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Based on Gor'kov’s theory of weakly coupled superconductors, the Ginzburg-Landau equations for layered
p-wave superconductors are derived, the order parameter of which is assumed to belong to a nontrivial
two-dimensional representation. This calculation allows us to microscopically determine the expansion coef-
ficients of the Ginzburg-Landau free-energy functional with respect to the order parameter. The main feature of
the vortex solution is briefly discussed. It is found that the extreme condition for the nonaxisymmetric singly
guantized vortices is not ensured in the weak-coupling limit. If the discrete crystal symmetry is included, the
axisymmetric singly quantized vortex is stable. In addition, the upper critical field is also solely determined
within the weak-coupling frameworkS0163-182@07)01445-§

I. INTRODUCTION devoted to the microscopic derivation of the coupled GL
equations for the order parameter and supercurrent for a lay-
In an even-parity spin-singlet superconductor, the internakred superconductor with-wave triplet pairing, which is

orbital angular momentum and spin of Cooper pairs are, remost suitable to the triplet pairing state of the nontrivial two-
spectively,L=0,2,... andS=0; while in an odd-parity dimensional representatidy for a square lattic@ This cal-
spin-triplet superconductot,=1,3,... andS=1. Conven- culation allows us to microscopically establish the expansion
tional superconductors refer to those with the pairing sym-<oefficients of the free energy with respect to the order pa-
metry of s-wave (L=0) and spin singlet$=0). Recently, rameter up to the fourth order. In particular, the values of the
there has been much theoretical and experimental work indiRonlinear term coefficients are very important for the deter-
cating that the pairing state of high: superconductors is of mination of the vortex solution. With these microscopically
d-wave (L=2) spin-singlet §=0) symmetry* It is also  obtained parameters, the main features of the vortex solution
widely accepted that an anisotrogiewave spin-triplet pair- to the GL equation could be discussed uniquely. In addition,
ing may be realized in heavy-fermion superconductors. Morghe final determination of the upper critical field can also be
recently, S, RuO, as an example of layered perovskite ma-made based on our microscopic theory.
terial was found to exhibit superconductivity with no copper  This paper is organized as follows: in Sec. Il, a general
involved? Sr,RuO, has a similar structure to a high- cu-  description of the gap equation for an inhomogeneous super-
prate superconductor. It shares with the cuprate a strong agenductor is presented. The explicit derivation of the GL
isotropy in the resistivity §./p.>500 at low temperaturgs equations forp-wave order parameter and supercurrent are
and hence provides us with another example of electrongiven in Sec. Ill and Sec. IV by assuming that the order
correlated systems of reduced dimensionality. Neverthelesparameter belongs to the two-dimensional representation for
the superconducting state may have different symmetry froma two-dimensional square lattice point group. The general
that of cuprate superconductors. Strong correlations lead teortex solution to the GL equation is discussed in Sec. V.
the enhancements of mass and susceptibility, the correctiodhe upper critical field is given in Sec. VI. Finally, a brief
of which agree roughly with those dHe. Although precise conclusion and discussion is given in Sec. VII.
identification of the pairing symmetry in the compound has
not yet done, it has been raised by Rice and Siytisat Il. GAP FUNCTION
strong Hund’s rule coupling favors triplet over singlet pair- o )
ing and a strong candidate is the odd-parity pairing state The complt_ate .Ham|lton|an of the system of electrons in
which is the two-dimensional(2D) analog of the Second quantization has the form
Balian-Werthamér (BW) state of 3He. So far, the descrip-
tion of unconventional superconductors with odd-parity trip- H:f dxi (%)
let pairing symmetry is limited to a phenomenological 7
level® although Scharnberg and Klerfironce microscopi- 1
cally studied the upper critical field by considering the solu- - P + oy oy ,
tioni with the BW,pSoIar, and Andergon—Brinkma?w—MSr%I * ZJ j AXAX’ g (X) g XDV XX P (X)),
states to the linearized version of the one-component gap 2.1
equation. In part motivated by the observation of the micro-
scopic derivation of the Ginzberg-Landé&BL) equations for where the single-particle energy is measured relative to the
d-wave singlet pairing superconductdréie present paper is the Fermi energyEg, . (x) and ¢,(x) are creation and

(p+eA(x))?

m _EF ¢U(X)
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annihilation operators of electrons with spinat positionx,  With the aid ofG,, we can reduce the system of equations for
the repeated indices mean the summation. The quantity 5nq 7+ to the integral form

V(x—=x") (<0) is electron-electron interaction which is at-

tractive in a small range near the Fermi surface. Its physical . , s , s

original will not be considered here. Here and after, we  9(XX';@n)=Go(X,x ;“’n)_J dxdXzGo(X, X1 ; @n)
choosefi=kg=c=1. Throughout the calculation, we are R R

limited to the regionugH/Er<<1—-T/T.<1, whereug is X A(X1,%) FF(X,X';0p), (2.6
the Bohr magnetorH is the magnetic field] and T, are the
temperature and critical temperature. Under this condition,
the Pauli paramagnetism effect could be neglected. Within
Gor'kov's weak-coupling theor}® the equations of motion .
for the normal and anomalous Green’s functions in the fre- X G(X2, X" @n). 2.7
qguency space are written as

+eA)?
(iwn_(r)z—m)+EF

Fr(x,x';wp) = f dx, 0%, Go( X1 ,X; — @) A% (X1 ,X2)

In the absence of a magnetic fie@b(x,x’;wn) is a func-

P tion of the coordinate difference—x’ and equals
G(x,x";0n)

VZ
2m

. VZ c )—1 1
iwn+ 5—+ —
nt2m F (2m)d

-1

Gox, X" jwy)=|iwp+ =—+Eg| S8(x—x")1

+f dx”ﬁ(x,x”)ﬁf’*(x”,x’;wn)=8(x—x’),

(2.2 =

( . (p—eA)?
- P

>m +Ep)ﬁf+(x,x’;wn)

><J dkek (x=x)]

—f dx"A* (x,X")G(X" X" ;) =0, 2.3

. o1
= fdke'k-<X-X>.—1, (2.9
(2)d o= &

whered is the dimension of the system under consideration
A*(x,x")==V(x,x)TX, Fr(x,x;w,), (2.4 and £=Kk?2m—Eg. It is obvious thatGy(x,x";w,) oscil-
n lates at the linear dimensiok: ', which is much smaller
with the Matsubara frequenay,=(2n+1)xT. than the penetration depth. On the other hand, the vector

It is useful to introduce the normal-state Green’s functionPotentialA varies slowly at several wavelengths. Therefore,
in the semiclassical phase integral approximatiothe nor-

2 mal Green'’s function in the magnetic field could be approxi-
tions of motion forGy(x,x’;w,) can be written in two ways mated as

(_ (p+eA)?
lwoy— —F—

where the gap function is defined as

'éo(x,x’;wn) for electrons in the magnetic field. The equa-

Go(X,X;0p) = 8(x—X'), ao(X:X’;wn):QO(X,X';wn)e_ieyi’ds‘A@. 2.9

(2.59 where the path integration betweehandx is a straight line.

NearT,., the absolute value of the gap is fairly small and we
can perform the expansion of the Green'’s function with re-

Go(X',X; @p) = 8(x—X"). spect to the gap function. By expanditig up to the third
(2.50  power in|A| while G up to the second power, we find

>m +Eg

—eA)?
(iwn—%ﬂ'EF

G0 00) =Bl 0m)— | Bxa0x,B0030 1) B 06 1) [ 0G0, X1~ ) ¥ X0 G X ),
(2.10

ﬁ‘*(x,x’;wn)zj dxldxzao(xla)(;_wn)A*(XlaXZ) §O(X21XI;wn)_J dxadx4dX5dX6§o(X2axsiwn)A(X3,X4)

Xao(x5,x4;—wn)ﬁ*(x5,x6)§0(x6,x’;wn)} (2.1

Notice that the spin indices have been dropped out, regardless of the pairing symmetrg, likiogp wave, as long as the

A matrix is unitary, i.e., the produ&tAT is proportional to the unit matrix.1
From Egs.(2.4) and(2.11), the gap equation is obtained
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A* (XX )= AT (X" )+ AT (X,X), (2.12

where

AF(x,x")= —V(x,x’)T; J dX,A%oGo( X ,X; — wr) A* (X1, %) Go(Xa, X' ; @), (2.13

A% (x,X)=V(x,x )T f dx dxpdX30%,0XsAX6Go( X1, X; — @) A* (X1,X2) Go(Xa, X3 @) A(Xg,X4)
n

X Go(Xs,Xa;— ) A* (X5,X6) Go(Xg X' @p). (2.14

Because of the strongly two-dimensional electronic structure gR80®,, we consider the triplet superconductivity in two
dimensions and use the simplification of a cylindrical Fermi surface, although quantum oscifatiadsband-structure
calculation$® show that the Fermi surface consists of three approximately cylindrical pieces. In the center-of-mass coordinate
system, Eq(2.13 becomes

AT (R,r)= —V(r)TE f dR'dr'Go(R'+r'[2—=R—r1/2;— w,)Go(R' = 1" 12— R+1/2;w,)
n

X @ IR-R)-M=i(r=r")-(=IVOA* (R ), (2.1

where we have used the lemhhaxtended to the bilocal function

e—ie[ f§1+ fi?)dsA(s)A* (Xq %)= e 1 (X1 [V + eA()] —i(xp—x") [ Vy + €A(X')] A * (xx'), (2.16

and assumed the slow variation of the magnetic fl{R +r/2)~A(R—r/2)~A(R), andIl=—iVz—2eA(R). Performing
the Fourier transform with respect to the relative coordinate, we obtain

. : dpdqgdk’

AT(R,k)zf dre *TAY(Rr)=—T, fdre*'k"V(r)J'dR’dr’fL

n (2m)°
Xeip~(R’+r’/2—R—r/2)+iq4(R’—r’/2—R+r/2) 1 1 e—i(R—R’)-H+ik’-r’A*(R’k/). (2_17)

—lwy— & To,— ¢
Expanding in powers dfl to the second order, we can write the above equations in terms of a constadfteand a gradient
termAj;
9

AF(RK)=AT(RK)+AF(RK), (2.18
where
dk’
AlC(R,k)z—TEr]: f(ZW)ZV(k—k )wﬁ iyA (R,k"), (2.19
and
*(RK)=—TD j I vk—ky] 2 26~ 6o, K!TT, + k. IT . 1 &I A*(RK'). (2.20
Ig( ' )_ = 2(277)2 ( ) (2m)2 (wﬁ‘f'fi,)s( XX y y) m (wﬁ‘f‘fi,)z ( ’ ) .
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¥ (x,x") given by Eq.(2.14 can be calculated by introduc- duc_ed?'l“Consequently, the order parameter for the odd-
ing the center-of-mass coordinates and relative coordinategarity state can be written in the form
and neglecting effects of the magnetic field sinc(x,x")

itself has already been of small values, A*(Rk)=AT(R)k,+AZ(R)k_, (3.3
dk’ WhereRt=thiI2y.
Al*I(R,r)sz J eik'-fv(r)|A*(R,k')|2 Substituting Egs(3.1) and (3.3) into Egs.(2.19, (2.20,
n ) (2m)? and(2.22), we obtain
XA*(RK ) ————. 2.2 2€7wp - .
(R v a2 @21 ALRK) =N I [ATk, +A3K ], (34
Performing the Fourier transform with respect to the relativewherex =N(0)V,/2 with N(0) is the 2D density of states at
coordinate, we obtain the Fermi surface for each spin directiop=0.5772 is the

Euler constantwp is the Debye frequency.

AN (R,k =f “TARR 5 A
1RO | dre TANRD 5 (RK) == pav Bk, 124+ k_112 /8}A

dk’ - -
=T> f(z )ZV(k—k’)IA*(R,k’)IZ —NpavE{k_I%/4+k, T12/8}A%, (3.5
n T
where a=7{(3)/8(nT)?, ve=ke/m, and 1. =11, *iIl, .
XA*(R,k") (2.22 Similarly, we have

(0h+&e)? A
At ==Npa{(|A17+2|A5%) ATk, +(2]A, 2
S OR ORDER PARAMETER +lag)azk) 26

We use the weak-coupling approach and take the odd- Comparir]g bothAsides of the gap equation for terms pro-
parity attractive interactich portional tok, andk_, we obtain the GL equation for the
gap function

Vk=k)==Vek-k, BD (oI T)AT +hpav2I2AT 4+ p211% A3 /8+|Ag|2AT
e e ™ +alsst)=o,
teraction, the gap function can be expressed as —ApIn(T¢/T)A +)\pa[v§H2A§/4+v§HiA’{/8+|A2|2A§
Ak)=i[d(k)-o]oy, (3.2 +2|A4|2A%]=0. (3.7b

whereo denotes the Pauli matrices ad¢k) is the vectorial ~ 1he transition temperatufg is determined by
function odd ink. There are four 1DI(;_,) and one 2D 267w
odd-parity representations of a 2D square lattice point group Agln D_1 (3.9
C,,.° The pairing states belonging to the 1D representation 7Te

(I'y—4) are so-called equal spin pairing states and thes@ote that for the interaction given in E¢3.1), these two
states do not break the time-reversal symmetry, as indicategegenerate pairing states have the identical transition tem-
by the orbital parti(k) of the order parameter. The pairing peratureT,. For thed-wave superconductor case, due to the
state belonging to the 2D representatidns { lies in the  repulsives-channel interaction, a Pa@@proximation should
basal plane and is the analog to the Anderson-Brinkmanbe used to eliminate the unphysical resti@bviously, there
Morel state, however, this order parameter breaks the timés only one attractive interaction in our case and thus it is
reversal symmetry and is twofold degenerate. In the absenagnecessary to do the Padpproximation.

of the spin-orbit coupling, the superconducting state could

belong either to the 1D or 2D representations. Here we do IV. GINZBURG-LANDAU EQUATION

not attempt to determine the symmetry of the pairing state in FOR SUPERCURRENT

the above-mentioned layered superconductor. We assume in-

stead that the order parameter belongs to the 2D representa- The current density can be written directly in terms of
tion. Due to the twofold degeneracy of tha odd-parity ~ Green’s function of the system

state, we should expand the order parameter in terms of these

two degenerate pure states. On the other hand, one can ex- j(x)=— irz (V= V) GOOX  00) |

pect no induced-wave component in thp-wave order pa- mi~n

rameter because in the absence of spin-orbit coupling, the 2e’T

singlet and triplet spinor wave function are orthogonal. This ~m A(X); G(X,X; p). 4.1

situation is different from thed-wave superconductor, in
which an s-wave spin singlet component could be in- Substituting Eq(2.10 into Eq. (4.1), we obtain
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2e’T - eT
- A(x); Go(X,X; wp) + ﬁ; fdxldxzdxgdx4(VX—Vx,)

eT ~
100= = 1520 (V= Vi) o(xX';0n)

X' —X

X Go(X,X1; @) A (X1, X2) Go(X3,X0; — @) A* (Xg,X4) Go(Xg, X ; @)

X' —X

2e’T — — —
m A(X)En: fdxldxzdxsdx4go(X,X1?wn)A(lexz)go(Xayxzi_wn)A*(X31X4)QO(X47X§wn)- (4.2

After the cancellation of some terms in E¢.2) and introducing the center-of-mass and relative coordinates, we find
: et —ie(fX + %+ ) ds A(9) *
J(R):ﬁ; dx,dx,dxzdx,e Xl A(Xy,X2) A* (X3,X4)Go(X3, %25 = @) (V= Vi)
X[Go(X,X1;@n) Go(Xa, X" 5 0n) ]| —x

mﬂ—E fdR/dr/dR//dr//[e—i(R’—R)~l'[*+(r/—r)~VrA(R'r)][ei(R”—R)~H+(r”—r)~VrA*(R,r)]
mi<

XGo(R"+r"12—R"+r'12;— wp) V[ Go(R+ 12— R —r'12;0,) Go(R" = r"12— R+1/2;w,,) |

r—0

eT dpdgdsdkdk’ . .o .
:ﬁ; de/dr/dR//dr//f p (qz )10 [e—l(R —R)-II* +(r —r)~Vrelk<rA(R’k)]
r

X[ei(R”—R)-H+(r"—r)~Vreik' TA*(R k/)]eiq.(R”—R'+r”/2+r//2)(p+ S)eip-(R—R’ —r'R2)gis- (R"=R~1"12)

1 1 1
X - - - . 4.3
I(J‘)n_gp _lwn_éq lw,— &

Expanding|I1| to the first order gives rise to

J(R)=j1(R)+j2(R) +j3 (R), (4.4

where

dpdqdsdkdk’

(277)10 eik~r'A(R’k)eik’»r”A*(R,k/)ei(p—s)~R

i.(R)= eTE de’d "dR"d f
Ja( )—ﬁn r r

1 1

wn_gp _iwn_gq fwp—&s

X efi(erq)-R’ei(qus)-R”ei(fp+q)~r’/2ei(qfs)~r”/2(p_,_S)i

T d 1 1
=3Zf D plARD — =0, “.9

m=n (277)2 wﬁ-ﬁ-fg iwn_gp_
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dpdqdsdkdk’

eik-r’[_i(Rr_R).H*A(R,k)]eik’-r”A*(R,kr)ei(pfs)~Refi(p+q)~R’
(271_)10

H eT ! ! n n
IZ(R)_—ZmEn‘, de dr'dR"dr f
1 1

Xei(q+s)»R”ei(fp+q)~r’/2ei(qfs)~r”/2(p+S)- i i
wn_gp _|wn_§q twn—&s

2eT dk’

1 1 1

X[—i(R'=R)-I*A(R,k)JA* (R,k")e~2(k=K)-(R™=R). : .
wn— &k —lon— & Ton— &

2T , 1 1
__® Z f —iI*A(R,K)]- [V e 2K (R=RIA* (R, k" _ _
— k- —lwg— & Top— &g
eT dk 1 [H*A(R K)+ K, V- IT* A(R,K) 2kxk-H*A(R,k)
= A*(R,K)
ex[ ZmE f(zw)z ( ’wﬁ+gk[ i own— & m(i w,— &)? ’
1 [H*A(R k) +ky V- IT* A(R,K) Zkyk-H*A(R,k)
f A*(R,K) :
2mn (2m)? ‘02 o= & (i~ &)°
1 [I*ARK)+KV, - IT*A(RK) 2kk-IT*A(R,k
f A ’)22[ (RI) KT IMARK) | 2Kk <2> o
2mn (27) Wi+ £ fown— & m(i w,— &)
Substituting Eq(3.3) into Eq. (4.6), we obtain
J2(R)=]2a(R) +j2p(R), 4.7
where
, dk  (A%k,+ASKO) (I + KA TT%) (A gk, + A _k_ )_
JZa(R) 2 f < : ’ (48)
M (277 (wn+§k)(|wn gk)
because of
w 1
d =
; J g(wﬁ+§2><iwn—§>
and
dk (A%, +AZKO)(IT* +KA - IT¥) (A k. +A kL) eEN(0)a|
R)= = AFTI* A+ ASTI*A
(R E f<2w>2 (02+ &) (iwn— &) Z N
L .
+ S (ATI* Ao+ A ITE Ape+ %(A;HtAZ—A;mAl)ey . (4.9

Finally, we have the supercurrent

, eE-N(0)a
I(R)= =5 = ATII" Ay + AT Apt 5 (A*H*A2+A*H*Al)ex+ 5 (ATTI*A,~A3TTS Apgy [+ c.C. (4.10

Equations(3.7) and(4.10 consititute a complete system of the GL equations.
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V. VORTEX SOLUTION TO THE GL EQUATION

From the obtained GL equation, the free-energy density can be constructed

N(0) N(0) N(0)
f:——z In(Tc/T)(|A1|2+|A2|2)+—4 al (| A2+ [Ao%)%+ 2| A4 ]2 ALl ]+ 8 avf| [TIAT|?+[11A% |2
l * * l * * h2
+§H_A2H+A1+§H+A1H_A2 +§, (5.0

whereh is the magnetic field. The final coefficients of the free-energy density are found by comparing the supercurrent from
its functional derivative with respect to the vector potential with that directly obtained from the Green'’s function. Therefore,
an immediate consequence of the microscopic derivation of the GL equations is that the expansion coefficients of the GL
free-energy functional can now be determined microscopically, although the strong-coupling effects may change them. Re-
placing the order parameter y; ,= (7, ¥ 7,)/\/2, we can rewrite the free-energy functional as

f=AT) (| 722+ | 7212 + Ba| 1]+ | 72l D) 2+ Ba( 7F 12— m195) 2+ Ko ([T 2+ [T1y 72| 2) + Ko( [T 0|2+ [TLy 74 ]2)

h2
+Ka(IE 71y ma+ €.0) +Ky(IIE 73 Iy i+ €.C) + —, (5.2
|

where  A(T)=-MO0)In(T./T)/2, B,=3M0)al8, B, h2
=M0)al8, K;=3M0)avi/16, K,=K3=K,=N0)av2/ + sco(H 7)) (1L )™ + wea(IL 77) (1 77) * + pet
16. This expression of the GL free-energy density agrees
quite well with that constructed from the group-theoretical (5.9
argumertt for theI's superconducting state in the tetragonalwhere the repeated indices j= 1,2) mean the summation.
Dan (exceptBz=0) and hexagonal symmetgy, . Comparing Eq. (5.4 with Eq. (5.2, one can find:

We now study the main feature of the solution to the GL =B+ BIRS - B,=BINS | Ki=kq+ Kyt k3, K=Ky,

equation. By Scaling the order parameter and spatial COOrdk3: Ko, K4= k3. Therefore, our microscopic determination

nates in units of\o=4/3a and &,=\avg/2, respectively, of the GL parameters in the weak-coupling limit gives
the GL equation can be written in a dimensionless form BTHS=1/2 andk=1. By referring to the vortex phase dia-

gram given in Ref. 15, we are able to conclude that in the
—In(Te/T)AT +IIPAT + %HZ*A; +3]Ag[*AT + §1A,%A7 weak-coupling limit, the vortex solution to the GL equation
-0, (5.33 may belong to the axial symmetry type.
In the cylindrical coordinatefR=(r, #), and by assuming
the vector potential to be along the azimuthal direction

—IN(TG/T)AS +TI2AS + S TI2 AT + 5| A,2A% + & |A,|?A3 -
(Te/T)A3 2o IEATH5 A0z + 5 1A4%A; A(r,6)=A(r) 8, the differential operators can be written as

=0. (5.3b
o . # 1 (1o 2
In the absence of the magnetic field, the order parameter is  [1°=—| —+ — —+| = — —i2e&A(r&y) | |,
: 2 ror \ro6 EoA(r &
found to be AY=A%=go=+3In(T./T)/2, which shows ar
clearly that the statA7 and its time-reversed partnAs are _ 5
L . ) I Jd
degenerate. In the presence of the magnetic field, the time- M2=—|e*f —+_ " +2et.A
: . “ e * *2e£0A(r o)
reversal symmetry is broken and since each component has a ar r do

different response to the given magnetic field, one compoz
nent dominates other. Note that, Tokuyasu, Hess, an
Saulg® have performed a numerical calculation for the two-
component time-reversal-breaking superconduct®r )¢ A¥=gy(r)e Dl | AX=g,(r)e"*V? (55

They obtained two classes of vortex solutions depending on ] o ) )
the scaled GL parametersg™S=pI"SgIHS angd  Note that this type of solution is valid only for the existence

of the complete rotation symmetry. For a singly quantized
vortex, A} =g,(r)e"'? and A% =g,(r)e'?; while for a dou-

y a close inspection, we find that the general solution is of
e form

k= (ky+ k3)[2k,. For large values o8™S and low values
of the stiffness ratiok, the axial vortices are energetically bly quantized vortexA* =g, (r)e 2 and A% =g,(r) or

stable. For small values ¢8"™S, the vortex solutions with , x . e ;
nonaxial cores are energetically favorable. The free-energ;%l =01(r) and A =gy(r)e”" depending on whether the

functional used in Ref. 15 has a different form external magnetic fielth, is parallel or antiparallel to the
axis. As for the vector potentid, far away from the vortex,
f=AT)(| 71|12+ | 7212) + B ) >+ | 72])? it becomesA,.= + ® /271 £, for a singly quantized vortex,

THS 2 219 . while A= *=2®y/27r £, for a doubly quantized vortex. Far
+ B2 = 15l “+ ko (1L 977) (11 7)) away from the center of the vortex, the boundary condition
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for the order parameter of both the singly quantized vortex VI. THE UPPER CRITICAL FIELD

and the doubly quantized vortex, igy()=gp and We also wish to discuss the upper critical fi¢ld, for a
92(*)=0 when he| =z or 91(“_)):0 and QZ(W):QO when \vave superconductor. Consider a magnetic field antiparal-
he|z. Near the center of the singly quantized vortex, the GLe| to the z axis, H=(0,0,—H), we can choose the vector

equation becomes potential to beA=(0,—Hx,0). By definingﬁi =II./2\eH,
we have the commutation relatigd] _ ,IT, ]=1. Throwing

2
—In(To/T)gy— §_+l 9 1 (91+ Egg + fgi away the nonlinear terms in E(3.7), we obtain the linear-
gr2 ror g2 2 3 ized version of the GL equation for the order parameter
8 2 T T T * 1w TT2 % 1 *
+§9291:0v (5.6a Kl(HJrH—"‘H—HJr)'ﬁl+K2H—¢2:e_H|n(Tc/T)¢1,
(6.19
n(TT #? 10 1 1 4 . e - - _ 1
TGz | oty o~ 2| 921 291 F 3% Ro(T T+ T T g+ Kol 9 = (T T3
8 (6.1b
2 _ ~ ~
+309192=0. (56D where Ki=2K,=aviA,, ¢%,=A%JAy In view of the

commutation relation, we can regalt. as the creation and
Therefore, near the center of the vorteg(r)=cir and  gppjhilation operators in the occupation number space,
0,(r)=c,r, where the constants andc, are determined by
the normalization conditions. This means that the order pa-  [7_|ny=\n+1|n+1) , _|n)=n|n—1).
rameter should be zero at the vortex axis for the singly quan- G

.2)
tized vortex. For the doubly quantized vortex, the situation is o
. A . . Therefore, we expand the wave function in terms of the oc-
different. If h¢]| -z, the GL equation near the vortex center is

cupation statey} ,= >ga’?|n). Substituting them into Eq.
(6.1), we obtain a set of linear equations
n(TT a2+1ﬁ 4 1/ 19
n(T./T)gy 2 |95 T 592

_ _ 1
ror x o Ki(n+ Dl +Ro\(n+2)(n+ Dafd ;== In(To/Mald,
4, 8
+301+3920:=0, (5.7a (633
Ki2(n+2)+1]a?,+K,\(n+2)(n+1)aV
? 19 1/ ¢ 34 4 1 2
—In(T¢/T)g,— P”Lfﬁ 9~ 5 F+FE 91+ 39 =opn(Te/Ma,, (6.3b

8 whose smallest eigenvalue gives the upper critical field.
+§9592=0- (5.7H  There are two possible ground states & 0,43 =al?|0))
and (¥ =a{M|0), 4% =al?|2)). The corresponding eigen-
In this case, we find thay; =c,r? andg,=c,. Similarly, if ~ values are, respectively,

he|z, we haveg,=c; and g,=c,r2. Therefore, the order
parameter does not vanish at the doubly quantized vortex H |=|”(TC/T) n_ V2 In(Tc/T) (6.4)
axis. This type of vortex is strongly related to the complete 2 ek, 7 3(\2-1) eK,

rotational symmetry of the system. If the rotational symme- . o
try of the system is reduced by the presence of a crystal fielClearly, in the weak-coupling limit, the latter state should be

this type of vortex is no longer stable, and we have only th he relevant upper crit_ica_l ma_gnetic field, which also means
singular singly quantized vortex present. that when the magnetic field is lower than the upper critical

Accordingly, the supercurrent circulating around an axi-magnetic field the two components will be present simulta-
symmetric singly quantized vortex becomes neously in the superconductor. This is consistent with the
discussion on vortex solutions in the previous section.
dg; dg,

1 ~ .
i=io F(gg—g§)+(gzw—glw) —2eA(gz—gl)2} 0, VII. CONCLUSION AND DISCUSSION

(5.9 Based on the weak-coupling theory, we have derived the
complete set of two-component Ginzburg-Landau equations
wherej o= 2e EzN(0)/3m&, with &o= Vavg/2, andﬂzAgo. for a layeredp-wave superconductor. The expansion coeffi-
This result shows that the supercurrent behavior pfveave  cients of the phenomenological GL free energy with respect
superconductor in the weak-coupling limit is independent ofto the order parameter are determined up to the fourth order.
the azimuthal angle and is similar to that of conventional orThese coefficients allow us to identify the vortex structure by
one-component superconductors. referring to the vortex phase diagram which was obtained
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numerically from phenomenological GL equations with the superconducting state composed of two degenerate com-
freely adjusted coefficients. We find that the microscopicallyponents. However, it is not difficult to conceive that one can
obtained coefficients are within the region where the vortexobtain the same form of GL equations of one 1D pairing
is of axisymmetry, but are close to the phase boundary. Corstate(e.g.,I'; ) coupled to one of the other 1D pairing states
respondingly, the supercurrent circulating around a vortex i$e,g_,1“§) by still assuming a unitary order-parameter ma-
similar to that in conventionak-wave superconductors. trix. It can be understood that due to the space inhomogene-
Moreover, we have also calculated the upper critical magity, there arises the possibility for one state to fluctuate into
netic field and a unique one from two possible values hashe other one. In principle, a superconducting pairing state
been figured out. should be a linear combination of all basis pairing functions
We have to make several remarks on our derivation(r';.T';). In this situation, the superconducting pairing state

Firstly, our calculations have been performed by making usgs nonunitary and the derivation for GL equations is greatly
of simplifications like a cylindrical Fermi surface as well as acomplicated and becomes very tedious. Finally, the Pauli
simple form of the attractive interaction which is known as paramagnetism, spin-orbit coupling, and related effects on

the weak-coupling limit. In the strong-coupling limit, the GL the magnetic properties are under consideration.
expansion coefficients may change appreciably and the non-

axial vortex structures could be expected. Secondly, we are
mainly concerned with the derivation of GL equations for the

2D representation of the odd-parity pairing stdfe { so that This work was supported by a research grant from the
we can directly compare the obtained GL free-energy funcTexas Center for Superconductivity at the University of
tional with the phenomenological free-energy functional forHouston, and by the Robert A. Welch Foundation.
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