. This
4.0] —B— R method (253 atoms) is why the RI method converges for systems wherein the
direct iteration diverges.
10 So far, we have applied the Rl method to the separable
’ representation cluster calculation. However, the RI method
20 /\ / can equally be applied to nonseparable slab calculations for

Al
fAvARAS

wave number (A™")

=

2 {8j1— 7G}T;(Kj) = 7i(K). (12)

FIG. 1. Calculated normal-emission photoelectron-diffractionFor giveni, j, 7i(k) andT;(K) are column vectors of length
spectra for a single NDO1) layer comparing the slab resuiolid L= (I st 1)? while 7. and Gy - are LXL) square
diamond$ with (i) upper panel: separable-representationmatrices. Their definitions are found in standard LEED
perturbation-expansion calculations using 49 at¢sedid squares  papers® Since Eq.(12) again has the fornil —M}x=y with
and 81 atomghollow triangles. The 81-atom calculation shows dimensionN=n(l .+ 1)21 we can apply the Rl method to
divergence of the perturbation expansigi) Lower panel: The  ggpye forTj(IZ).Here,n is the number of atoms per unit cell.
same slab result compared to the separable-representatiqq Fig. 2, we show IV curves calculated by the RI method
_relaxation-iteration calculation of 253 atorfsolid squares show- compared to those using the conventional matrix-inversion
Ing convergence of the two methods. method for thec(2x2) Au on CU001) system. We have
included two rumpled:(2xX2) Au-Cu alloy layers on top of
eight(1x1) Cu layers, thus or j runs over 12 subplanes in
for a 253-atom cluster. The relaxation facteris chosen as Eq. (12). We choose the same dynamical inputs as those
0.8. There are three significant results to ndtg:For the  ysed in a previous structural determinatiginelastic damp-
253-atom clusteryuster agrees well withygap, (i) the Rl ing =4.25 eV, ten partial waves, inner potentialO eV, and
method is convergent, an@i) in the separable representa- temperature correction fofF=300 K is included. The relax-
tion, the computation time for the Rl method scales only astion factor w=0.5. In Fig. 2, the relaxation iteration is
Nl's, while the{' — M}_ly method scales dss. In order to Stopped at an accuracy of
calculateyxp, it is necessary to assume a long-range order
in the Ni(001) plane. This reduces the slab system to one _ 5
atom per unit cell. On the other hangl,,s.ris calculated by e—m&v{; (1= M)ijxj—yi| <5107 (13
ey o vy T o e onape " v dcreas o <110 he IV cures calcted by
The iterative solution of Eq5) is the RI n;ethogl becom.es.wsuallly indistinguishable from those

of the n*-scaling matrix-inversion method.
Besides the two systems presented here, we have also
é{?*lz E Fiji ]f*,‘* +0ij» (10  tested other strong as well as weak scattering systems, e.g.,
[ P#001), disordered B-3l11), etc. In each case, the RI
. method is numerically convergent to the “exact” result with
where we use the latest values @f]' . Thus,m* can be a typical inelastic damping of 4 eV and without temperature
either themth or (m+ 1)th order. Since the indicd§ j, and  correction(temperature correction further improves the con-
I) denote atomic sites, the computation of EL0) scales as vergencg The relaxation factow is usually between 0.5-
n3xN° becauseN=6n%. On the other hand, the conven- 0.9. The number of iterations required to reach convergence

Xcluster C@lculated by the RI method, i.e., step 1 and &),
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Cu(001) c(2x2)-Au 0=¢=0" comes large. Thus, while the dimension of tilematrix is
large, there are many small elemeritompared to unity
corresponding to largej (i) distances.

Ch *h) /\/\.,_.* It is important to recognize that the reduction in the scal-
ing from N% to N? (nonseparable representatioor N
. s “exact” method (separable representatjois frequently a deciding factor
Ch °h) /\_\ ----- RI method whether a calculation is practical or not. For example, with
- the 253 atom cluster shown in Fig. l,=2.53x 10* in the
(1 '%) nonseparable forrfusing ten partial waveslin the separable
/\/\/\ form, N=3.84x 10° using (6x6) matrices. To handle such
S~ —

large matrices by inversion is not practical in real applica-
" W) . tions. On the other hand, the 253-atom cluster calculation
M using the RI method is easily handled on an IBM RS6000
P workstation. Equally important to stress is the fact that, as
@ 1 ‘ shown in Fig. 1, lower panel, and Fig. 2, the Rl method is as
/\/\_/— accurate as the “exact” method.
The choice of using either the nonseparable or separable
2 0 form depends on the number of atoms involved, the number
¥_’~/\/\ of partial waves needed in the nonseparable form, and the
dimension of the RA scattering matrix in the separable form.
If we take typical values of ten partial waves and @ RA
\ matrices, then the respective computational times for the
nonseparable and separable forms scale 4s?18nd 3&?°,
(10 . wheren is the number of atoms. Therefore,nfis 277 or
. o~/ less, then the separable form is faster, but i§ bigger than
4'0 ' 8|0 ' 1‘20 ' 1(‘50 ’ 260 277, the nonseparable form is faster. However, in either rep-
resentation, the Rl method is faster than the conventional
Energy (eV) Gaussian substitutional method by close to an order of N.
FIG. 2. Calculated LEED IV spectra for @01 o(2x2) Au _ In conclusion, we have introduced a Rl method for solv-
comparing results of slab-type Gaussian substitution metsoii "9 the Rehr-Albers separable-cluster problem and the con-
lines) and the nonseparable relaxation-iterative mettiddtted ventional slab matrix-inversion problem. The methoq has
lines). The results show good convergence of the two methods. _bee_n tested to be convergent for common systems of |nter_est
in either the separable form or the nonseparable form. With
is related to the MS order, the latter is typically betweensSubstantial savings in computation time and at no loss of

15-30, depending on the magnitudes of damping and tenptumerical accuracy, th(_e methoq is usefgl in future applica-
perature correction. A systematic application of the rjtions of multiple-scattering theories, particularly for systems

method to different metal and semiconductor materials willvhere no long-range order is present.

be presented elsewhere. The RI method is well suited for This work was supported in part by HK RGC, HK RGC
solving the system of linear equations becaGseor Fix i Central Allocation Vote, HKU CRCG, DOE Grant No. DE-
decreases rapidly as the atomic separakigiiR;—R;| be- FG02-84ER45076, and NSF Grant No. DMR-9214054.
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