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We have performed first-principles pesudopotential calculations of the quantum transport properties of a
chain of Si atoms connected to the outside through long leads. By solving a three-dimensional quantum
scattering problem we have computed the conductance for several atomic wires with up to eight Si atoms. The
Si atomic wires are found to be metallic and we observed quantized conductance in units of 2e2/h. A
conductance dip is found to develop near the onset of the second quantized plateau as the number of atoms
increases, and this can be explained by the existence of a gap in the density of states when the atomic chain is
infinitely long. @S0163-1829~97!52032-7#

In the last decade extensive research effort has been de-
voted to the development of Si basedoptoelectronictechnol-
ogy. A particularly exciting result is the production of porous
Si microstructures which have visible light
photoluminescence.1 More recently, Si based atomic wires
with sizes as small as several nanometers across, have been
fabricated by several laboratories.2–5 Quantized conductance
in units of 2e2/h is expected at elevated temperatures includ-
ing room temperature, foratomic systems due to the large
energy level separation of the transport channels. For the
usual compound semiconductor submicron structures operat-
ing with the two-dimensional electron gas confined at a het-
erostructure, conductance quantization can only be observed
at very low temperatures. Clearly these new research direc-
tions of Si based technology will certainly lead to new dis-
coveries of nano-science and possibly to novel quantum
electronic applications. In this regard, several very interest-
ing device application directions have been discussed in the
literature.6

Using a scanning tunneling microscope~STM! one can
measure the quantum conductance of a tip near a substrate,
and quantized conductance has indeed been observed at
room temperature7–11 for a number of tip-substrate systems.
For Si based freestanding atomic wires, Ref. 2 reported ob-
servations of conductance quantization up to a temperature
of 210 K, and Coulomb blockade effect up to 100 K. So far,
theoretical analysis has largely focused on the important
problem of quantum conduction through the tip-substrate
arrangement.10,12–14 In particular, first-principles pseudopo-
tential calculations for Si based nanowires have been carried
out for optical properties to explain certain observed features
of the porous silicon.15,16 Lang14 has advanced a first-
principles quantum scattering theory to study quantum con-
duction through atomic scale tip-substrate systems and the
theoretical predictions for the case of a few Xe atoms sand-
wiched in between two substrates are in quantitative agree-
ment with STM measurements.11 The authors have madeab

initio calculations of quantum transport through Al based
freestanding atomic wires and predicted dc as well as ac
conductances for these wires.17 Furthermore, Mehrezet al.
have explained observed features of electric conduction
through an atomic junction based on the behavior of density
of states;18 and Watanabeet al. investigated the electronic
band structure of the dangling-bond Si wires.19

Clearly, due to the importance of the problem, there is a
need to further investigate quantum conduction through vari-
ous atomic wire systems. It is also important and useful to
directly compute quantum conductance from first principles
by solving the quantum scattering matrix. Results from this
kind of approach are especially strong in their predictive
power as shown by the impressive results of Ref. 11. The
purpose of this work is to report our investigation on Si
based freestanding wires using anab initio method. Si wires
are interesting and important, as they are the base semicon-
ductor material of the electronics industry and Si atomic
wires have been fabricated, as mentioned above. In particu-
lar, we shall consider the atomic wire model shown in the
inset of Fig. 2, where a chain of several Si atoms is con-
nected to the outside by three-dimensional~3D! leads. Elec-
trons come in from the left lead, scatter off the Si atoms, and
transmit to the right lead or reflect back. By solving the
quantum scattering process using first principles, we com-
pute the conductance for the whole system which can be
viewed as a long 3D wire with an atomic chain in the middle.
Our results will then be compared with those of metallic Al
wires.17

To solve the quantum conduction problem including the
atomic degrees of freedom, we have developed a two-step
numerical procedure.20,17 In the first step, we solve the
ground-stateproperties of the Si chainand the left and right
leads by minimizing the Kohn-Sham total-energy functional,
where the valence electrons are treated explicitly and the
core is introduced through a pseudopotential. We have fixed
the ionic positions in our ground-state calculation. The well-
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known Kohn-Sham energy functional in standard density
functional theory is the subject of many review articles, e.g.,
in Ref. 21, and to save space we refer interested readers to
them. The equilibrium analysis produces the self-consistent
Kohn-Sham electronic wave functionsc i(r ) with a self-
consistent effective potentialVe f f(r )[dU/dr(r ) which is
seen by all the electrons. HereU@r# is the total self-
consistent potential energy whiler the electron density ob-
tained from$c i%.

21,22 We have used the parameterization of
Ref. 23 for the exchange-correlation term, and a local
pseudopotential24 for the core. The second step of our calcu-
lation involves the evaluation of the scattering matrix of an
electron traversing the atomic wire defined byVe f f . For this
purpose we have developed a transfer-matrix technique to
solve the 3D quantum scattering problem based on a method
reported in Ref. 25. From the scattering matrix we obtain
conductance using the Landauer formula.26 As noted
before,20,27 the crucial point of the two-step procedure is to
include the long leads into the equilibrium analysis of the
effective potentialVe f f which allows the eigenstates obtained
from the ground-state density-functional calculation to be
brought into the form of scattering states of the wire.

The details of the model and system parameters are as
follows.28 The leads are modeled by the jellium model where
the positive charges are uniformly distributed. A jellium lead
has a cross section area of 7.2537.25~a.u.!2, lengthL
530.78 a.u., and its charge is specified29 by r s'2.0 a.u.,
mimicking metallic leads. This results in a total of 96 elec-
trons in the jellium leads. The chain of Si atoms is sand-
wiched in between two leads. The atom-atom distance is
fixed by the Si dimer bond length of 4.25 a.u. For the atom-
jellium distance, we used the value 2.3 a.u. which is the
equilibrium bond length of a Si adatom on top of a jellium
plane as determined in Ref. 29. The whole system~see inset
of Fig. 2!, atomic chain plus the leads, is put into a supercell
of size 21.77321.773(2L1d)~a.u.!3, which we checked to
be large enough, for the standard plane-wave basedab initio
calculations21 using a preconditioned conjugate gradient
minimization scheme. Hered is the length of the atomic
chain including the atom-jellium distances. We have investi-
gated atomic wires which contain up to eight Si atoms and
used an upper energy cutoff of eight Ry.

Figure 1 shows the effective potential of a wire with six
Si atoms.Ve f f in the 3D leads is affected by the atoms near
the atom-lead junctions, but this effect is quickly screened
out away from the junctions, indicating that the length of the
leads is approaching the desired asymptotic limit. In the jel-
lium leads,Ve f f is a potential well with a depth;20.5 a.u.
below the Fermi level in the cross section plane~x,y plane!
for the six-atom wire. Similar values are obtained for other
wires. In the atomic chain of the wire, Fig. 1 shows clear
covalent bonding between the Si atoms. In addition,Ve f f has
rather high peaks due to the ionic core of the atoms. Sur-
rounding the cores there is the usual attractive part of atomic
potential. Finally, the bonding between the Si atom and the
jellium leads are also clearly obtained in Fig. 1, and it is
quite similar to that of a Si adatom on top of a jellium
plane.29

Figures 2 and 3 show the conductanceG(E) as a function
of the incoming electron energyE for several wires with one
to eight Si atoms in the chain. Several observations are in

order. First, all wires show some degree of conductance
quantization with clear conductance plateaus.30 However, the
plateaus are not at perfect integer values of 2e2/h due to
scattering at the atom-jellium junction which leads to finite
reflection coefficients. This is similar to that of the experi-
mental situation where parasitic series resistance in the leads
reduces the total conductance.4 For Si wires the atom-jellium
junction scattering is more severe as compared with that of
Al wires which we studied previously.17 This may be under-
stood since the Si atom closest to the leads makes a covalent
bond with the next Si atom down the chain, while the cova-
lent bond29 with a lead is certainly much weaker. Hence the
charge density andVe f f is not symmetric on the two sides of
this atom. Such an asymmetry inVe f f leads to scattering of
the incoming electron wave which produces a nonzero re-

FIG. 1. The contour plot of the ground-state effective potential
Ve f f obtained from theab initio total-energy calculation for a wire
with six Si atoms. The covalent bonding between the Si atoms is
clearly observed. The covalent bonding between a Si atom and the
lead is less clear and is similar to that of an Si adatom on top of a
jellium plane, reported in Ref. 29. Relative potential strength is
shown by the lighter~darker! region which depicts lower~higher!
values ofVe f f . The scale ranges from214 eV ~white! to 119 eV
~black!, in intervals of 3.67 eV.

FIG. 2. ConductanceG(E) as a function of incoming electron
energyE for wires with one and two Si atoms. Dotted line: one Si
atom wire. Solid line: two Si atom wire. Dashed line: two Si atom
wire with larger cross section of the leads~50% larger!. The con-
ductance shows two plateau regions. Inset: schematic plot of a long
quantum wire which consists of a Si chain connected to two 3D
jellium leads. The whole system is included in a supercell for plane-
wave basedab initio total-energy calculations.
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flection coefficient. The second feature of the conductance,
as shown in Fig. 3, is the apparent dip ofG(E) nearE5
20.15 a.u. Such a dip is more pronounced for longer chains
of Si atoms as if the wires were trying to develop a conduc-
tance gap. For short chains as shown in Fig. 2 such a dip has
not developed. Our equilibrium density-functional analysis
gives slightly different Fermi energies for different wires but
the values are all near20.11 a.u., well above this conduc-
tance dip as shown by the vertical line in Fig. 3. Thus the
wires are certainly metallic. To understand where this con-
ductance dip comes from, we have computed31 the 1D band
structure of an infinitely long Si chain with bond length fixed
at 4.09 a.u., as shown in the inset of Fig. 3. Indeed, the band
structure shows a gap32 below the Fermi energy with a rela-
tive energy difference similar to that of Fig. 3. Hence the
conductance dip observed here reflects the fact that an infi-
nitely long Si chain has a band gap below the Fermi energy.
The consistency between the general transport characteristics
and the density of states~DOS! is actually expected since
linear-response theory requires the conductance to be propor-
tional to DOS. As a third feature we have investigated effects
of the size of the jellium leads by increasing the cross section
area of the leads. The dashed line of Fig. 2 is for a two-atom
wire with the cross section area increased by 50%. Compar-
ing the solid and dashed curves of Fig. 2, for the wire with
larger leads the onset of the second plateau is shifted to a
higher energy. We have checked that the equilibrium Fermi
energy of the wire with larger leads is also shifted upwards
to ;20.099 a.u. However the main features of the conduc-
tance, namely the quantization, are the same for the two dif-
ferent sizes of the leads. Finally, the values of the atomic
wire resistance can be obtained by inverting the conductance.
At the Fermi level which is above but near the onset of the
second plateau, the resistances for these wires have values

ranging from the smallest;4.54 kV for the one atom case,
to ;7.28 kV for the wire with a wider lead.

To compare the results of Si system with those of Al
system,17 while the main features of conductance quantiza-
tion and the formation of quantum wires are similar, there
exists several important differences. As discussed above, the
Si atom-jellium junction provides scattering to the incoming
electron which in turn produces nonzero reflection coeffi-
cients. This was due to a difference in the bonding between a
Si atom to the leads and to its neighboring atom. For Al
wires, the effective potential between an atom to the leads
and to its neighboring atom is more spherical, thus the atom-
junction scattering is not as severe, thereby producing more
perfect conductance plateaus.17 Another difference is the
conductance dip observed in Si wires; such a feature was not
observed for Al wires consisting of up to four Al atoms in
the atomic chain17 although such a conductance dip may still
develop in Al wires with a longer atomic chain. Finally, the
equilibrium Fermi energy for Al wires examined in Ref. 17
is located at the transition region between the first and sec-
ond conductance plateau whereG(E) changes rapidly, lead-
ing to different resistances at the Fermi level for different
wires. For Si wires studied here, the Fermi energy of the
wires locates on the second conductance plateau, thus for all
the wires examined the resistances at the Fermi energy have
values within a smaller range.

To summarize, we have investigated the quantum trans-
port properties of a model atomic wire made of a chain of Si
atoms connected to two external long leads. Our prediction is
based on a self-consistentab initio total-energy calculation
of the effective ground-state potential of the wire, and a so-
lution of a full 3D quantum scattering problem. Our results
show that the Si atomic wire is metallic at its Fermi energy,
and we have predicted the quantum conductance of the wires
as a function of the incoming electron energy within the
model. For all the wires studied some degree of conductance
quantization is observed. A very interesting feature is the
development of a conductance dip below the Fermi energy of
the atomic wire as the length of the atomic section is in-
creased. This behavior can be explained by the existence of a
gap in the infinitely long 1D Si chain band structure. Finally
we comment that the curves ofG5G(E) are useful for giv-
ing a first estimate of the electrical current as a function of a
voltage across the wire: one obtains the current in the usual
fashion by integratingG(E) over energy convoluted with a
Fermi function. As mentioned in the Introduction, Si based
freestanding atomic wires with sizes in the nanometer range
have been fabricated using several experimental techniques.
On the other hand our model studied here is for ideal chains
of Si atoms connected to external leads. Such chains may be
produced using the atomic manipulation ability of a STM on
top of a substrate. Clearly, a transport measurement of such a
system will be extremely useful and interesting.
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FIG. 3. ConductanceG(E) as a function of incoming electron
energyE for wires with more than two Si atoms. Solid: three atoms;
dotted: four atoms; dashed: six atoms; dash-dotted: eight atoms.
The vertical line indicates the position of the calculated Fermi level,
Ef . Notice the development of the conductance dip belowEf as the
length of the atomic section increases. Inset: calculated 1D band
structure of an infinitely long Si chain with bond length 4.09 a.u.
The horizontal line is the calculated Fermi energy of the infinite
chain. A gap exists below the Fermi level.
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