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Convergent N2-scaling iterative method of photoelectron diffraction and low-energy electron
diffraction for ordered or disordered systems

Huasheng Wu and S. Y. Tong
Department of Physics, The University of Hong Kong, Hong Kong, China

~Received 22 September 1998!

We present results of a convergent iterative method of photoelectron diffraction and low-energy electron
diffraction. The computation time of this method scales asN2, whereN is the dimension of the propagator
matrix, rather thanN3 as in conventional Gaussian substitutional methods. We show that the Rehr-Albers
separable-representation cluster approach or slab-type nonseparable methods can all be cast in this iterative
form. The convergence of this method is demonstrated for different materials. With the substantial savings in
computational time and no loss in numerical accuracy, this method will be very useful in future applications of
multiple-scattering theory, particularly for systems either involving very large unit cells~200–700 atoms! or
where no long-range order is present.@S0163-1829~99!04003-5#
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Over the years, a major accomplishment in surface
ence is the formulation of accurate multiple-scattering th
ries for structural determination.1,2 However, current
multiple-scattering theories of low-energy electron diffra
tion ~LEED! and photoelectron diffraction for systems wi
long-range order involve the solution of a matrix-vect
equation of the form$I2M %x5y. Here, M is a ~complex!
square matrix of dimensionN, I is a unit matrix of the same
dimension, andx,y are ~complex! vectors of lengthN. The
‘‘exact’’ solution x5$I2M%21y requires Gaussian reduc
tion and back substitution. These steps scale asN3 in com-
putational time. Because the number of atomsn per unit cell
appears in first order in the dimension, current slab-ty
multiple-scattering theories have computation times sca
as n3. The most complicated system studied so far by s
multiple-scattering theory is the Si~111! 737 surface. Using
symmetry, Tonget al.3 reduced the 98 atoms in the surfa
double-layer unit cell to 24 atoms. Because of the cubic
pendence onn, current slab multiple-scattering theories b
come impractical withn.50.

On the other hand, real surfaces and interfaces con
defects.4,5 Many materials properties are affected or ev
dominated by defects. Examples of defect-controlled prop
ties include the concentration of carriers in a semicondu
or the activity of a catalyst on a surface. Since it is ne
possible to prepare a perfect surface or interface, then de
structures must be studied and understood. Additiona
controlled defects provide fundamental properties in ar
cially grown materials; notable examples are the one-, tw
and three-dimensional quantum-well structures.

To characterize defect structures, it is often necessar
treat by multiple-scattering theory systems with over 3
atoms either as a supercell in a slab method or as an iso
cluster. The purpose of this paper is to present results
convergent-iterative multiple-scattering method whose co
putation time scales asN2 or less, rather thanN3. Our
method is equally applicable to the slab approach or the c
ter approach. One of the most widely used cluster method
the separable-perturbation approach of Rehr and Albers6 In
the original formulation, multiple-scattering paths are e
PRB 590163-1829/99/59~3!/1657~4!/$15.00
i-
-

-

e
g
b

-
-

in

r-
r
r
ct

y,
-
-,

to
0
ted
a
-

s-
is

-

panded in a perturbation series to finite order. In this form
lation, the number of scattering paths increases exponent
as the multiple-scattering~MS! order increases. We show
how the Rehr-Albers~RA! cluster method can be cast int
solving a system of linear equations, analogous to that of
slab method. We solve the system of linear equations b
relaxation-iterative method.7 In our method, multiple scatter
ing is summed until numerical convergence to a preset ac
racy is achieved and the computation time increasing line
with the MS order. To demonstrate the application of t
method, we present results for photoelectron diffract
spectra of Ni clusters with different sizes, and for slab c
culations of LEED IV curves of thec ~232! Au on Cu~001!
system. In each case, the convergence of our method is d
onstrated by comparing the results with those obtained
slower, conventional methods.

We first describe the treatment for a cluster. Followi
Rehr-Albers,6 the photoelectron-diffraction intensity co
lected by a detector atRW d5RW Q is

I ~kW !}U(
L f

(
Q51

`

GL f ,00

~Q21!~RW 1 ,RW 2 , . . . ,RW Q5RW d!mL f
eid l fU2

rd
2.

~1!

In Eq. ~1!, L f denotes the photoexcitation dipole-elemen
final state,k0 is the electron’s wave number. The emittin
atom is atRW 0 and the detector is atRW d5RW Q→`.The master
origin is located at the vacuum-solid interface. The mat
element from a core level toL f is given bymL f

andd l f
is a

partial-wave phase shift. The MS order (Q21) denotes the
number of scatterers~i.e., t matrices! in each scattering path
The vectorsrW i5k0 (RW i2RW i 21). By introducing the RA
separable representation ofGL8L(rW ), the total propagator for
the (Q21)th order can be written as

GL f ,00
~Q21!~RW 1 ,RW 2 , . . . ,RW Q5RW d!

5 (
all paths

ei ~r11r21¯rQ!

r1r2¯rQ

GL f~rW 1!

3F~rW 1rW 2!¯F~rW N21rW Q!G00~rW Q!. ~2!
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For eachi, j pair, F(rW irW j ) is a ~l3l! matrix. Taken to the
second order,l56. At second order, the RA method is co
vergent for most systems.10 If the initial state in the photo-
excitation has a high angular-momentum quantum num
thenl515 ~third order! or higher values may be required. I
the following demonstration, we shall usel56. If higher
values of l are used, the time savings will increa
linearly with l. Using l56, G00(rW Q) is a ~631! column
vector whileGL f(rW 1) is a ~136! row vector. The scattering
matrix F(rW irW j ) contains the temperature-correction fac
W(rW irW j ), which is explicitly given in the work of Kaduwela
Friedman, and Fadley.8 Direct evaluation of Eq.~1! requires
a computation time that scales asnMS. In the example given
in this paper, to achieve convergence for a single Ni~001!
layer, we needn5253 atoms and MS over 20. Thus, dire
summing of Eq.~1! requires a computation time scaling
~253!20, which obviously is impractical.

We shall cast Eq.~2! into a set of linear equations an
obtain the solution by a relaxation-iterative method. To
this, we define a single-scattering propagator as

gi j 5
eir j

r j

F@k0~RW j2RW i !,k0~RW d2RW j !#G00~rW d!e2 ikW f•RW j . ~3!

We notice thatRW j is the last scattering before the electr

propagates to the detector atRW d . The phase factore2 ikW f•RW j is
added to account for the propagation with damping of
scattered electron from atomRW j towards the detector. Thi
factor is not included in the RA formulation or the treatme
of Kaduwela, Friedman, and Fadley8 because they have as
sumed a realkW f . Because there is inelastic damping insi
the solid,kW f is a complex wave vector and its proper choi
across the solid-vacuum interface has been discu
previously.9,10 SinceG00(rW d) is a ~631! column vector,gi j is
also a~631! column vector. We represent the total propag
tor, after full multiple scattering asGi j , which is also a
~631! column vector. InGi j the electron undergoes man
additional scattering events after leaving the atom atRW j . If
we write the separable scattering matrix as

Fi j l 5F@k0~RW j2RW i !,k0~RW l2RW j !#
eik0uRW j 2RW i u

k0uRW j2RW i u

5Fi j ,kld jk , ~4!

then, we can solve forGi j by the following set of linear
equations:

(
k,l

$d ikd j l I2d jkFi j ,kl%Gkl5gi j . ~5!

Equation ~5! is one of the principal results of this pape
Once the total propagatorGi j are calculated, the
photoelectron-diffraction intensity for an emitter located
RW i is given by
r,

r

o

e

t
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-

t

I ~kW !}U(
L f

mL f
eid l fS G00~rW d!GL f~rW d!e2 ik f•RW 0

1(
j Þ i

GL f~rW j !Gi j D U2

. ~6!

For giveni, j, andl, the quantityFi j ,kl , is a~636! matrix,
Gkl andgi j are~631! column vectors. Thus, Eq.~5! is of the
familiar form $I2M %x5y. As indicated earlier, the exact so
lution of Eq. ~5! requires calculatingx5$I2M%21y and the
computation time scales asN3, whereN56n2. A faster way
is to solve Eq.~5! by iteration as follows:

xm115Mxm1y. ~7!

Equation ~7! is equivalent to expanding$I2M %21 in a
power series, i.e.,

x5~ I1M1M•M1¯ !y. ~8!

The expansion in Eq.~8! converges if and only if the mag
nitude of the largest eigenvalue ofM , ulMu, is less than unit.
Otherwise, Eq.~8! will diverge and produce unphysical re
sults. However, it is possible to stabilize the iteration
introducing two adjustments to the scheme.

~1! For the vectorxm11, the latest valuesxi
m11 for 1< i

< j are used for calculating the elementxj 11
m11. By using the

latest valuesxi
m11, the right-hand side of Eq.~7! becomes

closer to the current value and this makes the iteration m
stable. This step has the additional advantage that it does
require the simultaneous storage ofxm11 and xm as is nec-
essary if Eq.~7! is solved by conventional iteration.

~2! The second adjustment is to include a relaxation
rameterv such that we write

xi
m115v x̃i

m111~12v!xi
m . ~9!

In Eq. ~9!, x̃i
m11 is the (m11)th iteration obtained by using

step 1. If 0,v,1, we see that step 2 mixesv and ~12v!
portions of themth and (m11)th iteration results to make u
the new value. A choice ofv between 0.5 and 0.9 makes th
iteration method convergent for all the materials tested, us
a typical inelastic damping of 4 eV atT50 K.

To demonstrate the relaxation-iterative~RI! method
applied to clusters, we show in Fig. 1 the normaliz
photoelectron-diffraction spectra@x5(I 2I 0)/I 0# calculated
for 49, 81, and 253 atom clusters of Ni. The Ni atoms a
arranged in a Ni~001! plane, with the emitting atom at th
center of a circle. Along the@001# direction, the radius of the
circle contains 4, 5, and 9 atoms, respectively~excluding the
emitting atom! for each cluster size. We use the same d
namical inputs chosen in a previous study: i.e.,L f5s-wave,
inelastic damping54 eV, and inner potential and temper
ture are set to zero.10 Figure 1, upper panel, shows the no
mal emissionxcluster by solving Eq. ~5! using the direct-
expansion method, i.e., Eq.~8!. We see that direct expansio
of M diverges for a Ni~001! plane of 81 atoms or larger. Fo
the 49 atom cluster, the calculation does not diverge. Ho
ever, the cluster is too small for its result to agree with tha
an infinitely extended Ni~001! plane, i.e.,xslab. The curve
xslab is calculated by the conventional slab method using
$I2M%21y approach. In Fig. 1, lower panel, we show th
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xcluster calculated by the RI method, i.e., step 1 and Eq.~9!,
for a 253-atom cluster. The relaxation factorv is chosen as
0.8. There are three significant results to note:~i! For the
253-atom cluster,xcluster agrees well withxslab, ~ii ! the RI
method is convergent, and~iii ! in the separable represent
tion, the computation time for the RI method scales only
N1.5, while the$I2M%21y method scales asN3. In order to
calculatexslab, it is necessary to assume a long-range or
in the Ni~001! plane. This reduces the slab system to o
atom per unit cell. On the other hand,xcluster is calculated by
the RI method with no requirement of order in the Ni plan

It is easy to see why the RI method scales only asN1.5.
The iterative solution of Eq.~5! is

G̃i j
m115(

l
Fi j l Gjl

m* 1gi j , ~10!

where we use the latest values inGjl
m* . Thus, m* can be

either themth or (m11)th order. Since the indices~i, j, and
l! denote atomic sites, the computation of Eq.~10! scales as
n3}N1.5 becauseN56n2. On the other hand, the conven

FIG. 1. Calculated normal-emission photoelectron-diffract
spectra for a single Ni~001! layer comparing the slab result~solid
diamonds! with ~i! upper panel: separable-representat
perturbation-expansion calculations using 49 atoms~solid squares!
and 81 atoms~hollow triangles!. The 81-atom calculation show
divergence of the perturbation expansion.~ii ! Lower panel: The
same slab result compared to the separable-represent
relaxation-iteration calculation of 253 atoms~solid squares!, show-
ing convergence of the two methods.
s

r
e

.

tional solution of Eq.~5! by Gaussian substitution scales
N3, even though there are many zeros in the left-hand s
matrix of Eq.~5!.

We show elsewhere that the backward-summing met
introduced earlier11 has the same convergence condition
direct expansion, i.e., Eq.~8!. Therefore, the backward
summing method also diverges for a Ni~001! plane of 81
atoms under the same conditions. Steps 1 and 2 of the
method modifies the expansion matrixM to a new expansion
matrix:

M 85~ I2vL !21$~12v!I1vU%, ~11!

whereL , U, and I are (N3N) matrices containing, respec
tively, the lower, upper, and diagonal elements of the ma
M . We show elsewhere by choosing 0,v,1, the largest
eigenvalue ofM 8is less than unity even whenulMu.1. This
is why the RI method converges for systems wherein
direct iteration diverges.

So far, we have applied the RI method to the separa
representation cluster calculation. However, the RI meth
can equally be applied to nonseparable slab calculations
systems with long range order. The computation time sca
asn2, i.e., the number of atoms per unit cells. Thus, the
method is best suited for supercell slab calculations. For
ample, in dynamical LEED calculations, the totalT-matrix
for layer i within a composite layer is given by

(
j

$d i j I2t iGi j %T j~kW j !5t i~kW !. ~12!

For giveni, j, t i(kW ) andT i(kW ) are column vectors of length
L5( l max11)2 while t i ,LL8 and Gi j ,LL8 are (L3L) square
matrices. Their definitions are found in standard LEE
papers.2 Since Eq.~12! again has the form$I2M %x5y with
dimensionN5n( l max11)2, we can apply the RI method to
solve forT j (kW ).Here,n is the number of atoms per unit cel
In Fig. 2, we show IV curves calculated by the RI meth
compared to those using the conventional matrix-invers
method for thec~232! Au on Cu~001! system. We have
included two rumpledc~232! Au-Cu alloy layers on top of
eight ~131! Cu layers, thusi or j runs over 12 subplanes i
Eq. ~12!. We choose the same dynamical inputs as th
used in a previous structural determination:12 inelastic damp-
ing 54.25 eV, ten partial waves, inner potential510 eV, and
temperature correction forT5300 K is included. The relax-
ation factor v50.5. In Fig. 2, the relaxation iteration i
stopped at an accuracy of

e5maxU(
j

~12M ! i j xj2yiU<531023. ~13!

If we decreasee to <131023, the IV curves calculated by
the RI method becomes visually indistinguishable from tho
of the n3-scaling matrix-inversion method.

Besides the two systems presented here, we have
tested other strong as well as weak scattering systems,
Pt~001!, disordered B-Si~111!, etc. In each case, the R
method is numerically convergent to the ‘‘exact’’ result wi
a typical inelastic damping of 4 eV and without temperatu
correction~temperature correction further improves the co
vergence!. The relaxation factorv is usually between 0.5–
0.9. The number of iterations required to reach converge

ion
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1660 PRB 59BRIEF REPORTS
is related to the MS order, the latter is typically betwe
15–30, depending on the magnitudes of damping and t
perature correction. A systematic application of the
method to different metal and semiconductor materials w
be presented elsewhere. The RI method is well suited
solving the system of linear equations becauseGi j or Fik,kl

decreases rapidly as the atomic separationk0uRW j2RW i u be-

FIG. 2. Calculated LEED IV spectra for Cu~001! c~232! Au
comparing results of slab-type Gaussian substitution method~solid
lines! and the nonseparable relaxation-iterative method~dotted
lines!. The results show good convergence of the two methods
G.
-
I
ll
or

comes large. Thus, while the dimension of theM matrix is
large, there are many small elements~compared to unity!
corresponding to large (j 2 i ) distances.

It is important to recognize that the reduction in the sc
ing from N3 to N2 ~nonseparable representation! or N1.5

~separable representation! is frequently a deciding facto
whether a calculation is practical or not. For example, w
the 253 atom cluster shown in Fig. 1,N52.533104 in the
nonseparable form~using ten partial waves!. In the separable
form, N53.843105 using ~636! matrices. To handle such
large matrices by inversion is not practical in real applic
tions. On the other hand, the 253-atom cluster calcula
using the RI method is easily handled on an IBM RS60
workstation. Equally important to stress is the fact that,
shown in Fig. 1, lower panel, and Fig. 2, the RI method is
accurate as the ‘‘exact’’ method.

The choice of using either the nonseparable or separ
form depends on the number of atoms involved, the num
of partial waves needed in the nonseparable form, and
dimension of the RA scattering matrix in the separable for
If we take typical values of ten partial waves and 636 RA
matrices, then the respective computational times for
nonseparable and separable forms scale as 104n2 and 36n3,
wheren is the number of atoms. Therefore, ifn is 277 or
less, then the separable form is faster, but ifn is bigger than
277, the nonseparable form is faster. However, in either r
resentation, the RI method is faster than the conventio
Gaussian substitutional method by close to an order of N

In conclusion, we have introduced a RI method for so
ing the Rehr-Albers separable-cluster problem and the c
ventional slab matrix-inversion problem. The method h
been tested to be convergent for common systems of inte
in either the separable form or the nonseparable form. W
substantial savings in computation time and at no loss
numerical accuracy, the method is useful in future appli
tions of multiple-scattering theories, particularly for system
where no long-range order is present.

This work was supported in part by HK RGC, HK RG
Central Allocation Vote, HKU CRCG, DOE Grant No. DE
FG02-84ER45076, and NSF Grant No. DMR-9214054.
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