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Self-consistent analysis of a quantum capacitor
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We analyze the behavior of the magnetocapacitance for a three-probe capacitor. The self-consistent evalu-
ation of the internal potential is found to play a large role in determining quantitative values of the capacitance.
For capacitor plates of mesoscopic size, this potential reduces the charge accumulation by more than an order
of magnitude compared to that obtained with noninteracting models. However, the qualitative behavior of the
magnetocapacitance is not substantially altered by the self-consistency. A simple but physically motivated
model gives an analytical formula which compares well with the numerical fBfd.63-182608)05347-9

It has been known for many years that quantum effectproblem$ studied so far. Nevertheless, such an analysis in-
can influence the behavior of a capacitdBlassically, ca- volves the self-consistent solution of quantum scattering to-
pacitance is obtained by solving an electrostatic problemgether with the Poisson equation for the potential distribution
determining the small bias voltage differendey, which is  in the capacitor, and thus can be complicated for practical
needed to transfer a chard&) between two conductors. The device geometries.
electrostatic capacitan€&,=AQ/AV is geometrical: it only It is easy to see why it is necessary to solve a self-
depends on the geometric properties of the two conductorsonsistent problerAWhen the chemical potential of a reser-
However, early studies of quantum correction€tofocused  voir is suddenly changed bu from equilibrium, charge
on the fact that the Fermi enerdyr of the conductors with densityAp;, is injected into the capacitor. The value of
changes with the bias voltage, so that an experimentallyhe injected charge can be determined by solving a quantum
measured capacitance should reflect this quantum effect. $icattering problem. However, because of the electron-
was found that this density of state®OS9) correction is in  electron interaction, an induced charge dendifyq(r) is
“series connection” toC., so that the total capacitance is established inside the capacitor to oppose the injection. The
given by 1C=1/C.+3;1/(e’D,), wherei=1,2 denotes the total charge density of the system is thus givenAyy(r)
two conductors, an®;=dN;/dE is the DOS of conductar = Apj,+Apj,q. It is this induced charge density which is
at its Fermi energy. self-consistently determined by iterating the Poisson equa-

More recent studies of quantum effects to capacitancéion for the potential distributiot) (r) inside the system. The
have focused on wave phenoméntmr mesoscopic or mi- total charge on a plate is then obtainedA@= [Ap(r)dr,
croscopic conductors, quantum coherence of the entire cavhere the integral is carried out over the entire volume of the
pacitor including the leads can be maintained. Hence thelate, and the capacitance is definedCaseAQ/A w.
experimentally measured capacitance becomes an electro- This Brief Report examines the quantitative effect of the
chemical on&,C=eAQ/Au, whereAu is the electrochemi-  self-consistent interaction on the behavior of magnetocapaci-
cal potential variation between the two electnmservoirs tance for a three-probe mesoscopic capacitor. The same sys-
which are connected to the two capacitor plates. This natuem was used previously to examine the symmetry properties
rally leads to a dynamic perspective on capacitah€enea-  of the capacitandewhen the applied external uniform mag-
sures the dynamic charge response when the chemical potemetic field B is reversed. Because tlyialitative magnetic-
tial of a reservoir is changed by a small amount. Thefield symmetry properties do not depend on the electron-
consequences of wave phenomena for capacitance are vagilectron interaction in an essential way, Ref. 7 resolved the
ous, including, for example, the role played by the leadsfechnical difficulties of the complete self-consistent problem
which limits the transport modés, the symmetries of the by using classical image charges and then correcting the in-
capacitance matrixand the relationship to quantum chaotic jectivity. While this procedure is acceptable fqualitative
scattering in mesoscopic caviti®s. discussion of the problem, the image charges are not ad-

An important physical ingredient in the case of very smallequate to accountuantitatively for the induced charge.
capacitor plates is the electron-electron interactidfor ~ Therefore, this paper focuses on tiiantitativecontribution
macroscopic metal plates this interaction is largely screenedf the full self-consistent cycle to the values©@f C(B): to
but for tiny plates where the DOS is low, the screeningthe best of our knowledge, this important information has
length can be long enough to play an important role. Frommever previously been documented for practical calculations
the point of view of ac quantum transport, the interaction isof finite-sized mesoscopic conductors.
also needed to maintain charge and current conservation. To be specific, the three-probe device represented by the
The simplest way to introduce the interaction is through arwhite lines in Fig. 1 consists of a two-probe semiconductor
RPA-type treatment which is adequate for the capacitoplate of size 3300 A 3300 A, connected to reservoirs 1 and
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When the magnetic field is not zero, the injectivity
dn(r,j)/dE does not equal the emmisivign(j,r)/dE for a
conductor with more than one probe, but the sums over the
indicesj are equaf. Thus the emissivities in Eq1) can be
replaced with injectivities evaluated in terms of the scatter-
ing wave function discussed above. Ongér) is obtained
from Eq. (1), the electrochemical capacitafdeecomesCy,
=—e2[[u,(r)dn(r,k)/dE]dr for k1.

To carry out the calculation described in the preceding
paragraph, some technical difficulties must be solved and
certain approximations made. The quantum scattering prob-
lem is solved using a finite element numerical method docu-
mented in Ref. 10 with the Fermi energy chosen to include
two modes. It involves no particular complications. How-
ever, the numerical solution of E@l) is more involved. The
difficulties that arise are the same as those for the computa-
tion of capacitance for a system of conductors which is en-
closed in a large 3D volum&. In this situation, even if) is
so large that its surface is far away from all interior charges,

FIG. 1. Contour plot of the characteristic potentia(r) for a  the solution of the strictly classical Poisson problem shows
plane parallel to the plate and inside it, and for a magnetic #ld that there are induced charges on its surface, so that the
=0. The contour lines are in steps of 0.05, up to a maximum ofdefinition of capacitance requires considerable ¢are.
0.65. The solid white square indicates the position of the plate angRoughly speaking, the relative magnitude of the charge on
its leads, and the dashed square indicates the position of the gatg¢he surface of) is a measure of the corrections to the con-

. ) ventional classical definition. We will assume that similar
2 through quantum wires both of width 1650 A. The scatter-grguments apply in the quantum case.

ing potential of the system is specified ¢r)=0 every- Fortunately, however, the capacitance—at least
where except at the boundaries, where it is assumed to hgassically—depends only upon the interaction between spe-
infinite. cific portions of the system and not upon the details of the

In the vertical direction the plate is 260 A thick—a rea- houndary conditions at infinity. Thus, in our situation, it is
sonable value for confined electrons in heterostructures, anghnvenient to replace the real configuration by one where the
rather smaller than the screening length. The second capagitate and gate are enclosed by grounded metal shields. The
tor plate is a metal gate on top of and parallel to the semireseryoirs are outside these shields, and the leads enter them
conductor plate: it is attached to a reserv0|r_by the thir rough small holes. In the solution of Eg), the potentials
probe, as shown. The gate has a cross section of 5500 f(r) can then be locally determined by neglecting the res-
X 5500 A, similar in size to the plate, but in the vertical gryoirs and leads, and retaining only the plate and gate den-
direction it is much thicker—many times the screeningsities.
length, so that the interaction is completely screened deep The grounded shields define a “solution box” whose size
inside the gate along this direction. Between the two conducis chosen to be large enough that the potential on its bound-
tors there is an insulating layer with thicknebss 360 A. All ary can be safely set to zefmimicking r — ). The box was
space surrounding the plates has a uniform dielectric corchosen as 8800 %8800 Ax 5120 A. For such a large box,
stante=13.1 typical of heterostructures. _ a conventional relaxation method to solve Et.is imprac-

The calculation proceeds using the theoretical developtical, because it requires a prohibitively large amount of
ment of Ref. 2. The injected density from thta probe is  computer time, and a multigrid methddvas therefore de-
calculated® from the injectivity dn(r,i)/dE, which is de-  veloped.
fined in terms of the scattering wave functios, of the After the u;(r) have been obtained, a crucial numerical
free electrons incoming from probe: dn(r,i)/dE  check is to verify the overall charge distribution of the sys-
=3 W y(r)|?/hvy. Herevy, is the speed of the incoming tem. As discussed above, it is not necessary that the charges
wave with mode indexn, andh is the Planck constant. Thus on the gate and on the plate be equal in value and opposite in
the injected charge iapj,(r)=2;[dn(r,i)/dE]JAu;. The  sign, but it is important to know the relative magnitude of
induced charge due to injection through a prolbegiven by  their difference in charge. For the chosen box size, the
Aping(r)=—[TI(r,r")eU(r")dr’, where the Lindhard func- charges on the gate and the plate balanced to within 20%, so
tion II(r,r'), in the Thomas-Fermi linear screening that we estimate our capacitance calculations to be reliable
model, is the sum of emissiviti€s, II(r—r')=5  also to within 20%.

(r=r")2dn(i,r)/dE. For smallAu;, the internal potential A typical profile of the characteristic potentiaj(r) for
U(r) can be written aU(r)=u;(r)Au;, in terms of a chemical potentiald ;%0 andA u;=0 fori=2,3 is shown
characteristic potential;(r) satisfying a Poisson equatidn, in Figs. 1 and 2. The presence of two densities of states from
) ) the two contacts means that the electrostatic potential has to
> dn(j 'r)}u-(r)—4 2 dn(r.i) be highly nonuniform in order for the injected charge to be
dE i =417€

—€eV2u(r)+4me? . . . ;
eVIU(r) 4 - dE uniformly screened. It is also the source of the valleys in the

1) characteristic potential. Thus the self-consistent first-order
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FIG. 2. Contour plot of the characteristic potentia(r) (not to FIG. 3. Capacitanc€g; as a function of the applied uniform
scale for a plane perpendicular to the plate at magnetic figld magnetic fieldB. Solid line: from full self-consistent numerical
=0. The contour lines are in steps of 0.05, up to a maximum ofanalysis; dotted line: from the one-dimensional model calculation
0.55. The solid heavy lines correspond to the boundaries of theith the numerical density of states as input parameters. The rea-
plate and the gate. Inset: the same plot, to scale, showing the entigenable agreement of the two curves is clear.
computational cell and the positions of the conductors inside it.

with cross-sectional area. Since the distance between the
potential response introduces a complicated, highly nonunitwo conductors is small compared with the linear size of the
form modification to the scattering potential, even for anplate, fringing fields can be neglected. The probes extend to
open ballistic system. The plot in Fig. 2 also illustrates ther =%, and thus the boundary conditions arér)=1 whenr
limitations of leaving out of consideration the charge in theis inside a lead, and zero otherwise. The 1D Poisson equa-
leads. The drops in the potential at the junctions where thé&on is then solved in the same spirit as that of Ref. 2 by
leads are attached are unphysical. However, a cut has to Imatching the solutions ofi;(z) across the thin sheet of
imposed somewhere because it is difficult explicitly to modelcharge. It is not difficult to obtain the formula
the reservoir and its connection to the lead.

The numerical results for the capacitarite, as a func- €A N 1
tion of an external uniform magnetic fieltd B, applied per- CSlZE . m 2
pendicular to the plane of Fig. 1, are shown as solid lines in ! 8
Figs. 3 and 4. The two figures differ only in direction of the , ‘ ,
field B. Several observations are in order. First, it is evident gy B
that C51(B) # C3:(—B): this is the asymmetry anticipated 3 :
from a general argument based on ac transport thetiris
experimentally and theoretically confirmed in Ref. 5, and
numerically verified in Ref. 7. Second, the near regularly
spaced peaks whdB|>5000 G are due to Aharonov-Bohm
effects as discussed in Ref. 7. Thepglitative results are 025 |
not affected by the self-consistent calculation of the induced
charge density. Third, and most important, is that the inclu-
sion of self-consistency drastically reduces the valueSHf
by about a factor of ten. The reason is related to the reduc-
tion of the accumulated charge on the pléed the gate 015
Ap(r) is much smaller than the injectelto,;(r) because the
induced charge\ p;,q(r) cancels a large part of the injected
charge at each local point. For our particular system this
reduces the total charge to about 10% of the injected value. 0.05 . ‘ .

Using the numerically determined local DdiBjectivity 0 2000 4000 6000 8000
and emissivity, it is also possible to compute the entire B (Gauss)

Cz(B) curves analytically after making some approxima- |G, 4. Capacitanc€,, when the direction of applied uniform

tions. For this purpose, E€l) is reduced to 1D by averaging magnetic field is reversed te-B. Solid line: from full self-
the local DOS in the-y plane. Furthermore, since the plate consistent numerical analysis; dotted line: from the one-

is thin, it may be treated as an infinitesimally thin sheet ofdimensional model calculation with the numerical density of states
charge, just as the metal gate becomes an infinitely long rods input parameters.
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where A=(3300 Ay is the plate area. The lengths  and zero screening lengtthe \'s), must become an equipo-
are defined as \;=[4me’do;/dE]"! for i=1,2, tential atV/2. The classical “electrochemical”’ capacitance
Mo=[47e?S2_ ,do;/dE] Y, and\3=[4me’dng/dE] Y2  of the system is thu€/2, whereC.=eA/(4md) is the clas-
The quantitieslo; /dE= [[dn(r,i)/dE]dr fori=1,2 are the sical electrostatic capacitance of a parallel plate capacitor.
average DOS per unit area for the sheet of chatige inte- Here we put the word electrochemical in quotes because
gration is over a unit argaanddns/dE is the average DOS such a concept makes no sense in classical physics: it merely
per unit volume for the gate. These quantities can be obmeans that we measure the potential drop fronréservoirs
tained from the numerical solutions of the Self-consistenwh“e the drop across the two conductors can be quite differ-
problem. The approximate results from Eg) are plotted in ent. The quantum formula of E¢R) reproduces this conclu-
Figs. 3 and 4 as the dotted lines, and are seen to reproduggyn: |etting the DOS become infinite yields> e(As+\ 1)
the numerical results remarkably well. The simple a”""'yticaland)\lz:)\llz, which givesCa;= Co/2.
formula(2) allows us to observe that the peaks in the capaci- 1o symmarize, the self-consistent solution of the internal
tance curves are due to the peaks in the injectivity from leaghotential distribution plays an important role in determining
1, while the valleys correspond to values of the field at whichyye capacitance of a mesoscopic capacitor. For the small sys-
there are peaks in the injectivity from reservoir 2. The apem ysed as an example, the induced charge reduces the total
proximate results2) consistently underestimate the values of 3ccymulated charge to about one-tenth of the injected value,
Cs(B), due, it seems, to the neglect of the fringing fields s affecting the value o in a drastic way. Other symme-
and to the assumption of a constant local DOS throughouty properties of the capacitance matrix do not change quali-
the metal gate. _ _ o tatively as a result of the self-consistency. A surprising result
Flnglly, it is interesting to discuss the classical I_|m|t pf the is that formula(2), obtained from a crude analysis, when
capacitor. If the potential of probe 1 on the plate is raised tQyajyated with the computed density of states, reproduces the
V while keeping the other probes grounded, then a curren,| numerical solutions quite well, in spite of the high de-

will flow from probe 1 to 2. Along the way there is N0 gree of nonuniformity of the potential distribution.
resistance anywhere except at the junction between the

probes and the plate. Assuming these probes are identical, We gratefully acknowledge support by the NSERC of
there are thus two equivalent resistors, with a voltage drop o€anada, the FCAR of Qbec, and the RGC of the SAR
V/2 on each. Hence, the classical plate, with an infinite DOS5overnment of Hong Kong under Grant No. HKU 7112/97P.

1T. P. Smith Ill, B. B. Goldberg, P. J. Stiles, and M. Heiblum, “H. Wei, N. Zhu, J. Wang, and H. Guo, Phys. Rev58 9657
Phys. Rev. B32, 2696(1985; T. P. Smith Ill, W. J. Wang, and (1997.

P. J. Stilesjbid. 34, 2995(1986. 8M. Biittiker and T. Christen, irQuantum Transport in Semicon-
2M. Biittiker, H. Thomas, and A. Pre, Phys. Lett. A100, 364 ductor Submicron Structurgedited by B. Krame(Kluwer Aca-
(1993; M. Bttiker, J. Phys.: Condens. Mattéy 9361(1993. demic Publishers, Dordrecht, 1996
3T. Christen and M. Btiiker, Phys. Rev. Lett77, 143(1996. V. Gasparian, T. Christen, and M. Biker, Phys. Rev. A54,
4Jian Wanget al, Phys. Rev. Lett80, 4277(1998. 4022(1996.
SW. Chen, T. P. Smith IIl, M. Bttiker, and M. Shayegan, Phys. °Yongjiang Wang, Jian Wang, and Hong Guo, Phys. Rev9B
Rev. Lett. 73, 146 (1994; T. Christen and M. Btiiker, Phys. 1928(1994.
Rev. B55, R1946(1997. 1A, Brandt, Math. Comput31, 333(1977.

V. A. Gopar, P. A. Mello, and M. Biiker, Phys. Rev. Lett77,  '?Eugene W. CowanBasic ElectromagnetisniAcademic Press,
3005(1996. New York, 1968, pp. 419.



