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Ginzburg-Landau equations for layered p-wave superconductors
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Based on Gor’kov’s theory of weakly coupled superconductors, the Ginzburg-Landau equations for layered
p-wave superconductors are derived, the order parameter of which is assumed to belong to a nontrivial
two-dimensional representation. This calculation allows us to microscopically determine the expansion coef-
ficients of the Ginzburg-Landau free-energy functional with respect to the order parameter. The main feature of
the vortex solution is briefly discussed. It is found that the extreme condition for the nonaxisymmetric singly
quantized vortices is not ensured in the weak-coupling limit. If the discrete crystal symmetry is included, the
axisymmetric singly quantized vortex is stable. In addition, the upper critical field is also solely determined
within the weak-coupling framework.@S0163-1829~97!01445-8#
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I. INTRODUCTION

In an even-parity spin-singlet superconductor, the inter
orbital angular momentum and spin of Cooper pairs are,
spectively, L50,2, . . . andS50; while in an odd-parity
spin-triplet superconductor,L51,3, . . . andS51. Conven-
tional superconductors refer to those with the pairing sy
metry of s-wave (L50) and spin singlet (S50). Recently,
there has been much theoretical and experimental work i
cating that the pairing state of high-Tc superconductors is o
d-wave (L52) spin-singlet (S50) symmetry.1 It is also
widely accepted that an anisotropicp-wave spin-triplet pair-
ing may be realized in heavy-fermion superconductors. M
recently, Sr2RuO4 as an example of layered perovskite m
terial was found to exhibit superconductivity with no copp
involved.2 Sr2RuO4 has a similar structure to a high-Tc cu-
prate superconductor. It shares with the cuprate a strong
isotropy in the resistivity (rc /rab.500 at low temperatures!
and hence provides us with another example of electr
correlated systems of reduced dimensionality. Neverthel
the superconducting state may have different symmetry f
that of cuprate superconductors. Strong correlations lea
the enhancements of mass and susceptibility, the correc
of which agree roughly with those of3He. Although precise
identification of the pairing symmetry in the compound h
not yet done, it has been raised by Rice and Sigrist3 that
strong Hund’s rule coupling favors triplet over singlet pa
ing and a strong candidate is the odd-parity pairing s
which is the two-dimensional ~2D! analog of the
Balian-Werthamer4 ~BW! state of 3He. So far, the descrip
tion of unconventional superconductors with odd-parity tr
let pairing symmetry is limited to a phenomenologic
level,5 although Scharnberg and Klemm6 once microscopi-
cally studied the upper critical field by considering the so
tions with the BW, polar, and Anderson-Brinkman-Morel7,8

states to the linearized version of the one-component
equation. In part motivated by the observation of the mic
scopic derivation of the Ginzberg-Landau~GL! equations for
d-wave singlet pairing superconductors,9 the present paper i
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devoted to the microscopic derivation of the coupled G
equations for the order parameter and supercurrent for a
ered superconductor withp-wave triplet pairing, which is
most suitable to the triplet pairing state of the nontrivial tw
dimensional representationG5

2 for a square lattice.3 This cal-
culation allows us to microscopically establish the expans
coefficients of the free energy with respect to the order
rameter up to the fourth order. In particular, the values of
nonlinear term coefficients are very important for the det
mination of the vortex solution. With these microscopica
obtained parameters, the main features of the vortex solu
to the GL equation could be discussed uniquely. In additi
the final determination of the upper critical field can also
made based on our microscopic theory.

This paper is organized as follows: in Sec. II, a gene
description of the gap equation for an inhomogeneous su
conductor is presented. The explicit derivation of the G
equations forp-wave order parameter and supercurrent
given in Sec. III and Sec. IV by assuming that the ord
parameter belongs to the two-dimensional representation
a two-dimensional square lattice point group. The gene
vortex solution to the GL equation is discussed in Sec.
The upper critical field is given in Sec. VI. Finally, a brie
conclusion and discussion is given in Sec. VII.

II. GAP FUNCTION

The complete Hamiltonian of the system of electrons
second quantization has the form

H5E dxcs
1~x!S „p1eA~x!…2

2m
2EFDcs~x!

1
1

2E E dxdx8cs
1~x!cs8

1
~x8!V~x2x8!cs8~x8!cs~x!,

~2.1!

where the single-particle energy is measured relative to
the Fermi energyEF , cs

1(x) and cs(x) are creation and
14 093 © 1997 The American Physical Society
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annihilation operators of electrons with spins at positionx,
the repeated indices mean the summation. The qua
V(x2x8) (,0) is electron-electron interaction which is a
tractive in a small range near the Fermi surface. Its phys
original will not be considered here. Here and after,
choose\5kB5c51. Throughout the calculation, we ar
limited to the regionmBH/EF!12T/Tc!1, wheremB is
the Bohr magneton,H is the magnetic field,T andTc are the
temperature and critical temperature. Under this condit
the Pauli paramagnetism effect could be neglected. Wi
Gor’kov’s weak-coupling theory,10 the equations of motion
for the normal and anomalous Green’s functions in the
quency space are written as

S ivn2
~p1eA!2

2m
1EFD Ĝ~x,x8;vn!

1E dx9D̂~x,x9!F̂1~x9,x8;vn!5d~x2x8!,

~2.2!

S 2 ivn2
~p2eA!2

2m
1EFD F̂1~x,x8;vn!

2E dx9D̂* ~x,x9!Ĝ~x9,x8;vn!50, ~2.3!

where the gap function is defined as

D̂* ~x,x8!52V~x,x8!T(
n
F̂1~x,x8;vn!, ~2.4!

with the Matsubara frequencyvn5(2n11)pT.
It is useful to introduce the normal-state Green’s funct

Ĝ̃0(x,x8;vn) for electrons in the magnetic fieldA. The equa-

tions of motion forĜ̃0(x,x8;vn) can be written in two ways

S ivn2
~p1eA!2

2m
1EFD Ĝ̃0~x,x8;vn!5d~x2x8!,

~2.5a!

S ivn2
~p2eA!2

2m
1EFD Ĝ̃0~x8,x;vn!5d~x2x8!.

~2.5b!
ity

al

,
in

-

With the aid ofĜ̃0, we can reduce the system of equations
Ĝ and F̂1 to the integral form

Ĝ~x,x8;vn!5 Ĝ̃0~x,x8;vn!2E dx1dx2Ĝ̃0~x,x1 ;vn!

3D̂~x1 ,x2!F̂1~x2 ,x8;vn!, ~2.6!

F̂1~x,x8;vn!5E dx1dx2Ĝ̃0~x1 ,x;2vn!D̂* ~x1 ,x2!

3Ĝ~x2 ,x8;vn!. ~2.7!

In the absence of a magnetic field,Ĝ0(x,x8;vn) is a func-
tion of the coordinate differencex2x8 and equals

Ĝ0~x,x8;vn!5S ivn1
¹2

2m
1EFD 21

d~x2x8!1̂

5S ivn1
¹2

2m
1EFD 21 1

~2p!d

3E dkeik•~x2x8!1̂

5
1

~2p!dE dkeik•~x2x8!
1

ivn2jk
1̂, ~2.8!

whered is the dimension of the system under considerat
and jk5k2/2m2EF . It is obvious thatĜ0(x,x8;vn) oscil-
lates at the linear dimensionkF

21 , which is much smaller
than the penetration depth. On the other hand, the ve
potentialA varies slowly at several wavelengths. Therefo
in the semiclassical phase integral approximation,11 the nor-
mal Green’s function in the magnetic field could be appro
mated as

Ĝ̃0~x,x8;vn!5Ĝ0~x,x8;vn!e2 ie*
x8
x

ds•A~s!, ~2.9!

where the path integration betweenx8 andx is a straight line.
NearTc , the absolute value of the gap is fairly small and w
can perform the expansion of the Green’s function with
spect to the gap function. By expandingF̂1 up to the third
power in uDu while Ĝ up to the second power, we find
Ĝ~x,x8;vn!5 Ĝ̃0~x,x8;vn!2E dx1dx2Ĝ̃0~x,x1 ;vn!D̂~x1 ,x2!E dx3dx4Ĝ̃0~x3 ,x2 ;2vn!D̂* ~x3 ,x4! Ĝ̃0~x4 ,x8;vn!,

~2.10!

F̂1~x,x8;vn!5E dx1dx2Ĝ̃0~x1 ,x;2vn!D̂* ~x1 ,x2!F Ĝ̃0~x2 ,x8;vn!2E dx3dx4dx5dx6Ĝ̃0~x2 ,x3 ;vn!D̂~x3 ,x4!

3 Ĝ̃0~x5 ,x4 ;2vn!D̂* ~x5 ,x6! Ĝ̃0~x6 ,x8;vn!G . ~2.11!

Notice that the spin indices have been dropped out, regardless of the pairing symmetry beings, d, or p wave, as long as the
D̂ matrix is unitary, i.e., the productD̂D̂† is proportional to the unit matrix 1ˆ .

From Eqs.~2.4! and ~2.11!, the gap equation is obtained
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D* ~x,x8!5D I* ~x,x8!1D II* ~x,x8!, ~2.12!

where

D I* ~x,x8!52V~x,x8!T(
n
E dx1dx2G̃0~x1 ,x;2vn!D* ~x1 ,x2!G̃0~x2 ,x8;vn!, ~2.13!

D II* ~x,x8!5V~x,x8!T(
n
E dx1dx2dx3dx4dx5dx6G̃0~x1 ,x;2vn!D* ~x1 ,x2!G̃0~x2 ,x3 ;vn!D~x3 ,x4!

3 G̃0~x5 ,x4 ;2vn!D* ~x5 ,x6!G̃0~x6 ,x8;vn!. ~2.14!

Because of the strongly two-dimensional electronic structure of Sr2RuO4, we consider the triplet superconductivity in tw
dimensions and use the simplification of a cylindrical Fermi surface, although quantum oscillations12 and band-structure
calculations13 show that the Fermi surface consists of three approximately cylindrical pieces. In the center-of-mass co
system, Eq.~2.13! becomes

D I* ~R,r !52V~r !T(
n
E dR8dr 8G0~R81r 8/22R2r /2;2vn!G0~R82r 8/22R1r /2;vn!

3e2 i ~R2R8!•P2 i ~r2r8!•~2 i¹r !D* ~R,r !, ~2.15!

where we have used the lemma11 extended to the bilocal function

e2 ieS *
x
x11 E

x8

x2Dds•A~s!D* ~x1 ,x2!5e2 i ~x12x!•[ i¹x1eA~x!] 2 i ~x22x8!•[ i¹x81eA~x8!]D* ~x,x8!, ~2.16!

and assumed the slow variation of the magnetic fieldA(R1r /2)'A(R2r /2)'A(R), andP52 i¹R22eA(R). Performing
the Fourier transform with respect to the relative coordinate, we obtain

D I* ~R,k!5E dre2 ik•rD* ~R,r !52T(
n
E dre2 ik•rV~r !E dR8dr 8E dpdqdk8

~2p!6

3eip•~R81r8/22R2r /2!1 iq•~R82r8/22R1r /2!
1

2 ivn2jp

1

ivn2jq
e2 i ~R2R8!•P1 ik8•r8D* ~R,k8!. ~2.17!

Expanding in powers ofP to the second order, we can write the above equations in terms of a constant termD Ic* and a gradient
term D Ig*

D I* ~R,k!5D Ic* ~R,k!1D Ig* ~R,k!, ~2.18!

where

D Ic* ~R,k!52T(
n
E dk8

~2p!2
V~k2k8!

1

vn
21jk8

2 D* ~R,k8!, ~2.19!

and

D Ig* ~R,k!52T(
n
E dk8

2~2p!2
V~k2k8!H 1

~2m!2

2jk8
2

26vn
2

~vn
21jk8

2
!3

~kx8Px1ky8Py!22
1

2m

jk8P
2

~vn
21jk8

2
!2J D* ~R,k8!. ~2.20!
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D II* (x,x8) given by Eq.~2.14! can be calculated by introduc
ing the center-of-mass coordinates and relative coordina
and neglecting effects of the magnetic field sinceD II* (x,x8)
itself has already been of small values,

D II* ~R,r !5T(
n
E dk8

~2p!2
eik8•rV~r !uD* ~R,k8!u2

3D* ~R,k8!
1

~vn
21jk8

2
!2

. ~2.21!

Performing the Fourier transform with respect to the relat
coordinate, we obtain

D II* ~R,k!5E dre2 ik•rD II* ~R,r !

5T(
n
E dk8

~2p!2
V~k2k8!uD* ~R,k8!u2

3D* ~R,k8!
1

~vn
21jk8

2
!2

. ~2.22!

III. GINZBURG-LANDAU EQUATIONS
FOR ORDER PARAMETER

We use the weak-coupling approach and take the o
parity attractive interaction4

V~k2k8!52Vpk̂• k̂8, ~3.1!

where we assume that the pair formation occurs near
Fermi surface andk̂x,y5kx,y /kF . For such an odd-parity in
teraction, the gap function can be expressed as5

D̂~k!5 i @d~k!•ŝ#ŝy , ~3.2!

whereŝ denotes the Pauli matrices andd(k) is the vectorial
function odd ink. There are four 1D (G124

2 ) and one 2D
odd-parity representations of a 2D square lattice point gr
C4v.3 The pairing states belonging to the 1D representa
(G124

2 ) are so-called equal spin pairing states and th
states do not break the time-reversal symmetry, as indic
by the orbital partd(k) of the order parameter. The pairin
state belonging to the 2D representation (G5

2) lies in the
basal plane and is the analog to the Anderson-Brinkm
Morel state, however, this order parameter breaks the ti
reversal symmetry and is twofold degenerate. In the abse
of the spin-orbit coupling, the superconducting state co
belong either to the 1D or 2D representations. Here we
not attempt to determine the symmetry of the pairing stat
the above-mentioned layered superconductor. We assum
stead that the order parameter belongs to the 2D repres
tion. Due to the twofold degeneracy of theG5

2 odd-parity
state, we should expand the order parameter in terms of t
two degenerate pure states. On the other hand, one ca
pect no induceds-wave component in thep-wave order pa-
rameter because in the absence of spin-orbit coupling,
singlet and triplet spinor wave function are orthogonal. T
situation is different from thed-wave superconductor, in
which an s-wave spin singlet component could be i
s,

e

d-

e

p
n
e

ed

n-
e-
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duced.9,14 Consequently, the order parameter for theG5
2 odd-

parity state can be written in the form

D* ~R,k!5D1* ~R!k̂11D2* ~R!k̂2 , ~3.3!

wherek̂65 k̂x6 i k̂y .
Substituting Eqs.~3.1! and ~3.3! into Eqs.~2.19!, ~2.20!,

and ~2.22!, we obtain

D Ic* ~R,k!5lpln
2egvD

pT
@D1* k̂11D2* k̂2#, ~3.4!

wherel5N(0)Vp/2 with N(0) is the 2D density of states a
the Fermi surface for each spin direction,g50.5772 is the
Euler constant,vD is the Debye frequency.

D Ig* ~R,k!52lpavF
2$k̂1P2/41 k̂2P1

2 /8%D1*

2lpavF
2$k̂2P2/41 k̂1P2

2 /8%D2* , ~3.5!

where a57z(3)/8(pT)2, vF5kF /m, and P65Px6 iPy .
Similarly, we have

D II* 52lpa$~ uD1u212uD2u2!D1* k̂11~2uD1u2

1uD2u2!D2* k̂2%. ~3.6!

Comparing both sides of the gap equation for terms p
portional to k̂1 and k̂2 , we obtain the GL equation for the
gap function

2lpln~Tc /T!D1* 1lpa@vF
2P2D1* /41vF

2P2
2 D2* /81uD1u2D1*

12uD2u2D1* #50, ~3.7a!

2lpln~Tc /T!D2* 1lpa@vF
2P2D2* /41vF

2P1
2 D1* /81uD2u2D2*

12uD1u2D2* #50. ~3.7b!

The transition temperatureTc is determined by

ldln
2egvD

pTc
51. ~3.8!

Note that for the interaction given in Eq.~3.1!, these two
degenerate pairing states have the identical transition t
peratureTc . For thed-wave superconductor case, due to t
repulsives-channel interaction, a Pade´ approximation should
be used to eliminate the unphysical results.9 Obviously, there
is only one attractive interaction in our case and thus it
unnecessary to do the Pade´ approximation.

IV. GINZBURG-LANDAU EQUATION
FOR SUPERCURRENT

The current density can be written directly in terms
Green’s function of the system

j ~x!52
eT

mi(n
~¹x2¹x8!G~x,x8;vn!ux8→x

2
2e2T

m
A~x!(

n
G~x,x;vn!. ~4.1!

Substituting Eq.~2.10! into Eq. ~4.1!, we obtain
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j ~x!52
eT

mi(n
~¹x2¹x8!G̃0~x,x8;vn!U

x8→x

2
2e2T

m
A~x!(

n
G̃0~x,x;vn!1

eT

mi(n
E dx1dx2dx3dx4~¹x2¹x8!

3 G̃0~x,x1 ;vn!D~x1 ,x2!G̃0~x3 ,x2 ;2vn!D* ~x3 ,x4!G̃0~x4 ,x8;vn!U
x8→x

1
2e2T

m
A~x!(

n
E dx1dx2dx3dx4G̃0~x,x1 ;vn!D~x1 ,x2!G̃0~x3 ,x2 ;2vn!D* ~x3 ,x4!G̃0~x4 ,x;vn!. ~4.2!

After the cancellation of some terms in Eq.~4.2! and introducing the center-of-mass and relative coordinates, we find

j ~R!5
eT

mi(n
E dx1dx2dx3dx4e2 ie(*x1

x
1 Ex2

x31 E
x8

x4)ds•A~s!D~x1 ,x2!D* ~x3 ,x4!G0~x3 ,x2 ;2vn!~¹x2¹x8!

3@G0~x,x1 ;vn!G0~x4 ,x8;vn!#Ux8→x

'
eT

mi(n
E dR8dr 8dR9dr 9@e2 i ~R82R!•P* 1~r82r !•¹rD~R,r !#@ei ~R92R!•P1~r92r !•¹rD* ~R,r !#

3G0~R91r 9/22R81r 8/2;2vn!¹ r@G0~R1r /22R82r 8/2;vn!G0~R92r 9/22R1r /2;vn!#U
r→0

5
eT

2m(
n
E dR8dr 8dR9dr 9E dpdqdsdkdk8

~2p!10
@e2 i ~R82R!•P* 1~r82r !•¹reik•rD~R,k!#

3@ei ~R92R!•P1~r92r !•¹reik8•rD* ~R,k8!#eiq•~R92R81r9/21r8/2!~p1s!eip•~R2R82r8/2!eis•~R92R2r9/2!

3
1

ivn2jp

1

2 ivn2jq

1

ivn2js
. ~4.3!

ExpandinguPu to the first order gives rise to

j ~R!5 j1~R!1 j2~R!1 j2* ~R!, ~4.4!

where

j1~R!5
eT

2m(
n
E dR8dr 8dR9dr 9E dpdqdsdkdk8

~2p!10
eik•r8D~R,k!eik8•r9D* ~R,k8!ei ~p2s!•R

3e2 i ~p1q!•R8ei ~q1s!•R9ei ~2p1q!•r8/2ei ~q2s!•r9/2~p1s!
1

ivn2jp

1

2 ivn2jq

1

ivn2js

5
eT

m(
n
E dp

~2p!2
puD~R,p!u2

1

vn
21jp

2

1

ivn2jp
50, ~4.5!



14 098 56JIAN-XIN ZHU, C. S. TING, J. L. SHEN, AND Z. D. WANG
j2~R!5
eT

2m(
n
E dR8dr 8dR9dr 9E dpdqdsdkdk8

~2p!10
eik•r8@2 i ~R82R!•P* D~R,k!#eik8•r9D* ~R,k8!ei ~p2s!•Re2 i ~p1q!•R8

3ei ~q1s!•R9ei ~2p1q!•r8/2ei ~q2s!•r9/2~p1s!
1

ivn2jp

1

2 ivn2jq

1

ivn2js

5
2eT

m (
n
E dR8E dkdk8

~2p!4
~2k!

3@2 i ~R82R!•P* D~R,k!#D* ~R,k8!e22i ~k2k8!•~R82R!
1

ivn2j2k2k8

1

2 ivn2j2k8

1

ivn2jk8

52
2eT

mi (n
E dR8E dkdk8

~2p!4
k@2 i P* D~R,k!#•@¹ke

22i ~k2k8!•~R82R!#D* ~R,k8!
1

ivn2j2k2k8

1

2 ivn2j2k8

1

ivn2jk8

5exH 2
eT

2m(
n
E dk

~2p!2
D* ~R,k!

1

vn
21jk

2FPx* D~R,k!1kx¹k•P* D~R,k!

ivn2jk
1

2kxk•P* D~R,k!

m~ ivn2jk!2 G J
1eyH 2

eT

2m(
n
E dk

~2p!2
D* ~R,k!

1

vn
21jk

2FPy* D~R,k!1ky¹k•P* D~R,k!

ivn2jk
1

2kyk•P* D~R,k!

m~ ivn2jk!2 G J
52

eT

2m(
n
E dk

~2p!2
D* ~R,k!

1

vn
21jk

2FP* D~R,k!1k¹k•P* D~R,k!

ivn2jk
1

2kk•P* D~R,k!

m~ ivn2jk!2 G . ~4.6!

Substituting Eq.~3.3! into Eq. ~4.6!, we obtain

j2~R!5 j2a~R!1 j2b~R!, ~4.7!

where

j2a~R!52
eT

2m(
n
E dk

~2p!2

~D1* k̂11D2* k̂2!~P* 1kDk•P* !~D1k̂11D2k̂2!

~vn
21jk

2!~ ivn2jk!
50, ~4.8!

because of

(
n
E

2`

`

dj
1

~vn
21j2!~ ivn2j!

50,

and

j2b~R!52
eT

m2(n
E dk

~2p!2

~D1* k̂11D2* k̂2!~P* 1kDk•P* !~D1k̂11D2k̂2!

~vn
21jk

2!~ ivn2jk!
5

eEFN~0!a

2m H D1* P* D11D2* P* D2

1
1

2
~D1* P2* D21D2* P1* D1!ex1

i

2
~D1* P2* D22D2* P1* D1!eyJ . ~4.9!

Finally, we have the supercurrent

j ~R!5
eEFN~0!a

2m H D1* P* D11D2* P* D21
1

2
~D1* P2* D21D2* P1* D1!ex1

i

2
~D1* P2* D22D2* P1* D1!eyJ 1 c.c. ~4.10!

Equations~3.7! and ~4.10! consititute a complete system of the GL equations.
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V. VORTEX SOLUTION TO THE GL EQUATION

From the obtained GL equation, the free-energy density can be constructed

f 52
N~0!

2
ln~Tc /T!~ uD1u21uD2u2!1

N~0!

4
a@~ uD1u21uD2u2!212uD1u2uD2u2#1

N~0!

8
avF

2F uPD1* u21uPD2* u2

1
1

2
P2D2* P1* D11

1

2
P1D1* P2* D2G1

h2

8p
, ~5.1!

whereh is the magnetic field. The final coefficients of the free-energy density are found by comparing the supercurre
its functional derivative with respect to the vector potential with that directly obtained from the Green’s function. The
an immediate consequence of the microscopic derivation of the GL equations is that the expansion coefficients o
free-energy functional can now be determined microscopically, although the strong-coupling effects may change th
placing the order parameter byD1,2* 5(h17 ih2)/A2, we can rewrite the free-energy functional as

f 5A~T!~ uh1u21uh2u2!1b1~ uh1u21uh2u2!21b2~h1* h22h1h2* !21K1~ uPxh1u21uPyh2u2!1K2~ uPxh2u21uPyh1u2!

1K3~Px* h1* Pyh21 c.c.!1K4~Px* h2* Pyh11 c.c.!1
h2

8p
, ~5.2!
ee
a
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e

,
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where A(T)52N(0)ln(Tc /T)/2, b153N(0)a/8, b2

5N(0)a/8, K153N(0)avF
2/16, K25K35K45N(0)avF

2/
16. This expression of the GL free-energy density agr
quite well with that constructed from the group-theoretic
argument5 for theG5

2 superconducting state in the tetragon
D4h ~exceptb350) and hexagonal symmetryD6h .

We now study the main feature of the solution to the G
equation. By scaling the order parameter and spatial coo
nates in units ofD05A4/3a andj05AavF/2, respectively,
the GL equation can be written in a dimensionless form

2 ln~Tc /T!D1* 1P2D1* 1 1
2 P2

2 D2* 1 4
3 uD1u2D1* 1 8

3 uD2u2D1*

50, ~5.3a!

2 ln~Tc /T!D2* 1P2D2* 1 1
2 P1

2 D1* 1 4
3 uD2u2D2* 1 8

3 uD1u2D2*

50. ~5.3b!

In the absence of the magnetic field, the order paramete
found to be D1* 5D2* 5g05A3ln(Tc /T)/2, which shows
clearly that the stateD1* and its time-reversed partnerD2* are
degenerate. In the presence of the magnetic field, the t
reversal symmetry is broken and since each component h
different response to the given magnetic field, one com
nent dominates other. Note that, Tokuyasu, Hess,
Sauls15 have performed a numerical calculation for the tw
component time-reversal-breaking superconductor (G5

1).
They obtained two classes of vortex solutions depending
the scaled GL parametersbTHS5b2

THS/b1
THS and

k̃5(k21k3)/2k1. For large values ofbTHS and low values
of the stiffness ratiok̃ , the axial vortices are energetical
stable. For small values ofbTHS, the vortex solutions with
nonaxial cores are energetically favorable. The free-ene
functional used in Ref. 15 has a different form

f 5A~T!~ uh1u21uh2u2!1b1
THS~ uh1u21uh2u2!2

1b2
THSuh1

22h2
2u21k1~P ih j !~P ih j !*
s
l
l

i-

is

e-
s a
-
d

-

n

y

1k2~P ih i !~P jh j !* 1k3~P ih j !~P jh i !* 1
h2

8p
,

~5.4!

where the repeated indices (i , j 51,2) mean the summation
Comparing Eq. ~5.4! with Eq. ~5.2!, one can find:
b15b1

THS1b2
THS, b25b2

THS, K15k11k21k3, K25k1,
K35k2, K45k3. Therefore, our microscopic determinatio
of the GL parameters in the weak-coupling limit give
bTHS51/2 andk̃51. By referring to the vortex phase dia
gram given in Ref. 15, we are able to conclude that in
weak-coupling limit, the vortex solution to the GL equatio
may belong to the axial symmetry type.

In the cylindrical coordinates,R5(r ,u), and by assuming
the vector potential to be along the azimuthal directi
A(r ,u)5A(r ) û, the differential operators can be written a

P252F ]2

]r 2
1

1

r

]

]r
1S 1

r

]

]u
2 i2ej0A~r j0! D 2G ,

P6
2 52Fe6 iuS ]

]r
6

i

r

]

]u
62ej0A~r j0! D G2

.

By a close inspection, we find that the general solution is
the form

D1* 5g1~r !ei ~n21!u , D2* 5g2~r !ei ~n11!u. ~5.5!

Note that this type of solution is valid only for the existen
of the complete rotation symmetry. For a singly quantiz
vortex, D1* 5g1(r )e2 iu andD2* 5g2(r )eiu; while for a dou-
bly quantized vortex,D1* 5g1(r )e22iu and D2* 5g2(r ) or
D1* 5g1(r ) and D2* 5g2(r )e2iu depending on whether th

external magnetic fieldhe is parallel or antiparallel to theẑ
axis. As for the vector potentialA, far away from the vortex,
it becomesA`56F0/2pr j0 for a singly quantized vortex
while A`562F0/2pr j0 for a doubly quantized vortex. Fa
away from the center of the vortex, the boundary condit
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for the order parameter of both the singly quantized vor
and the doubly quantized vortex, isg1(`)5g0 and
g2(`)50 whenhei2 ẑ or g1(`)50 andg2(`)5g0 when
hei ẑ. Near the center of the singly quantized vortex, the
equation becomes

2 ln~Tc /T!g12S ]2

]r 2
1

1

r

]

]r
2

1

r 2D S g11
1

2
g2D1

4

3
g1

3

1
8

3
g2

2g150, ~5.6a!

2 ln~Tc /T!g22S ]2

]r 2
1

1

r

]

]r
2

1

r 2D S g21
1

2
g1D1

4

3
g2

3

1
8

3
g1

2g250. ~5.6b!

Therefore, near the center of the vortex,g1(r )5c1r and
g2(r )5c2r , where the constantsc1 andc2 are determined by
the normalization conditions. This means that the order
rameter should be zero at the vortex axis for the singly qu
tized vortex. For the doubly quantized vortex, the situation
different. If hei2 ẑ, the GL equation near the vortex center

2 ln~Tc /T!g12S ]2

]r 2
1

1

r

]

]r
2

4

r 2D g12
1

2S ]2

]r 2
2

1

r

]

]r D g2

1
4

3
g1

31
8

3
g2

2g150, ~5.7a!

2 ln~Tc /T!g22S ]2

]r 2
1

1

r

]

]r D g22
1

2S ]2

]r 2
1

3

r

]

]r D g11
4

3
g2

3

1
8

3
g1

2g250. ~5.7b!

In this case, we find thatg15c1r 2 andg25c2. Similarly, if
hei ẑ, we haveg15c1 and g25c2r 2. Therefore, the orde
parameter does not vanish at the doubly quantized vo
axis. This type of vortex is strongly related to the comple
rotational symmetry of the system. If the rotational symm
try of the system is reduced by the presence of a crystal fi
this type of vortex is no longer stable, and we have only
singular singly quantized vortex present.

Accordingly, the supercurrent circulating around an a
symmetric singly quantized vortex becomes

j5 j 0F1

r
~g2

22g1
2!1S g2

dg1

dr
2g1

dg2

dr D22eÃ~g22g1!2G û,

~5.8!

wherej 052eEFN(0)/3mj0 with j05AavF/2, andÃ5Aj0.
This result shows that the supercurrent behavior of ap-wave
superconductor in the weak-coupling limit is independent
the azimuthal angle and is similar to that of conventional
one-component superconductors.
x

L

a-
n-
s

x
e
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e

-
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r

VI. THE UPPER CRITICAL FIELD

We also wish to discuss the upper critical fieldHc2 for a
p-wave superconductor. Consider a magnetic field antipa
lel to the z axis, H5(0,0,2H), we can choose the vecto

potential to beA5(0,2Hx,0). By definingP̃65P6/2AeH,

we have the commutation relation,@P̃2 ,P̃1#51. Throwing
away the nonlinear terms in Eq.~3.7!, we obtain the linear-
ized version of the GL equation for the order parameter

K̃1~P̃1P̃21P̃2P̃1!c1* 1K̃2P2
2 c2* 5

1

eH
ln~Tc /T!c1* ,

~6.1a!

K̃1~P̃1P̃21P̃2P̃1!c2* 1K̃2P1
2 c1* 5

1

eH
ln~Tc /T!c2* ,

~6.1b!

where K̃152K̃25avF
2D0, c1,2* 5D1,2* /D0. In view of the

commutation relation, we can regardP̃6 as the creation and
annihilation operators in the occupation number space,

P̃1un&5An11un11& , P̃2un&5Anun21&.
~6.2!

Therefore, we expand the wave function in terms of the
cupation state,c1,2* 5(0

`an
(1,2)un&. Substituting them into Eq

~6.1!, we obtain a set of linear equations

K̃1~n11!an
~1!1K̃2A~n12!~n11!an12

~2! 5
1

eH
ln~Tc /T!an

~1! ,

~6.3a!

K̃1[2~n12!11]an12
~2! 1K̃2A~n12!~n11!an

~1!

5
1

eH
ln~Tc /T!an12

~2! , ~6.3b!

whose smallest eigenvalue gives the upper critical fie
There are two possible ground states (c1* 50,c2* 5a0

(2)u0&)
and (c1* 5a0

(1)u0&,c2* 5a2
(2)u2&). The corresponding eigen

values are, respectively,

Hc2
I 5

ln~Tc /T!

eK̃1

, Hc2
II 5

A2

3~A221!

ln~Tc /T!

eK̃1

. ~6.4!

Clearly, in the weak-coupling limit, the latter state should
the relevant upper critical magnetic field, which also mea
that when the magnetic field is lower than the upper criti
magnetic field the two components will be present simu
neously in the superconductor. This is consistent with
discussion on vortex solutions in the previous section.

VII. CONCLUSION AND DISCUSSION

Based on the weak-coupling theory, we have derived
complete set of two-component Ginzburg-Landau equati
for a layeredp-wave superconductor. The expansion coe
cients of the phenomenological GL free energy with resp
to the order parameter are determined up to the fourth or
These coefficients allow us to identify the vortex structure
referring to the vortex phase diagram which was obtain
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numerically from phenomenological GL equations wi
freely adjusted coefficients. We find that the microscopica
obtained coefficients are within the region where the vor
is of axisymmetry, but are close to the phase boundary. C
respondingly, the supercurrent circulating around a vorte
similar to that in conventionals-wave superconductors
Moreover, we have also calculated the upper critical m
netic field and a unique one from two possible values h
been figured out.

We have to make several remarks on our derivati
Firstly, our calculations have been performed by making
of simplifications like a cylindrical Fermi surface as well as
simple form of the attractive interaction which is known
the weak-coupling limit. In the strong-coupling limit, the G
expansion coefficients may change appreciably and the n
axial vortex structures could be expected. Secondly, we
mainly concerned with the derivation of GL equations for t
2D representation of the odd-parity pairing state (G5

2) so that
we can directly compare the obtained GL free-energy fu
tional with the phenomenological free-energy functional f
i

J

v

y
x
r-
is

-
s

.
e

n-
re

-
r

the superconducting state composed of two degenerate c
ponents. However, it is not difficult to conceive that one c
obtain the same form of GL equations of one 1D pairi
state~e.g.,G1

2) coupled to one of the other 1D pairing state
~e.g., G5

2) by still assuming a unitary order-parameter m
trix. It can be understood that due to the space inhomoge
ity, there arises the possibility for one state to fluctuate in
the other one. In principle, a superconducting pairing st
should be a linear combination of all basis pairing functio
(G1

2-G5
2). In this situation, the superconducting pairing sta

is nonunitary and the derivation for GL equations is grea
complicated and becomes very tedious. Finally, the Pa
paramagnetism, spin-orbit coupling, and related effects
the magnetic properties are under consideration.
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