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Weakly nonlinear quantum transport: An exactly solvable model
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We have studied the weakly nonlinear quantum transport properties of a two-dimensional quantum wire that
can be solved exactly. The nonlinear transport coefficients have been calculated and interesting physical
properties revealed. In particular we found that as the incoming electron energy approaches a resonant point
given by energyE5Er , where the transport is characterized by a complete reflection, the second-order
nonlinear conductance changes its sign. We have also investigated the establishment of the gauge-invariance
condition. We found that for systems with a finite scattering region, correction terms to the theoretical formal-
ism are needed to preserve the gauge invariance. These corrections were derived analytically for this model.
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I. INTRODUCTION

Nonlinear quantum transport in mesoscopic systems
been a very active research field in recent years.1–4 Ta-
boryski et al.4 have reported observations of nonlinear a
asymmetric conductance oscillations of quantum point c
tacts at a small bias voltage. They found that the non-Oh
and asymmetric behavior causes a rectified dc signal as
response to an applied ac current. On the theoretical s
Wingreen et al.3 have presented a general formulation
deal with the situation of a nonlinear and time-depend
current going through a small interacting region where el
tron energies can be changed by time-dependent voltage
the same time, Bu¨ttiker and his co-workers5,1,6 have ad-
vanced a current-conserving theory for the frequen
dependent transport. Recently, this current-conserving
malism has been applied to a two-dimensional mesosc
conductor.7 This theory can also be applied to discuss
nonlinear behavior of mesoscopic samples and the theo
gauge invariant. It has been recognized8 that in nonlinear
coherent quantum transport, it is essential to consider
internal self-consistent potential in order to satisfy the gau
invariant condition. This condition demands that all physi
properties predicted by a theory cannot change if there
global voltage shift. Obviously this is a fundamental requi
ment.

Recently, Christen and Bu¨ttiker8 have investigated the
rectification coefficient of a quantum point contact and
nonlinear current-voltage characteristic of a resonant leve
a double-barrier structure using the theory of gauge-invar
nonlinear conductance. Another important application of t
theory is to investigate two-dimensional~2D! mesoscopic
and ballistic quantum devices that can now be routinely f
ricated in many laboratories. Unfortunately, due to a parti
lar technical difficulty, namely, the evaluation of a quant
called sensitivity~see below!, so far little is known for the
nonlinear conductance in two dimensions. Clearly, an und
standing of the 2D situation is very much needed in orde
gain further intuition to the coherent transport and to pred
550163-1829/97/55~15!/9763~7!/$10.00
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the nonlinear characteristics of the variety of 2D nanostr
tures. The purpose of this paper is to investigate the gau
invariant nonlinear transport in a specific two-dimension
system that can be solved exactly. Hence we were abl
obtain various relevant physical quantities. Although a g
eral study for an arbitrary 2D system seems difficult, o
perspective is that an exactly solved model is valuable si
it clearly and unambiguously reveals the physical proper
of the nonlinear transport coefficients.

To be specific, we have considered a very simple
model that is a quasi-1D ballistic conductor9 with a d poten-
tial confined inside, as shown in Fig. 1~a!. Because quantum
scattering in this system leads to mode mixing, which is
basic feature of a two-dimensional system, it provides
swers to our 2D problem. In a previous work10 we have used
this model to study the electric current conservation of the
transport formalism at the linear conductance level and
culated the important physical quantities such as the glo
and local partial density of states. In the following we sh
extend our calculation to explicitly calculate the secon
order nonlinear conductanceG111 and G112. Due to the
gauge-invariant condition~see below!, we should have
G1111G11250. It turns out that for systems with a finit
scattering volume such as those of any numerical calc
tions, if the global partial density of states~see below! is
computed from theenergyderivatives of the scattering ma
trix, we found that a correction term must be added to sat
the gauge-invariant condition. We have derived these cor
tions analytically. For this system there is a resonant s
with energyEr characterized by a complete reflection, i.
the reflection coefficientR51 if the d potential is attractive.
Our results showed that the second-order nonlinear con
tanceG111 changes sign near the resonant pointEr . This
leads to interesting current-voltage characteristics of this s
tem.

The paper is organized as follows. In the next section
shall briefly review the gauge-invariant theory for nonline
transport put forth by Bu¨ttiker.1 In Sec. III we will present
the solution of the 2D scattering problem. Some of the te
9763 © 1997 The American Physical Society
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nical details of Sec. III have been put into the Appendix. O
results are presented in Sec. IV. Section V is a brief su
mary.

II. GAUGE-INVARIANT FORMALISM

To be complete, we shall first briefly review the gaug
invariant formalism of Christen and Bu¨ttiker8 and present
our calculational procedure for the 2D system. For a mu
probe mesoscopic system, the current through probea is
given by1,8

I a5
2e

h (
b

E dE f ~E2EF2eVb!Aab~E,$Vg%!, ~1!

where f (E) is the Fermi distribution function and

Aab~E,$Vg%!5Tr@1adab2sab
† ~E,$Vg%!sab~E,$Vg%!# ~2!

are the screened~negative! transmission functions that ar
expressed in terms of the scattering matrixsab . For the
weakly nonlinear transport, Eq.~1! can be expanded with
respect to the voltagesVb ,

I a5(
b

GabVb1(
bg

GabgVbVg1•••, ~3!

where

Gab5
2e2

h E dE~2]Ef !Aab ~4!

is the linear conductance and

FIG. 1. Schematic plot of the quantum wire system.~a! In the

quantum-wire system we have studied ad potentialgd(rW2r 0W ) is

confined inside a quasi-1D quantum wire, withr 0W5(0,y0). The
wire width isa. The scattering region is betweenx1 andx2. In our
calculations, the parameters are set toa51, y050.3, x1521, and
g521.0. ~b! To compute the functional derivatives of the scatt
ing matrix with respect to a local potential change, we add ano
d-function potential at the position (xd ,yd). In this case the system
is divided into three regions by the dotted lines for the bound
matching solution of the Schro¨dinger equation.
r
-

-

i-

Gabg5
e2

h E dE~2]Ef !~]Vg
Aab1]Vb

Aag1e]EAabdbg!

~5!

is the second-order nonlinear conductance. In Eqs.~4! and
~5!, theAab are evaluated at$Vg%50. The requirements tha
the current is conserved and independent of a global volt
shift ~gauge invariance! yield1,8,11

(
a

Gab5(
b

Gab50

and

(
a

Gabg5(
b

Gabg5(
g

Gabg50.

From this equation and Eq.~5!, the gauge-invariance cond
tion for Aab is

e]EAab1(
g

]Vg
Aab50. ~6!

Note that the scattering matrixsab(E,$Vg%) is a functional
of the electric potentialU(r ,$Vg%). The derivative]Vg

Aab

can be expressed in terms of functional derivative ofAab
with respect the electric potentialU(r ,$Vg%) and the charac-
teristic potentialug(r ),

]Vg
Aab5E d3r

dAab

dU~r !

]U~r !

]Vg
5E d3r

dAab

dU~r !
ug~r !, ~7!

where the characteristic potential is defined as1

ug~r !5S ]U~r !

]Vg
D
eq

, ~8!

where the subscript ‘‘eq’’ denotes the equilibrium value. A
a consequence of the gauge invariance, the characteristic
tential satisfies the sum rule

(
g

ug~r !51. ~9!

To gain further insight into Eq.~6!, let us consider a two-
probe system. Equation~3! can be written as

I 15G11V11G12V21G111V1
212G112V1V21G122V2

2 .

Obviously,G1252G11 due to the conservation of electri
current. From Eqs. ~5!–~7! and ~9!, we have G111
52G1125G122. Therefore, the current depends only on t
voltage differences, which is the direct consequence of
gauge-invariant condition Eq.~6!. We obtain

I 15G11~V12V2!1G111~V12V2!
2. ~10!

For a symmetric system withU(x,y)5U(2x,y), wherex is
the propagation direction, we must have2I 1 if V1 andV2
are interchanged. Hence we conclude that for a symme
system there are no quadratic terms, i.e.,G11150. On the
other hand, in generalG111Þ0 for geometrically asymmetri-
cal systems.
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To calculate the transmission functionsAab and their
functional derivatives, we need the characteristic poten
ug . This in turn needs the solution of the Poisson equat
with a nonlocal screening term.1,8 To actually carry out this
procedure is very complicated. However, if we can use
Thomas-Fermi approximation, which is more appropriate
metallic conductors, the characteristic potential is simplifi
and is found to be related to the local partial density of sta
Within Thomas-Fermi screening, we obtain

ug~r !5
dn~r ,g!

dE Y dn~r !

dE
, ~11!

where the partial local density of statesdn(r ,g)/dE is called
the injectivity and is given by11

dn~r ,g!

dE
5(

n

uCgnu2

hvgn
, ~12!

wherevgn is the channel velocity andCgn is a scattering
state. Finally, the quantitydn(r )/dE5(adn(r ,a)/dE is the
total local density of states. Substituting Eqs.~2! and ~11!
into Eq. ~7!, we obtain

]Vg
Aab54pE d3r hab~r !

dn~r ,g!

dE Y dn~r !

dE
, ~13!

where

hab~r !52
1

4p
TrS sab

† dsab

dU~r !
1sab

dsab
†

dU~r ! D ~14!

is calledsensitivity.12 We are aware of two ways of calcula
ing the sensitivity.12 The first is to evaluatedsab /dU di-
rectly by introducing ad function of infinitesimal strength
dU inside the scattering region. Alternatively, one can c
culate it using the retarded Green’s function. For a 2D s
tem, in general the Green’s function cannot be obtained
plicitly; hence we shall use the first method by direc
computing the sensitivity. After obtaining the sensitivity, w
can then compute]Vg

Aab from Eq. ~13! and obtainGabg

from Eq. ~5!. Finally, with these explicit results we can d
rectly check the gauge-invariant condition Eq.~6!.

III. MODEL AND ANALYSIS

As mentioned in the Introduction, Fig. 1~a! shows the
system where ad potential is confined inside a quasi-1
wire with width a. We assume, for simplicity of the calcula
tion, that the boundaries of the ballistic conductor are h
walls, i.e., the potentialV5` at the walls. Inside the con
ductor, the potential is zero everywhere except tha
d-function potentialV(x,y)5gd(x)d(y2y0) is placed at
positionr5(0,y0). The scattering regionx1,x,x2 is asym-
metric, i.e., x11x2Þ0. From now on we set\51 and
m51/2 to fix our units.

The transmission and reflection amplitudes have been
culated using a mode-matching method.13,9 When the inci-
dent electron is in the first subband, in an earlier work
have explicitly obtained these amplitudes.10 The evaluation
was straightforward but quite tedious; we refer the interes
reader to Ref. 10 for details of this algebra. Here we o
al
n

e
r
d
s.

-
-
x-

d

a

l-

e

d
y

quote the results: for reflection the amplitude is

bn5
2 iGn1

2kna
~15!

and for transmission it is

cn5dn11bn . ~16!

Here a511 i(nGnn/2kn , Gnm5gxn* (y0)xm(y0), and
xn(y) is the wave function of thenth subband in they di-
rection.kn is the longitudinal momentum for thenth mode
given by kn

25E2(np/a)2; i5A21. Note that for electron
traveling in the first subband,kn with n.1 is purely imagi-
nary. For our coordinate system the scattering matrix e
ments sab are given by s115b1exp(2ik1ux1u) and s12
5c1exp@ik1(x22x1)#.

As mentioned in Sec. II, to calculate the nonlinear co
ductance of our 2D sample, it is necessary to find the se
tivity hab . Hence, according to Eq.~14!, we must evaluate
dsab /dU(xd ,yd), where the pair (xd ,yd) is an arbitrary lo-
cation in the scattering volume. For a general 2D sampl
direct calculation of this functional derivative is very diffi
cult if not impossible. Fortunately, for our model this ca
actually be done exactly. As a first step we shall introduce
additionald potential of infinitesimal strengthdU at position
(xd ,yd) inside the scattering volume. Thus our system b
comes that shown in Fig. 1~b!. Then we shall solve the sca
tering matrix formally as a functional ofdU. Obviously, be-
ing able to carry out this step is crucial. Finally, th
functional derivative is performed. To proceed we again u
the mode-matching method.13,9,10We will assumexd,0 in
the following calculation. The calculation forxd.0 can be
done in a similar fashion. The electron wave functions
written as follows. For region I@see Fig. 1~b!#

C I5(
n

xn~y!~ane
iknx1bne

2 iknx!,

wherean is the incoming wave amplitude and is taken as
input parameter;bn is the reflection amplitude. Similarly, fo
region II

C II5(
n

xn~y!~ene
iknx1 f ne

2 iknx!

and for region III

C III5(
n

xn~y!cne
iknx,

wherecn is the transmission amplitude. We shall match t
wave functions and theirx derivatives at the positions
x5xd andx50. We obtain, atx5xd ,

ane
iknxd1bne

2 iknxd5ene
iknxd1 f ne

2 iknxd ~17!

and

ikn~ene
iknxd2 f ne

2 iknxd!2 ikn~ane
iknxd2bne

2 iknxd!

5(
m

G̃nm~eme
ikmxd1 f me

2 ikmxd!, ~18!
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whereG̃nm5dUxn* (yd)xm(yd). At x50, the matching gives

en1 f n5cn

and

ikncn2 ikn~en2 f n!5(
m

Gnmcm .

To simplify the notation, from now on (xd ,yd) is replaced
by (x,y). From the last two equations, we solve foren and
f n ,

2iknen52(
m

Pnmcm ~19!

and

2iknf n5(
m

Gnmcm , ~20!

wherePnm5Gnm22ikndnm . Eliminatingbn from Eqs.~17!
and ~18!, we obtain

2iknene
iknx52iknane

iknx1(
m

G̃nm~eme
ikmx1 f me

2 ikmx!.

Taking the limitdU→0, we have

2ikn
den
dU

eiknx5(
m

Ḡnm~ame
ikmx1bme

2 ikmx!, ~21!

whereḠnm5G̃nm /dU. To arrive at the above result we hav
used the fact that asdU→0, i.e., when the extrad function
vanishes, we must haveem5am and f m5bm . From Eq.~19!,
we have

2ikn
den
dU

52(
m

Pnm

dcn
dU

. ~22!

From Eqs.~21! and ~22!, we arrive at

2(
m

Pnm

dcm
dU

eiknx5(
m

Ḡnm~ame
ikmx1bme

2 ikmx!5xn*C,

~23!

whereC5C I for x,0. From Eq.~23!, we have

dcl
dU

52(
n

~P21! lne
2 iknxxn*C.

The matrixP21 has been obtained in Ref. 10 and we quo

~P21! ln5
i

2kl
S d ln2

iG ln

2kna
D .

From this equation and Eq.~16! we see that forl51, i.e., the
first subband, (P21)1n5 icn/2k1 provided thatxn is real,
which is true in our case. This yields

dc1
dU

5
1

2ik1
(
n

cnxne
2 iknxC. ~24!

Similarly, from Eqs.~17!, ~19!, ~20!, ~22!, and~23!, we ob-
tain
dbn
dU

5
den
dU

e2iknx1
d f n
dU

52
e2iknx

2ikn
(
m

Pnm

dcm
dU

1
1

2ikn
(
m

Gnm

dcm
dU

5
sin~knx!

kn
xnC1

dcn
dU

.

Whenn51, db1 /dU becomes

db1
dU

5
1

2ik1
S x1e

ik1x1(
n

bnxne
2 iknxDC5

1

2ik1
C2. ~25!

Because the scattering matrix elementss11;b1 and
s12;c1 as mentioned above, with the functional derivativ
~26! and ~24! we can evaluatedsab /dU trivially, thus ob-
taining the sensitivityhab of Eq. ~14!. Then using the pre-
scription discussed at the end of Sec. II, we can obtain all
weakly nonlinear conductances and other quantities of in
est. Our results will be presented in Sec. IV.

To end this section of the theoretical analysis, we ment
that to check the result of functional derivatives, in the A
pendix we shall explicitly calculate a quantity calle
emissivity1 using these functional derivatives. In the absen
of a magnetic field, it is known11 that emissivity is equal to
the injectivity defined in Eq.~12!, which we can compute
using the wave functions. Indeed, we confirm in the Appe
dix that these two are equal, thus providing a necess
check to the calculations presented here.

IV. RESULTS

To obtain numerical results from our analytical formul
for the system of Fig. 1~a! we consider incident electron
coming from probe 1 and seta51, y050.3, x1521, and
g521. Although we have restricted the incoming electr
energy to the first subband, quantum scattering at
d-function potential leads to mode mixing. Thus, in our n
merical calculations we have included 50 modes in the s
tering volume. We have checked that this is enough to ob
good numerical convergence.

As a first result we plot the sensitivityh11(r ,E) as a func-
tion of the electron incident energyE at several positions
r . This is shown in Fig. 2. As discussed in Sec. II,hab
appears naturally in the theoretical formalism and it ess
tially describes the local electric current response of the s
tering problem when there is a small local potential chan
It is related to the real part of the diagonal elements of
Green’s function.12 Figure 2 not only shows the interestin
behavior of this quantity, but also gives vivid intuition abo
the local current response. As shown in our earlier wor10

and mentioned above, in the presence of an attrac
d-function scatterer, the quantum wire studied here ha
resonant state at energyE5Er536.65, where we have a
complete reflection~reflection coefficientR51 or s1150).
From Eq. ~14! we haveh11(r )50 at the resonant energ
E5Er , which can be seen from Fig. 2. Near this resonan
energy the system response is very sensitive to potential
turbations and this is signaled by the large peak ofh11. On
the other hand, this peak is larger when we are closer to
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d-function scatterer located atx50: this indicates that the
local perturbation has larger effects when it is closer to
scattering center. Although Fig. 2 showsh11 at positions to
the left of the scatterer, we have checked that its behavio
exactly the same for positionsx.0, i.e.,h11(x) is an even
function of x.

Adding up all the local responses according to Eq.~13!,
we can explicitly examine the gauge-invariant condition~6!.
Using Eqs.~2! and ~7! and the fact thatu11u251, Eq. ~6!
reduces to

2 ReS sab
† dsab

dE D12E d3r ReS sab
† dsab

dU~r ! D50.

It is straightforward to evaluate the left-hand side of th
equation. Using the functional derivatives obtained in S
III, as well as the energy derivatives of Eqs.~15! and ~16!,
we found that the left-hand side of the above equation
nonzero. For instance, for a symmetric system, it is given

C5
us12u2

k1
2 Re~s11!1ReS (

n52

b1ubnu2

k1kn
eikn~x22x1!D , ~26!

whereC denotes the correction. Thus, in order to have p
cise gauge invariance, this correction must be includ
From this result, we notice that the first correction term
only significant near the first subband threshold wh
k1'0 and is negligible for larger incoming electron ene
gies. For the second correction term, let us examine its
havior near thenth subband withn.1. From Eq.~15! we
see that as the incoming electron momentumk→kn ,
b1→kn , and bn is finite. Therefore, the second correctio
term remains finite when the electron energy approaches
nth subband (n.1). This is different from the ac transpo
where the correction diverges10 near thenth subband with
n.1. We emphasize that the correction term is due to
fact that we are considering a finite scattering volume. As
scattering volume or the incident energy becomes larger,
effect of these correction terms diminishes. This can be s

FIG. 2. Sensitivityh11(r ,E) as a function of energyE at three
different positionsx521/2,21/4,0 with the samey50.3. For dif-
ferent y the curveh11 as a function ofE will be multiplied by a
constant. Other system parameters are the same as those of F
Here the unit of energy is\2/2ma2.
e

is

.

is
y

-
d.
s
e

e-

he

e
e
he
en

clearly due to the factork1 in the denominator and the expo
nentially decaying factor exp@ikn(x22x1)# as kn is purely
imaginary for alln.1.

The origin of this correction term is in the energy deriv
tive of ]EAab as discussed in Refs. 10 and 12. Although it
nonessential for large scattering volumes, care must be ta
when using Eq.~5! in any numerical calculations where th
scattering volume is always finite. For instance, if one
rectly uses Eq.~5! to computeG111 for a geometrically sym-
metric system, a nonzero result will be obtained. Therefo
in principle, one needs to distribute the correction term se
rately toG111 andG112 in order to obtain physically correc
quantities. Alternatively, for the present problem of evalu
ing the second-order nonlinear conductances, one can e
nate]EAab in Eq. ~5! by the gauge-invariance condition~6!,
which yields

Gabg5
e2

h E dE~2]Ef !

3E d3r
dAab

edU~r !
@ug~r !1ub~r !2dgb#, ~27!

where we have used Eqs.~7! and ~11!. Since all quantities
are computedlocally, i.e., in the scattering volume, Eq.~27!
gives the correct behavior without the need to distribute
correction terms.14

Now we present numerical evaluations of the seco
order nonlinear conductanceGabg using Eq.~27! with the
help of the analytical expressions for the various quanti
involved. In Fig. 3 the second-order nonlinear conducta
G111 is plotted for two different scattering regions:x252
~dashed line! and 4 ~dotted line!. For illustration purposes
we have multipliedG111by a factor of 20. In comparison, th
solid line shows the linear conductanceG11, which is pro-
portional to the transmission coefficient by the Landauer f
mula. At the resonanceE5Er536.65, we observe the com
plete reflection15,10 indicated byG1150. As expected, the
nonlinear coefficientG111 also vanishes atEr . Furthermore,
G111 changes its sign as the incoming electron energy va
and has many oscillations for these asymmetrical syste
This has important implications on the current-voltage ch

. 1.

FIG. 3. ConductancesG11 andG111 as functions of energyE.
Solid line, G11; dashed line,G111 with x252; dotted line,G111

with x254. Other system parameters are the same as those of
1. Here the unit of energy is\2/2ma2.
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9768 55JIAN WANG, QINGRONG ZHENG, AND HONG GUO
acteristics if we recall theI -V relation Eq.~10!. The I -V
curves of a system withx252 is shown in Fig. 4 for severa
different electron energies. We can clearly see that fo
positiveG111, such asE511.35~solid line! and 37.40~dot-
ted line!, the currentI 1 increases with the potential differ
ence of the two probesDV5V12V2. However, whenG111
is negative, such as atE512.16 ~dashed line!, I 1 decreases
for a range ofDV.16

V. SUMMARY

To summarize, we have solved exactly the weakly n
linear transport characteristics of a two-dimensio
quantum-wire model. To the best of our knowledge, this
the first exact solution for a truly two-dimensional ballist
model. The second-order nonlinear conductances are de
analytically. We found that as the incoming electron ene
crosses the resonant point, the nonlinear conducta
changes its sign. This leads to interesting current-voltage
havior when the incoming electron energy changes. We h
also examined the gauge-invariant condition that is obtai
by the global voltage shift. We found that for systems with
finite scattering volume, correction terms are needed to
serve the gauge-invariant condition when we compute
global partial density states using the energy derivative of
scattering matrix. We have derived these corrections ana
cally for our model. The correction term consists of tw
parts. The first part dominates when the incident energyE is
near the first subband threshold. On the other hand, the
ond part is given by the amplitudes of the nonpropagat
modes and is significant near the resonant point. Finally,
exact calculation reveals the interesting behavior of the s
sitivity that describes the local electric current response
potential perturbation.
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APPENDIX

To check our result of the functional derivatives, i.e., Eq
~24! and ~25!, in this appendix we compute the emissivi
defined as1

dn~a,r !

dE
52

1

4p i(b TrFsab
† dsab

dU~r !
2

dsab
†

dU~r !
sabG .

It has been shown11 that in the absence of a magnetic fie
the emissivity is equal to the injectivity defined in Eq.~12!.
We shall explicitly perform the functional derivatives to co
firm this fact and hence provide the necessary check to
algebra.

Using Eqs.~24! and ~25!, we have

s11*
ds11
dU

1s12*
ds12
dU

5c1*
dc1
dU

1b1*
db1
dU

5
1

2ik1
S c1* x1e

2 ik1x1c1*(
n

bnxne
2 iknx

1b1* x1e
ik1x1b1*(

n
bnxne

2 iknxDC

5
1

2ik1
S b1* x1e

ik1x1x1e
2 ik1x

1~112b1* ! (
n52

bnxne
2 iknxDC, ~A1!

where the relationc1511b1 has been used. Before we pro
ceed further, let us derive a useful relation from the unita
condition of the scattering matrix, namely,

112b1*52
b1*

b1
5

a

a*
. ~A2!

The first equality comes from the unitary conditio
c1* b11c1b1*50 or b1*1(112b1* )b150; the second equal
ity is from Eq. ~15!. Since the incoming electron is in th
first subband, we havekn*52kn for n.1. Hence, for
n.1,

bn
bn*

5
a*

a
. ~A3!

Substituting Eqs.~A2! and ~A3! into Eq. ~A1!, we obtain

.

of
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s11*
ds11
dU

1s12*
ds12
dU

5
1

2ik1
uCu2, ~A4!

which is equivalent to Eq.~12!. Notice that the imaginary
ys

-

part of the left-hand side of Eq.~A4! is proportional to the
emissivity. Its real part gives the sensitivityh111h12. From
the unitary condition we haveh111h1250, which agrees
with Eq. ~A4!.
e
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