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Based on a two-component Ginzburg-Landau theory, we find a number of interesting behaviors of vortex
dynamics in the time-reversal-symmetry-breaking~T-breaking! regime of the parameter space:~i! Only one of
the two types ofT-breaking vortices is stable against applied currents at intermediate and high fields;~ii ! For
these dynamically stable vortices, the equilibrium phase transitions at the lower and/or the upper critical fields
may be of first order;~iii ! The free vortex flow resistivity of theT-breaking vortices is generally nonlinear, and
in the case of~ii ! there are resistivity discontinuities at the first-order transitions. The phase diagram of the
T-breaking vortices is presented.@S0163-1829~98!51302-1#

In recent years there have been extensive investigations
on possible superconducting states arising from Cooper pairs
with unusual~i.e., nonzero! angular momentuml . These ac-
tivities were initiated by the discovery of superconductivity
in some heavy-fermion superconductors,1 high-Tc copper
oxides,2 and more recently in Ru-based layered perovskites
with or without copper planes.3 These materials share a com-
mon nature in the fact that all of them are systems of
strongly correlatedf - or d-shell electrons. It was argued,
using the picture of the Bardeen-Cooper-Shrieffer theory of
superconductivity, that these quasiparticles withf or d char-
acters would have difficulty forming ordinarys-wave Cooper
pairs due to the strong Coulomb repulsion. To avoid a large
overlap of the wave functions of the paired particles, the
system would rather choose an anisotropic channel, like a
p-wave spin triplet or ad-wave spin singlet state, to form
pairs. The nonzero angular momentum states lead to aniso-
tropic energy gaps in the momentum space and thus to power
law temperature dependencies in the specific heat, nuclear
magnetic resonance and ultrasonic attenuation. The bulk
magnetic properties may or may not be different from that in
usual superconductors. From group theoretical methods, one
can construct an appropriate Ginzburg-Landau~GL! theory
for the possible superconducting states.4–6 The GL theory is
n-component depending on the numbern of independent or-
der parameters. It is clear that any one-component GL
theory, irrespectively of the underlying pairing symmetry~or
the angular momentum of the Cooper pair!, is isomorphic to
the conventionals-wave~or l 50) GL theory. Since the mac-
roscopic properties predicted by one-component GL theories
are generally not compatible with experiments, a number of
authors have paid attention to many-component GL
theories.5 Numerical simulations performed for the two-
component time-reversal-symmetry-breaking~T-breaking!
superconductor@with a symmetry groupD6h(G5

6)# show that
the system makes use of the possibility that each component
can form its singularity spatially separated, and that the line
energy of a vortex depends on the sign of its magnetic flux.7

The difference in the line energy~and thus the lower critical

field! is also accompanied by a certain difference in the vor-
tex symmetry. More recently, our numerical simulations for
a closely similar system reveal that in a certain region of the
parameter space only one of the two types ofT-breaking
vortices is stable against applied currents and the free vortex
flow resistivity may be highly nonlinear in a magnetic field.
Following these trends, we considerin the whole field region
and parameter spacethe equilibrium anddynamicproperties
of T-breaking vortices in theD6h(G5

6) system. Most impor-
tantly, several novel behaviors of vortex dynamics are found
numerically.

The generic~Gibbs! GL free energy functional is identical
for singlet and triplet pairing, and can be expressed as5

F5E dVA~T!~ uh1u21uh2u2!1b1~ uh1u21uh2u2!2

1b2~h1* h22h1h2* !21K1~ uDxh1u21uDyh2u2!

1K2~ uDxh2u21uDyh1u2!1K3~Dx* h1* Dyh21c.c.!

1K4~Dx* h2* Dyh11c.c.!1
1

8p
~B2H!2, ~1!

where (h1 ,h2) are the two components of the order param-
eter in the real space,D5 i\“22eA/c, B5“3A is the
local magnetic induction, andH is the applied field. As
usual,A(T); ln T/Tc defines the superconducting transition
temperature. The other coefficients are material dependent
parameters. We note that the stiffness coefficients are mutu-
ally dependent asK12K25K31K4 in the D6h system. We
shall be interested in the case whereT-breaking may be re-
alized. This occurs for such$b i% that b1.b2.0. The
T-breaking two-fold degenerated bulk phases are
(h1 ,h2)5h0(1, 6 i ) with uh0u252A(T)/4(b12b2). Fol-
lowing the convention, we defineq5 ih3h* /uhu2, which
can be nonzero only if time-reversal symmetry is broken,
i.e., h cannot be transformed toh* by any simple gauge
transform. Furthermore, defineh65(h16 ih2)/A2uh0u.
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Thenq5(uh2u22uh1u2) ẑ. The two pureT-breaking phases
are theh1 phase~with q521) and theh2 phase~with
q51). In the context of singlet~triplet! pairing,q is propor-
tional to thez-axis projection of the internal angular momen-
tum ~pseudospin! of the Cooper pair.5,7 In the presence of a
magnetic field, bothT-breaking phases could appear with
one of them dominating the other. It was found that there
exist two classes ofT-breaking vortices in theD6h system: P
~AP! vortex stabilized when the applied magnetic fieldH is
parallel~antiparallel! to q of the dominant phase.7–9 For later
use let us defineb5b2/4(b12b2), ki5Ki /(K11K2),
k5(k31k4)/2, Dk5(k32k4)/2, and k5l/j with l22

58p(2e)(K11K2)uh0u2/c and j252(K11K2)/2A(T).
Then in the present system the control parameters areb, k,
Dk andk.10 ~Notice thatk11k251 andk12k252k.! Nor-
malizing the space and the vector potential byj and
A05F0/2pj, respectively, the dimensionless free energy
f 5F/(Hc

2j2/4p) (Hc5F0/2A2pjl being the thermody-
namic critical field! can be cast into

f 5E dV2 1
2 ~ uh1u21uh2u2!1 1

8 ~ uh1u21uh2u2!2

12buh1u2uh2u21~ 1
2 2Dk!~ up1h1u21up2h2u2!

1~ 1
2 1Dk!~ up2h1u21up1h2u2!

12k@~p1h2!* p2h11c.c#1k2~b2h!2,

where p65dx6 idy with dx,y5 i ]x,y2ax,y . Here
ax,y5Ax,y /A0, b5“3a5B/B0 and h5H/B0 with
B05A0 /j5F0/2pj2. The operatorsp6 satisfy the bosonic-
like commutation relation@p1 ,p2#5b. It is seen that
Dk-term is diagonal in the ‘‘bosonic’’ occupation space and
is equivalent to the Zeeman splitting, while thek term is
off-diagonal. Obviously the system can gain energy by mix-
ing the two phasesh6 in a suitable way due to theDk andk
terms. On the other hand, theb term is seen to be repulsive
for the two phases ifb.0. Thus nonaxialT-breaking vortex
states would arise from a mixture of both phases below a
critical value ofb, namely, 0,b<bc , wherebc;0.058.7

The weak coupling limit would givek51/4 and Dk50.
Strong correlation effects would yield much more compli-
cated situations. Although there exists no microscopic theo-
retical justification, we assume reasonably thatk1.0 and
k2.0. Then21/2<k<1/2. By symmetry, it suffices to con-
sider the range 0<k<1/2.

To proceed, we fixb50.02 andk52 since closely simi-
lar results are found for other values ofb<bc andk.2. For
definiteness we shall fix the direction ofH along the high
symmetry axis (z axis! of the D6h system withH.0. The
upper critical field for the present system can be obtained
from the linearized GL equations:Hc2

I 5B0 /(122Dk) or
Hc2

II 5B0 /@322A(12Dk)218k2 #, with the larger one as
the relevant critical fieldHc2.5,7 Moreover, near the critical
field, the vortices would be locally axial~or nonaxial! if
Hc25Hc2

I ~or Hc2
II ).5,7 Assuming pure dissipative dynamics,

the time-dependent GL equations are simply obtained as
] tu52Gd f /du* for u5h1 and h2 , and ] ta52Gd f /da
where a dimensionless applied currentj can be included by
requiring “3h5 j . In these time-dependent GL equations,

we have chosen a gauge in which the electrostatic potential
does not appear so that the electric field~and thus the resis-
tivity ! can be obtained asE52] tA. The dissipation param-
eterG is chosen in such a way that the dimensionless resis-
tivity in the normal state is unity. The technical details of the
simulations of the vortex states have been described
elsewhere.9,11 An important finding in our simulations is the
fact that even though the two types ofT-breaking vortices
can be stabilized at low fields in the equilibrium state,7 gen-
erally only one type of them, either the P-type or the AP-type
vortices, remains stable against an applied current at higher
fields provided thatHc2

I ÞHc2
II . Therefore, we shall limit our-

selves to thesedynamically stable T-breaking states.
The phase diagram in thek-Dk parameter space for the

vortex states is depicted schematically in Fig. 1~left panel!.
TheT-violating vortices are stabilized in the four regions A,
B, C, and D. In region A~D! only Hc2

II (Hc2
I ) is well defined.

In region B ~C! both critical fields are defined with
Hc2

I .Hc2
II (Hc2

I ,Hc2
II ). Along the dashed lineDk52k2

separating regions B and C, one hasHc2
I 5Hc2

II . We skip the
range uDku.1 where the system would be generally un-
stable. Schematic contour drawings ofuh6u for a single vor-
tex at low fields are presented in the middle and right
10j310j panels of Fig. 1 for each parameter regime. The
behaviors of theT-breaking vortices in the four regions are
described in alphabetical order in the following.

The dynamically stable vortices are P-type vortices in
region A. The dominant phase ish2 with a local axial
symmetry at the core region~see Fig. 1!. The ambient phase
h1 is peaked and localized at the core edge ofh2 , sharing
one singularity point withh2 . For k50.4 and Dk50.6
we observed thatuh2umax;1.4 and uh1umax;0.26. The
Gibbs free energy density is shown in Fig. 2~a!, from which
we read offHc1'0.124B0 from the intersection of Meissner-
state line~solid! and the mixed-state line, andHc2;1.04B0
from the intersection of the mixed-state line~open circles!
and the normal-state line ~dashed!. Astonishingly,
Hc2,Hc2

II 55/3B0. In fact, although the mixed state and the
normal state intersect atH5Hc2, the amplitudes of the order

FIG. 1. Left panel: Phase diagram of theT-breaking vortices in
the k-Dk parameter space. Middle and right panels: schematic pro-
file of the dominant phase (h6) for a single vortex in the corre-
sponding parameter region.
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parameters do not decrease to zero at all. The mixed state at
H.Hc2 is metastable. This clearly demonstrates that there is
a first-order phase transition atHc2, instead of the usual
second-order one. As a further strong test of the reliability of
Hc2 determined above, we plot the magnetization curve in
Fig. 3~a! to find that the sum-rule-like thermodynamic iden-
tity 24p*0

Hc2MdH5Hc
2/8p ~sum rule hereafter! is satisfied

excellently. HereHc
2/8p is the condensation energy density

at zero field. Furthermore, the magnetization jump
DM;0.06B0/4p at Hc2 is obvious. Another important as-
pect of the vortex dynamics is the vortex flow resistivity as a
function of magnetic field, which we present in Fig. 4~a!,
where we see two anomalies immediately. First, the free vor-
tex flow resistivityrF is nonlinear atH<Hc2. Second, there
is a sizable resistivity jump,Dr/rn;0.55 at H5Hc2, be-
yond which the system enters the normal state. While the
magnetization drop might be too small to be observable, the
resistivity jump is large enough for experimental measure-
ments.

The P vortices are also dynamically stable in region B.
However, in the low-field region, a single P vortex has a
local symmetry of a triangle in the core region~see, e.g., Ref.

~7! and Fig. 1!. At higher fields, the core of the dominanth2

phase undergoes a transition to be locally axial while the
ambienth1 phase becomes fourfold symmetric locally and
decreases its amplitude continuously to zero atH5Hc2
where the amplitude ofh2 also goes to zero continuously.
For k5Dk50.4 we haveHc255B0 ~with Hc2

I 55B0 and
Hc2

II 52.2792B0). The Gibbs free energy density as a func-
tion of the field in this case is shown in Fig. 2~b!, which
seems usual at a first sight. However, the lower critical field
read off from Fig. 2~b! is roughly Hc1;0.09, which is al-
most two orders of magnitude smaller thanHc2. Evidently,
the effective GL parameterkeff@k52. The magnetization
curve is shown in Fig. 3~b!. The sum rule is also checked to
be satisfied within numerical uncertainties. The value of
u4pM u is extremely low in a large portion of the field range.
These features show that such superconductors are more eas-
ily subject to field penetration. Nevertheless, the field-driven
transitions atH5Hc1 andHc2 are both of the usual second
order. The free vortex flow resistivity in the present case, as
shown in Fig. 4~b!, is highly nonlinear with a downward
curvature. The characteristic crossover in the resistivity is
reminiscent of the core transition of the dominanth2 phase.
We suggest that two essentially different dissipation mecha-
nisms may be operating respectively at low and high fields,
and the nonlinear resistivity could be utilized to explain the
anomalousB-T curve ~defined by vanishing resistivity! ob-
served by Wuet al. in a Ru-based perovskite.3,9

The properties of the vortices in region C of Fig. 1 are
similar to those in region B, except that the dynamically
stableT-breaking vortices are AP vortices. Near the lower
critical field, a single vortex looks like a crescent~see middle
panel C of Fig. 1!. Higher fields drive a core transition as
seen in region B of Fig. 1. Fork50.4 andDk50.1, the
upper critical field is given byHc25Hc2

II 59.205B0. The
Gibbs free energy density, the equilibrium magnetization
curve and the free vortex flow resistivity are shown in Figs.
2~c!, 3~c!, and 4~c!, respectively. The lower critical field ex-
tracted from Figs. 2~c! and 3~c! is approximately
Hc1;0.145B0. We have also examined the special case
Hc2

I 5Hc2
II to find that the vortices are axially symmetric and

FIG. 2. Gibbs free energy density as a function of applied field.
Herek50.4, andDk50.6, 0.4, 0.1, and20.1 in ~a!, ~b!, ~c! and~d!,
respectively. Open squares indicate metastable states. Here
G05Hc

2/4p.

FIG. 3. Equilibrium magnetization curve corresponding to Fig.
2. The metastable states are skipped for clarity.

FIG. 4. Free vortex flow resistivity as a function of applied field
corresponding to Fig. 2. Open squares indicate metastable states.
Vertical dashed lines indicate resistivity jump at the first-order
phase transitions.
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the flow resistivity is linear even though time-reversal-
symmetry is broken. Combining Figs. 4~b! and 4~c! we con-
jecture that in the regions B and C of Fig. 1 the flow resis-
tivity is generally nonlinear in an applied field.

Even more interesting magnetic properties are found in
region D of Fig. 1, where the dynamically stable vortices are
AP vortices. At low fields (;Hc1), the crescent-shaped AP
vortices become unstable against expansion of the core re-
gion, so that the vortices are not spatially localized and mu-
tually separated as the usual vortices and the vortices in the
other regions of Fig. 1, but are connected by domain walls
~see right panel D of Fig. 1!. The amplitudes of the two
phasesh1 and h2 just complement each other, signaling
that the system is developing in such a way that either one of
these phases would have prevailed in the whole space if there
were no magnetic flux. That is, the vortex state at these low
fields is metastable. This is indeed perceivable from the
Gibbs free energy density presented in Fig. 2~d! for k50.4
and Dk520.1: At the low-field side, if we decreased the
average magnetic induction below a critical valueBc1Þ0,
the applied magnetic field extracted from the Virial
theorem12 would begin to increaseso that the Gibbs free
energy would cease to decrease, but would increase along a
metastable path~open squares!. ~The reason why those meta-
stable states are obtained is because of the periodic boundary
condition with one flux quantum.! These states are, of
course, unphysical. Rather, the system should be readily in
the Meissner state. The lower critical fieldHc1;0.1894B0 at
B̄5Bc150.0897B0, in contrast toBc150 in usual cases.

The abrupt change in the vortex density~i.e., B̄) aroundHc1

is clearly a first-order phase transition. Near and above the
lower critical field, the magnetic-induction profile is non-
trivial in that even though the average induction is positive,
there are regions along the edge of the degrading crescent
vortex, or the domain walls, where the local induction is
positive or negative, of an amplitude of;0.15B0, in the two
sides of the domain walls~not shown here!. Such a violent
magnetic induction fluctuation would be easily observed in
neutron diffraction measurements. On the other hand, higher
fields drive a core transition as in region C of Fig. 1. And the
mixed state is stabilized up toH5Hc251.460B0, beyond
which the free energy of the mixed state is higher than the
normal state, but the amplitude of the order parameters do
not decrease at all. Thus another first-order field-driven
phase transition occurs atHc2. Surprisingly this upper criti-
cal field is substantially higher thanHc2

I 50.8333B0. The
values ofHc1 andHc2 are compatible with the magnetization
curve depicted in Fig. 3~d! in that the sum rule is satisfied.
As a consequence of the first order transition, the magneti-
zation has discontinuities at the critical fieldsHc1 andHc2.
Like that in Fig. 4~a!, we see in Fig. 4~d! that the correspond-
ing resistivity has jumps at the first order transition points at
Hc1 and Hc2 ~with the jump atHc1 being much smaller!.
More precisely, the flow resistivity is nonzero atHc1 because
of a sudden penetration of a finite density of vortices, and it
has not reached the normal-state resistivity just before the
transition to the normal state.
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