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Dynamics of time-reversal-symmetry-breaking vortices in unconventional superconductors
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Based on a two-component Ginzburg-Landau theory, we find a number of interesting behaviors of vortex
dynamics in the time-reversal-symmetry-break{figbreaking regime of the parameter spa¢g:Only one of
the two types ofT-breaking vortices is stable against applied currents at intermediate and high(fi¢l&sy
these dynamically stable vortices, the equilibrium phase transitions at the lower and/or the upper critical fields
may be of first ordertiii ) The free vortex flow resistivity of th&-breaking vortices is generally nonlinear, and
in the case ofii) there are resistivity discontinuities at the first-order transitions. The phase diagram of the
T-breaking vortices is presentdd0163-182@08)51302-1

In recent years there have been extensive investigatiorfeeld) is also accompanied by a certain difference in the vor-
on possible superconducting states arising from Cooper paitex symmetry. More recently, our numerical simulations for
with unusual(i.e., nonzerp angular momenturh. These ac- a closely similar system reveal that in a certain region of the
tivities were initiated by the discovery of superconductivity parameter space only one of the two typesTebreaking
in some heavy-fermion superconductdrijgh-T, copper vortices is stable against applied currents and the free vortex
oxides? and more recently in Ru-based layered perovskiteglow resistivity may be highly nonlinear in a magnetic field.
with or without copper planesThese materials share a com- Following these trends, we considarthe whole field region
mon nature in the fact that all of them are systems ofand parameter spacte equilibrium andlynamicproperties
strongly correlatedf- or d-shell electrons. It was argued, of T-breaking vortices in th®,(I's) System. Most impor-
using the picture of the Bardeen-Cooper-Shrieffer theory ofantly, several novel behaviors of vortex dynamics are found
superconductivity, that these quasiparticles viitbr d char-  numerically.
acters would have difficulty forming ordinasywave Cooper The generidGibbg GL free energy functional is identical
pairs due to the strong Coulomb repulsion. To avoid a largdor singlet and triplet pairing, and can be expressed as
overlap of the wave functions of the paired particles, the
system would rather choose an anisotropic channel, like a
p-wave spin triplet or ad-wave spin singlet state, to form F=f dQA(T)(| 71)%4 | 72|12 + B1(| 71| >+ | 2|?)?
pairs. The nonzero angular momentum states lead to aniso-
tropic energy gaps in the momentum space a_lr_ld thus to power + Bo( 1% ma— 115 )2+ Ky (| Dy |2+ | Dy7/2|2)
law temperature dependencies in the specific heat, nuclear

magnetic resonance and ultrasonic attenuation. The bulk +Ko(|Dy7|*+ Dy 71| +K3(D} 55 Dymo+c.c)
magnetic properties may or may not be different from that in 1
usual superconductors. From group theoretical methods, one +Ky(DE 3 Dy71+c.c)+ 8_77(8_ H)2, 1)

can construct an appropriate Ginzburg-Land@&iL) theory

for the possible superconducting state$The GL theory is

n-component depending on the numineof independent or- where (5,,7,) are the two components of the order param-
der parameters. It is clear that any one-component Gleter in the real spacd)=iAV—2eAl/c, B=VXA is the
theory, irrespectively of the underlying pairing symmetoy  local magnetic induction, anéi is the applied field. As
the angular momentum of the Cooper pais isomorphic to  usual, A(T)~In T/T,. defines the superconducting transition
the conventionas-wave(or | =0) GL theory. Since the mac- temperature. The other coefficients are material dependent
roscopic properties predicted by one-component GL theoriegarameters. We note that the stiffness coefficients are mutu-
are generally not compatible with experiments, a number oflly dependent ak; —K,=K3+Kj, in the Dg, system. We
authors have paid attention to many-component GLshall be interested in the case whérdreaking may be re-
theoriess Numerical simulations performed for the two- alized. This occurs for sucHg;} that 8,>p3,>0. The
component time-reversal-symmetry-breakirf@-breaking  T-breaking two-fold degenerated bulk phases are
superconductdiwith a symmetry grouDen(I's )] show that (71, 72) = 1o(1, =i) with |7o|*=—A(T)/4(B1— B2). Fol-

the system makes use of the possibility that each componetawing the convention, we defing=i X 7*/| 5|2, which

can form its singularity spatially separated, and that the lin€an be nonzero only if time-reversal symmetry is broken,
energy of a vortex depends on the sign of its magneticflux.i.e., » cannot be transformed tg* by any simple gauge
The difference in the line enerdwand thus the lower critical transform. Furthermore, definep.= (7, *i 772)/\/§| 7ol
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Thenq=(|7_|?—|7+|?z. The two pureT-breaking phases 08
are then, phase(with g=—1) and the»_ phase(with 08l A A n_ B n_

g=1). In the context of singletriplet) pairing,q is propor- ’ .
tional to thez-axis projection of the internal angular momen- 04 @’é @

. . . i &
tum (pseudospinof the Cooper pair:’ In the presence of a
magnetic field, bothT-breaking phases could appear with o2l B I
one of them dominating the other. It was found that there = S
exist two classes of-breaking vortices in th®g, system: P
(AP) vortex stabilized when the applied magnetic fields
parallel(antiparalle] to q of the dominant phase? For later
use let us defineB=pB,/4(B1—B2), k=K;/(K;+K5),
k=(kg+kg)/2, Ak=(ks—kg)/2, and k=\/¢ with \~2
=8m(2e)(K,+Ky)|no|?/c and &%= — (K +Ky)/2A(T).
Then in the present system the control parameterBaie
Ak and «.1° (Notice thatk; +k,=1 andk; —k,=2k.) Nor-
malizing the space and the vector potential Byand
Ao=Do/27E&, respectively, the dimensionless free energy FIG. 1. Left panel: Phase diagram of tiebreaking vortices in
f= |:/(H§§2/47-,) (chq)o/z\/iﬂ-g)\ being the thermody- thek-Ak parameter space. Middle and right panels: schematic pro-
namic critical field can be cast into file of the dominant phaser(.) for a single vortex in the corre-

sponding parameter region.

1 2 2 1 2 2\2
= —1 +|n_|>+ 3 +|5_ - - ; ;
f f d=2 (I [+ 5 (7719 we have chosen a gauge in which the electrostatic potential

does not appear so that the electric fieddd thus the resis-
+2B] % -+ (3 —AK) (|74 7| ?+|m_n_|?) tivity) can be obtained @8= — 4,A. The dissipation param-
eter" is chosen in such a way that the dimensionless resis-
tivity in the normal state is unity. The technical details of the
simulations of the vortex states have been described
elsewheré:!* An important finding in our simulations is the
where 7.=d,*id, with d,,=idsy—a,,. Here factthat even though the two types Bfbreaking vortices
ayy=Axy/As, b=Vxa=B/B, and h=H/B, with can be stabilized at low fields in the equilibrium stagen-
Bo=A, /&= D /272, The operatorsr.. satisfy the bosonic-  erally only one type of them, either the P-type or the AP-type
like commutation relation[ 7, ,m_]=b. It is seen that Vvortices, remains stable against an applied current at higher
Ak-term is diagonal in the “bosonic” occupation space andfields provided that,,+HY, . Therefore, we shall limit our-
is equivalent to the Zeeman splitting, while thketerm is  selves to thesdynamically stable oreaking states.
off-diagonal. Obviously the system can gain energy by mix- The phase diagram in theAk parameter space for the
ing the two phaseg.. in a suitable way due to thék andk  vortex states is depicted schematically in Figleft pane).
terms. On the other hand, thzterm is seen to be repulsive The T-violating vortices are stabilized in the four regions A,
for the two phases iB>0. Thus nonaxial -breaking vortex B, C, and D. In region AD) only HY, (HL,) is well defined.
states would arise from a mixture of both phases below dn region B (C) both critical fields are defined with
critical value of 8, namely, 6< 8<p., where 8,~0.058  HL,>H!, (HL,<H!.). Along the dashed lineAk=2k?
The weak coupling limit would givek=1/4 and Ak=0. separating regions B and C, one H’lﬂl_%: H'C'Z_ We skip the
Strong correlation effects would yield much more compli-range |Ak|>1 where the system would be generally un-
cated situations. Although there exists no microscopic theOStab|e_ Schematic contour drawings| Qt:| for a Sing|e Vvor-
retical justification, we assume reasonably tkat-0 and  tex at low fields are presented in the middle and right
kp>0. Then—1/2<k<1/2. By symmetry, it suffices to con- 10¢x 10¢ panels of Fig. 1 for each parameter regime. The

+(3 +AK (T [P+ |7 %)

+2K[ (. )* m_m,+c.c+k3(b—h)?,

sider the range §k=1/2. _ ~ behaviors of theT-breaking vortices in the four regions are
To proceed, we fiy3=0.02 andx =2 since closely simi-  described in alphabetical order in the following.
lar results are found for other values @& 5. and«x>2. For The dynamically stable vortices are P-type vortices in

definiteness we shall fix the direction f along the high  region A. The dominant phase is_ with a local axial
symmetry axis £ axis) of the D¢, system withH>0. The  symmetry at the core regidsee Fig. 1. The ambient phase
upper critical field for the present system can be obtained,, is peaked and localized at the core edgejof, sharing
from the linearized GL equationdd,=B,/(1—2Ak) or  one singularity point withy_. For k=0.4 and Ak=0.6
H,=Bo/[3—2(1—Ak)2+8Kk? ], with the larger one as we observed thaf7_|ma1.4 and |7, |ma~0.26. The
the relevant critical fieldH,.>” Moreover, near the critical Gibbs free energy density is shown in FigaR from which
field, the vortices would be locally axiglor nonaxial if we read offH.;~0.1248, from the intersection of Meissner-
Hc2=HL2 (or H!:'z).f"7 Assuming pure dissipative dynamics, state line(solid) and the mixed-state line, arid,,~ 1.0
the time-dependent GL equations are simply obtained akom the intersection of the mixed-state litepen circley
du=—T6f/su* for u=7, and »_, andg,a=—TI'sf/éa and the normal-state line(dashedl Astonishingly,
where a dimensionless applied curr¢rtan be included by Hc,<H.Y,=5/3B,. In fact, although the mixed state and the
requiring VX h=j. In these time-dependent GL equations, normal state intersect &=H_,, the amplitudes of the order
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FIG. 2. Gibbs free energy density as a function of applied field.
Herek=0.4, andAk=0.6, 0.4, 0.1, and 0.1 in(a), (b), (c) and(d),
respectively. Open squares

Go=H?Z/47.

parameters do not decrease to zero at all. The mixed state
H>H_, is metastable. This clearly demonstrates that there i
a first-order phase transition aH.,, instead of the usual

second-order one. As a further strong test of the reliability o
H., determined above, we plot the magnetization curve i
Fig. 3(@) to find that the sum-rule-like thermodynamic iden-
tity —4wfg'°2MdH= H§/87T (sum rule hereafteiis satisfied

excellently. HereH§/87r is the condensation energy density
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FIG. 4. Free vortex flow resistivity as a function of applied field
corresponding to Fig. 2. Open squares indicate metastable states.

Hekéertical dashed lines indicate resistivity jump at the first-order

phase transitions.

gf) and Fig. 3. At higher fields, the core of the dominant.
h

ase undergoes a transition to be locally axial while the

fambientn+ phase becomes fourfold symmetric locally and

decreases its amplitude continuously to zeroHatH,

Nwhere the amplitude ofy_ also goes to zero continuously.

For k=Ak=0.4 we haveH.,=5B, (with H},=5B, and
Hl,=2.279B,). The Gibbs free energy density as a func-
tion of the field in this case is shown in Fig(k, which

at zero field. Furthermore, the magnetization jumPgeems usual at a first sight. However, the lower critical field
AM~0.08,/4m at Hc, is obvious. Another important as- yeaq off from Fig. 2b) is roughly He;~0.09, which is al-
pect of the vortex dynamics is the vortex flow resistivity as agst two orders of magnitude smaller theip,. Evidently

function of magnetic field, which we present in Figay

the effective GL parametek > «=2. The magnetization

where we sge_tyvo an_omaligs immediately. First, the free vorg e is shown in Fig. ®). The sum rule is also checked to
tex flow resistivitypr is nonlinear aH<H.,. Second, there po gatisfied within numerical uncertainties. The value of

is a sizable resistivity jumpAp/p,~0.55 atH=H_,, be-

|47M| is extremely low in a large portion of the field range.

yond which the system enters the normal state. While thgpese features show that such superconductors are more eas-
magnetization drop might be too small to be observable, thgy sypject to field penetration. Nevertheless, the field-driven
resistivity jump is large enough for experimental measureyransitions aH=H,, andH,, are both of the usual second

ments.

order. The free vortex flow resistivity in the present case, as

The P \{ortices are_also dy_namical!y stable in region B.ghown in Fig. 4b), is highly nonlinear with a downward
However, in the low-field region, a single P vortex has acyrature. The characteristic crossover in the resistivity is

local symmetry of a triangle in the core regiee, e.g., Ref.

—47M /B,

FIG. 3. Equilibrium magnetization curve corresponding to Fig.
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2. The metastable states are skipped for clarity.

reminiscent of the core transition of the dominant phase.
We suggest that two essentially different dissipation mecha-
nisms may be operating respectively at low and high fields,
and the nonlinear resistivity could be utilized to explain the
anomalousB-T curve (defined by vanishing resistivityob-
served by Wet al. in a Ru-based perovskife’.

The properties of the vortices in region C of Fig. 1 are
similar to those in region B, except that the dynamically
stable T-breaking vortices are AP vortices. Near the lower
critical field, a single vortex looks like a crescéaee middle
panel C of Fig. L Higher fields drive a core transition as
seen in region B of Fig. 1. Fok=0.4 andAk=0.1, the
upper critical field is given byHg,=H!,=9.208,. The
Gibbs free energy density, the equilibrium magnetization
curve and the free vortex flow resistivity are shown in Figs.
2(c), 3(c), and 4c), respectively. The lower critical field ex-
tracted from Figs. @) and 3c) is approximately
H.;~0.148,. We have also examined the special case
H{,=HJ, to find that the vortices are axially symmetric and
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the flow resistivity is linear even though time-reversal- The abrupt change in the vortex deng(m,,g_) aroundH
symmetry is broken. Combining Figstb} and 4c) we con- s clearly a first-order phase transition. Near and above the
jecture that in the regions B and C of Fig. 1 the flow resis-jower critical field, the magnetic-induction profile is non-
tivity is generally nonlinear in an applied field. _trivial in that even though the average induction is positive,

Even more interesting magnetic properties are found ifare gre regions along the edge of the degrading crescent
region D of Fig. 1, where the dynamically stable vortices ar&ortex, or the domain walls, where the local induction is

AP vortices. At low fields ¢-H,), the crescent-shaped AP gositive or negative, of an amplitude 6f0.15B,, in the two

vortices become uns_table against expansion qf the core "€ des of the domain wallgot shown here Such a violent
gion, so that the vortices are not spatially localized and mu: o . . ) .
in tH@agnetic induction fluctuation would be easily observed in

other regions of Fig. 1, but are connected by domain Wallgeutron.diffraction mea;yremepts. O.n the othgr hand, higher
(see right panel D of Fig.)L The amplitudes of the two fle_lds drive a core tr{_;l_nsmon as in region C of Fig. 1. And the
phasesy, and 7_ just complement each other, signaling Mixed state is stabilized up t=H,=1.468,, beyond
that the system is developing in such a way that either one gthich the free energy of the mixed state is higher than the
these phases would have prevailed in the whole space if theformal state, but the amplitude of the order parameters do
were no magnetic flux. That is, the vortex state at these loiiot decrease at all. Thus another first-order field-driven
fields is metastable. This is indeed perceivable from théhase transition occurs bl;,. Surprisingly this upper criti-
Gibbs free energy density presented in Figd)Zor k=0.4  cal field is substantially higher thaH.,=0.8338,. The

and Ak=—0.1: At the low-field side, if we decreased the values ofH.; andH, are compatible with the magnetization
average magnetic induction below a critical vaBg #0, curve depicted in Fig. @) in that the sum rule is satisfied.
the applied magnetic field extracted from the Virial As a consequence of the first order transition, the magneti-
theorem” would begin toincreaseso that the Gibbs free zation has discontinuities at the critical fieltig, andH,.
energy would cease to decrease, but would increase along|ge that in Fig. 4a), we see in Fig. @) that the correspond-
metastable patfopen squargs(The reason why those meta- ing resistivity has jumps at the first order transition points at
stable states are obtained is because of the periodic bounda#y, and H., (with the jump atH.; being much smallér
condition with one flux quantum.These states are, of More precisely, the flow resistivity is nonzerotg, because
course, unphysical. Rather, the system should be readily igf a sudden penetration of a finite density of vortices, and it
the Meissner state. The lower critical fight};~0.1898, at  has not reached the normal-state resistivity just before the
B=B;;=0.089B,, in contrast toB.;=0 in usual cases. transition to the normal state.
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