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Weakly nonlinear quantum transport: An exactly solvable model
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We have studied the weakly nonlinear quantum transport properties of a two-dimensional quantum wire that
can be solved exactly. The nonlinear transport coefficients have been calculated and interesting physical
properties revealed. In particular we found that as the incoming electron energy approaches a resonant point
given by energyE=E,, where the transport is characterized by a complete reflection, the second-order
nonlinear conductance changes its sign. We have also investigated the establishment of the gauge-invariance
condition. We found that for systems with a finite scattering region, correction terms to the theoretical formal-
ism are needed to preserve the gauge invariance. These corrections were derived analytically for this model.
[S0163-182697)02916-0

I. INTRODUCTION the nonlinear characteristics of the variety of 2D nanostruc-
tures. The purpose of this paper is to investigate the gauge-
Nonlinear quantum transport in mesoscopic systems hagvariant nonlinear transport in a specific two-dimensional
been a very active research field in recent yéatsTa-  system that can be solved exactly. Hence we were able to
boryski et al* have reported observations of nonlinear andobtain various relevant physical quantities. Although a gen-
asymmetric conductance oscillations of quantum point coneral study for an arbitrary 2D system seems difficult, our
tacts at a small bias voltage. They found that the non-Ohmigerspective is that an exactly solved model is valuable since
and asymmetric behavior causes a rectified dc signal as thieclearly and unambiguously reveals the physical properties
response to an applied ac current. On the theoretical sidef the nonlinear transport coefficients.
Wingreen et al® have presented a general formulation to To be specific, we have considered a very simple 2D
deal with the situation of a nonlinear and time-dependentnodel that is a quasi-1D ballistic conducterith a & poten-
current going through a small interacting region where electial confined inside, as shown in Figal Because quantum
tron energies can be changed by time-dependent voltages. A¢attering in this system leads to mode mixing, which is the
the same time, Btiker and his co-workefs-® have ad- basic feature of a two-dimensional system, it provides an-
vanced a current-conserving theory for the frequencyswers to our 2D problem. In a previous wtkve have used
dependent transport. Recently, this current-conserving forthis model to study the electric current conservation of the ac
malism has been applied to a two-dimensional mesoscopigansport formalism at the linear conductance level and cal-
conductor. This theory can also be applied to discuss theculated the important physical quantities such as the global
nonlinear behavior of mesoscopic samples and the theory &nd local partial density of states. In the following we shall
gauge invariant. It has been recognizedat in nonlinear extend our calculation to explicitly calculate the second-
coherent quantum transport, it is essential to consider therder nonlinear conductanc®&,;; and G;;,. Due to the
internal self-consistent potential in order to satisfy the gaugegauge-invariant condition(see beloy, we should have
invariant condition. This condition demands that all physicalG;11+G11,=0. It turns out that for systems with a finite
properties predicted by a theory cannot change if there is acattering volume such as those of any numerical calcula-
global voltage shift. Obviously this is a fundamental require-tions, if the global partial density of statésee below is
ment. computed from thesnergyderivatives of the scattering ma-
Recently, Christen and Biker® have investigated the trix, we found that a correction term must be added to satisfy
rectification coefficient of a quantum point contact and thethe gauge-invariant condition. We have derived these correc-
nonlinear current-voltage characteristic of a resonant level itions analytically. For this system there is a resonant state
a double-barrier structure using the theory of gauge-invarianwith energyE, characterized by a complete reflection, i.e.,
nonlinear conductance. Another important application of thighe reflection coefficieniR=1 if the & potential is attractive.
theory is to investigate two-dimensionéD) mesoscopic  Our results showed that the second-order nonlinear conduc-
and ballistic quantum devices that can now be routinely fabtance G,;; changes sign near the resonant pdit This
ricated in many laboratories. Unfortunately, due to a particuieads to interesting current-voltage characteristics of this sys-
lar technical difficulty, namely, the evaluation of a quantity tem.
called sensitivity (see below, so far little is known for the The paper is organized as follows. In the next section we
nonlinear conductance in two dimensions. Clearly, an undershall briefly review the gauge-invariant theory for nonlinear
standing of the 2D situation is very much needed in order tdransport put forth by Btiker. In Sec. Ill we will present
gain further intuition to the coherent transport and to predicthe solution of the 2D scattering problem. Some of the tech-
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From this equation and E@5), the gauge-invariance condi-
tion for A,z is
FIG. 1. Schematic plot of the quantum wire systda).In the
antum-wire system we have studied> potential yS(r —ro) is
Quantum-wire system we have studiedgotential yé(r —ro) | €A+ 2 Iy Agp=0. (6)
confined inside a quasi-1D quantum wire, with=(0,y,). The y 4

wire width isa. The scattering region is betwegp andx,. In our . . . .
calculations, the parameters are seatel, y,=0.3,x,=—1, and  NOt€ that the scattering matri, ;(E.{V,}) is a functional

y=—1.0.(b) To compute the functional derivatives of the scatter- Of the electric potential (r,{V,}). The derlvatlveﬁvyAaﬁ
ing matrix with respect to a local potential change, we add anothecan be expressed in terms of functional derivativeAQf;
o-function potential at the positiorx§,yg). In this case the system with respect the electric potential(r,{V,}) and the charac-
is divided into three regions by the dotted lines for the boundaryteristic potentialuy(r),

matching solution of the Schdinger equation.

el = [, @

nical details of Sec. Il have been put into the Appendix. Our ‘9V7Aaﬂzf 3r5U(r) N sU(r)
results are presented in Sec. IV. Section V is a brief sum- 7

mary. where the characteristic potential is defined as
du(r)
II. GAUGE-INVARIANT FORMALISM uy(r): - (8)
(9 1
Y leq

To be complete, we shall first briefly review the gauge-
invariant formalism of Christen and Riker® and present where the subscript “eq” denotes the equilibrium value. As
our calculational procedure for the 2D system. For a multi-a consequence of the gauge invariance, the characteristic po-
probe mesoscopic system, the current through prebis  tential satisfies the sum rule

given by8
2e > uy(n=1. 9)
Y
= f dEf (E-Ep—eVpA(EfV ), (D)
To gain further insight into E(6), let us consider a two-
wheref(E) is the Fermi distribution function and probe system. Equatiof8) can be written as
Aup(EAV ) =T 1,8,5— SLa(EAV,)Sap(EAV,DT (2 11=G11V1+ G1pVo+ GiaaVi+2G11V1 Vot GioiVs.

are the screenethegative transmission functions that are Obviously, G;,=—G;; due to the conservation of electric
expressed in terms of the scattering matsjy;. For the current. From Egs.(5)—(7) and (9), we have Gy

weakly nonlinear transport, Eql) can be expanded with =-G;;,=G,,,. Therefore, the current depends only on the
respect to the voltaged,, voltage differences, which is the direct consequence of the
gauge-invariant condition E¢6). We obtain
la:% GH'BV'B+BEV CaprVeVyt s ® l1=G1y(V1=V2) + Gi1y(V1— V). (10
where For a symmetric system with (x,y)=U(—X,y), wherex is

the propagation direction, we must havd , if V; andV,
2¢e2 are interchanged. Hence we conclude that for a symmetric
Gaﬁ:TJ dE(—def)Aup (4)  system there are no quadratic terms, i@;;,=0. On the
other hand, in gener&,,,# 0 for geometrically asymmetri-
is the linear conductance and cal systems.
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To calculate the transmission functions,; and their  quote the results: for reflection the amplitude is
functional derivatives, we need the characteristic potential

u,,. This in turn needs the solution of the Poisson equation b= =il 15
with a nonlocal screening terfif. To actually carry out this " 2k,

procedure is very complicated. However, if we can use the o

Thomas-Fermi approximation, which is more appropriate for2nd for fransmission it is

metallic conductors, the characteristic potential is simplified Ci= 8,4 b, . (16)

and is found to be related to the local partial density of states.
Within Thomas-Fermi screening, we obtain Here a=1+iZ.I'n/2K,, Tom=vxE (Yo)xm(Yo), and
xn(y) is the wave function of thath subband in the di-
dn(r,y) / dn(r) (12) rection.k,, is the longitudinal momentum for theth mode
dE dE ' given byk?=E—(n=/a)?; i=/—1. Note that for electron
traveling in the first subband,, with n>1 is purely imagi-
nary. For our coordinate system the scattering matrix ele-
ments s,; are given by s;;=b;exp(dkyx,)) and s,
dn(r,y) RN =ciexdiki(o—xg)]. '
dE 22 ho (12 As mentioned in Sec. I, t_o_calculate the no_nllnear con-
n ductance of our 2D sample, it is necessary to find the sensi-
wherewv ., is the channel velocity an® , is a scattering tivity 7,5. Hence, according to Eq14), we must evaluate
state. Finally, the quantitgin(r)/dE== ,dn(r,a)/dE isthe  S.p/6U(Xq,Yq), Where the pairXy,yq) is an arbitrary lo-

total local density of states. Substituting Eq8) and (11)  cation in the scattering volume. For a general 2D sample a
into Eq. (7), we obtain direct calculation of this functional derivative is very diffi-

cult if not impossible. Fortunately, for our model this can
3 dn(r,y) / dn(r) actually be done exactly. As a first step we shall introduce an
‘9VyAaﬁ:47Tf d°r 745(1) dE dE ' (13 additionals potential of infinitesimal strengtBU at position
(X4,Yq) inside the scattering volume. Thus our system be-
where comes that shown in Fig.()). Then we shall solve the scat-
" tering matrix formally as a functional afU. Obviously, be-
. OSup ts 0S4 ) (14) ing able to carry out this step is crucial. Finally, the
@BsU(r)y TP sU(r) functional derivative is performed. To proceed we again use
, 1 the mode-matching methdd®°We will assumexy<0 in
is calledsensitivity'> We are aware of two ways of calculat- the following calculation. The calculation for;>0 can be

. g . 2 . . -

ing the S_ens't'v'ty_l- The first is to evaluateds,;/6U di-  (one in a similar fashion. The electron wave functions are
rectly by introducing a5 function of infinitesimal strength \yritten as follows. For region [lsee Fig. 1b)]

6U inside the scattering region. Alternatively, one can cal-

culate it using the retarded Green'’s function. For a 2D sys- 4 .

tem, in general the Green’s function cannot be obtained ex- W= xn(y)(@ne ™+ bye k),

plicitly; hence we shall use the first method by directly "

computing the sensitivity. After obtaining the sensitivity, we wherea,, is the incoming wave amplitude and is taken as an
can then comput@VyAaﬂ from Eq. (13) and obtainG 4, input parameter,, is the reflection amplitude. Similarly, for
from Eq. (5). Finally, with these explicit results we can di- region I

rectly check the gauge-invariant condition E6).

u,(r)=

where the partial local density of states(r,y)/dE is called
the injectivity and is given by

1
Nap(r)=— 7Tt

W= xa(Y)(ener+fre )
Ill. MODEL AND ANALYSIS n

As mentioned in the Introduction, Fig.(@ shows the and for region Ili
system where & potential is confined inside a quasi-1D
wire with widtha. We assume, for S|mpI|C|ty of the calcula- V= E Yu(y)CnelknX,
tion, that the boundaries of the ballistic conductor are hard n
walls, i.e., the potential/ =« at the walls. Inside the con-
ductor, the potential is zero everywhere except that
Ss-function potentialV(x,y) = y8(x) 6(y—yp) is placed at
positionr =(0,y,). The scattering regior; <x<Xx, is asym-
metric, i.e.,X;+X,#0. From now on we sefi=1 and
m=1/2 to fix our units.

The transmission and reflection amplitudes have been caknd
culated using a mode-matching methdd.When the inci-
dent electron is in the first subband, in an earlier work we  ik,(e,e*n*d—f e~ knXa) —jk,(a,e'*n*d— b, e~ Kn*a)
have explicitly obtained these amplitud@sThe evaluation
was straightforward but qui.te tedioys; we refer the interested :E fnm(emeikmxd +f, e Kma), (18)
reader to Ref. 10 for details of this algebra. Here we only m

ayvherecn is the transmission amplitude. We shall match the
wave functions and theix derivatives at the positions
X=X4 andx=0. We obtain, ak=xg4,

aneiand+ bne*iknxd:eneiknxd_kfne*iknxd (17)
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wherel, = 6U Xi (Ya) xm(Ya)- At x=0, the matching gives
e,+f,=c,
and
iKnCn—ikn(eq—fp)

:2 I -
m

To simplify the notation, from now onxg,y,) is replaced
by (x,y). From the last two equations, we solve &gy and

ns

2ik,e,= —% PrCin (19)
and

2iknfn:§ | IO (20)
whereP,,=I",mn—2ik,8,m- Eliminatingb, from Eqgs.(17)

and(18), we obtain
2ik e,e% = 2ik a,e K+ > T, (e,ekm+f, e kmX).
m
Taking the limit6U—0, we have

oe, . — . .
2ikn6—Une'knx=%: Tl @me’ ™+ be = me), - (21)
whereF_nmz 'fnm/(su. To arrive at the above result we have
used the fact that a8U—0, i.e., when the extr@ function
vanishes, we must hae,=a,, andf ,=b,,. From Eq.(19),
we have

oe,
nsU

éCp,

2ik sy

_E P
m
From Egs.(21) and(22), we arrive at

-2 P

(22

elknX= E an(ame|kmx+b e—lka) Xn
(23

P50 ©

whereWV =V, for x<0. From Eq.(23), we have

=2 (P Y knxyp,
n
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U 68U sU
e2iknx 5

- 2ikn% Pom 50" 2ik, 2 F“m 5u

_ sin(kyX) éc,,

Tk, XU suC
Whenn=1, sb,/8U becomes
sby 1 " . 1
- 1X —ikyx _ 2
50~ 7k, | X1 +; boxne” k¥ | ¥ = —Zlquf (25)

Because the scattering matrix elemergg~b, and
S1,~~C4 as mentioned above, with the functional derivatives
(26) and (24) we can evaluates,z/6U trivially, thus ob-
taining the sensitivityn,,z of Eq. (14). Then using the pre-
scription discussed at the end of Sec. I, we can obtain all the
weakly nonlinear conductances and other quantities of inter-
est. Our results will be presented in Sec. IV.

To end this section of the theoretical analysis, we mention
that to check the result of functional derivatives, in the Ap-
pendix we shall explicitly calculate a quantity called
emissivity using these functional derivatives. In the absence
of a magnetic field, it is knowht that emissivity is equal to
the injectivity defined in Eq(12), which we can compute
using the wave functions. Indeed, we confirm in the Appen-
dix that these two are equal, thus providing a necessary
check to the calculations presented here.

IV. RESULTS

To obtain numerical results from our analytical formula,
for the system of Fig. (B) we consider incident electron
coming from probe 1 and set=1, y,=0.3,x,=-1, and
v=—1. Although we have restricted the incoming electron
energy to the first subband, quantum scattering at the
S-function potential leads to mode mixing. Thus, in our nu-
merical calculations we have included 50 modes in the scat-
tering volume. We have checked that this is enough to obtain
good numerical convergence.

As a first result we plot the sensitivity,4(r,E) as a func-
tion of the electron incident energy at several positions
r. This is shown in Fig. 2. As discussed in Sec. #,g4
appears naturally in the theoretical formalism and it essen-
tially describes the local electric current response of the scat-
tering problem when there is a small local potential change.

The matrixP~* has been obtained in Ref. 10 and we quotejt is related to the real part of the diagonal elements of the

il
2K
From this equation and E¢L6) we see that fot=1, i.e., the

first subband, P~1),,=ic,/2k, provided thaty, is real,
which is true in our case. This yields

o 3
(P l)ln_2_k|<5ln

oCq

SU (29

—ikpx
zlklz Cnxn€ "MW

n

Similarly, from Eqgs.(17), (19), (20), (22), and(23), we ob-
tain

Green’s functiort? Figure 2 not only shows the interesting
behavior of this quantity, but also gives vivid intuition about
the local current response. As shown in our earlier Work
and mentioned above, in the presence of an attractive
o-function scatterer, the quantum wire studied here has a
resonant state at enerdy=E,=36.65, where we have a
complete reflectior(reflection coefficienfR=1 or s;;=0).
From Eqg.(14) we have#,,(r)=0 at the resonant energy
E=E,, which can be seen from Fig. 2. Near this resonance
energy the system response is very sensitive to potential per-
turbations and this is signaled by the large peakygf. On

the other hand, this peak is larger when we are closer to the
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FIG. 2. Sensitivityn;4(r,E) as a function of energg at three FIG. 3. Conductance6,; and G,;; as functions of energf.

different positionsx=—1/2,—1/4,0 with the samg=0.3. For dif-  Solid line, G,;; dashed lineG,;; with x,=2; dotted line,Gy;,
ferenty the curveny; as a function ofE will be multiplied by a  with x,=4. Other system parameters are the same as those of Fig.
constant. Other system parameters are the same as those of Fig.11.Here the unit of energy &2/2ma?.
Here the unit of energy i#2/2ma?.
clearly due to the factd, in the denominator and the expo-
o-function scatterer located at=0: this indicates that the nentially decaying factor eXik.,(x,—x;)] as k,, is purely
local perturbation has larger effects when it is closer to thémaginary for alln>1.
scattering center. Although Fig. 2 shows; at positions to The origin of this correction term is in the energy deriva-
the left of the scatterer, we have checked that its behavior ive of JgA,, 4 as discussed in Refs. 10 and 12. Although it is
exactly the same for positions>0, i.e., 711(X) is an even nonessential for large scattering volumes, care must be taken
function of x. when using Eq(5) in any numerical calculations where the
Adding up all the local responses according to Ef), scattering volume is always finite. For instance, if one di-
we can explicitly examine the gauge-invariant condit{6p  rectly uses Eq(5) to computeG,,; for a geometrically sym-
Using Egs.(2) and(7) and the fact thati; +u,=1, Eq.(6) metric system, a nonzero result will be obtained. Therefore,
reduces to in principle, one needs to distribute the correction term sepa-
rately toG4;; and Gy, in order to obtain physically correct
quantities. Alternatively, for the present problem of evaluat-
2 Re( +2J' o3 Re( ) ing the second-order nonlinear conductances, one can elimi-
Sap dE Sap SU(r natedeA,z in Eq. (5) by the gauge-invariance conditic),
which yields
It is straightforward to evaluate the left-hand side of this
equation. Using the functional derivatives obtained in Sec. e?
[ll, as well as the energy derivatives of Eq45) and (16), Gaﬂv:ﬁf dE(—dgf)
we found that the left-hand side of the above equation is
nonzero. For instance, for a symmetric system, it is given by J ,
d°r

egu(r)[uy(r)wﬁ(r) o8l (27)
C= |s l§| Re(s 1)+Re( E 1| n| elknO2—x1) (26) where we have used Eg&/) and (11). Since all quantities
=2 ’ are computedocally, i.e., in the scattering volume, E7)
gives the correct behavior without the need to distribute the
whereC denotes the correction. Thus, in order to have pre<orrection terms?
cise gauge invariance, this correction must be included. Now we present numerical evaluations of the second-
From this result, we notice that the first correction term isorder nonlinear conductandg,g, using Eq.(27) with the
only significant near the first subband threshold wherehelp of the analytical expressions for the various quantities
k;~0 and is negligible for larger incoming electron ener-involved. In Fig. 3 the second-order nonlinear conductance
gies. For the second correction term, let us examine its bes;44 is plotted for two different scattering regions;=2
havior near thenth subband withn>1. From Eq.(15) we (dashed ling and 4 (dotted ling. For illustration purposes,
see that as the incoming electron momentks-k,, we have multiplied54, by a factor of 20. In comparison, the
b,—k,, andb, is finite. Therefore, the second correction solid line shows the linear conductan€g,, which is pro-
term remains finite when the electron energy approaches thgortional to the transmission coefficient by the Landauer for-
nth subband iG>>1). This is different from the ac transport mula. At the resonancé=E,=36.65, we observe the com-
where the correction diverg€snear thenth subband with plete reflectiot™!? indicated byG,;=0. As expected, the
n>1. We emphasize that the correction term is due to the@onlinear coefficienG,,, also vanishes &, . Furthermore,
fact that we are considering a finite scattering volume. As th&,,, changes its sign as the incoming electron energy varies
scattering volume or the incident energy becomes larger, thend has many oscillations for these asymmetrical systems.
effect of these correction terms diminishes. This can be seehhis has important implications on the current-voltage char-



9768 JIAN WANG, QINGRONG ZHENG, AND HONG GUO 55
5.00 ‘ . a research grant from the Croucher Foundation, the Natural
Sciences and Engineering Research Council of Canada, and
400 |- |E=37.40 _ le Fonds pour la Formation de Chercheurs et I'Aidéaa
E-12.16 Recherche de la Province du Quae. We thank the Com-
oo b P puter Center of the University of Hong Kong for computa-
tional facilities.

200 |- .

APPENDIX
T .—.ﬂf"""”’f:::: _______________________ 7] To check our result of the functional derivatives, i.e., Eqgs.
i (24) and (25), in this appendix we compute the emissivity
| .
%00 20 m o = - defined a$
AV
dn(a,r) 1 85,5  OShg

FIG. 4. Current-voltage characteristics as calculated from Eq — _2 525—_ —~Sap|-
(10) at several different electron energie&= 11.35 (solid line), dE 47i“g oU(r) 8U(r)

37.40 (dotted ling, and 12.16 (dashed ling x,=2 is used. A . L
AV=V,—V,. Other system parameters are the same as those ¢f Nas been shown that in the absence of a magnetic field

Fig. 1. the emissivity is equal to the injectivity defined in E42).

We shall explicitly perform the functional derivatives to con-
acteristics if we recall thé-V relation Eq.(10). The |-V firm this fact and hence provide the necessary check to our
curves of a system witk,= 2 is shown in Fig. 4 for several algebra.
different electron energies. We can clearly see that for a Using Egs.(24) and(25), we have
positive G,;4, such aE=11.35(solid line) and 37.40dot-
ted ling, the currentl, increases with the potential differ- 811 5515
ence of the two probedV=V,;—V,. However, wherG,;; s’l‘lﬁvLs’l‘zW
is negative, such as &=12.16(dashed ling |, decreases

for a range ofAV.16 , ocy o sb,
B TRA V)
V. SUMMARY
To summarize, we have solved exactly the weakly non-  _ 1 * | a—ikgXy A% —ikpx
. ’ o : . =_——| Cl x1&” "*+cC box,e "n
linear transport characteristics of a two-dimensional 2ik 1 1; nXn

guantum-wire model. To the best of our knowledge, this is
the first exact solution for a truly two-dimensional ballistic
model. The second-order nonlinear conductances are derived
analytically. We found that as the incoming electron energy
crosses the resonant point, the nonlinear conductance . ikox ik

changes its sign. This leads to interesting current-voltage be- = Zji b1 x1€" '+ x.e7 ™

havior when the incoming electron energy changes. We have

also examined the gauge-invariant condition that is obtained ‘

by the global voltage shift. We found that for systems with a +(1+2b%) > anne_'k”X) v, (A1)
finite scattering volume, correction terms are needed to pre- n=2

serve the gauge-invariant condition when we compute thghere the relatiort; = 1+ b, has been used. Before we pro-

global partial density states using the energy derivative of th@eeq further, let us derive a useful relation from the unitary
scattering matrix. We have derived these corrections analyticondition of the scattering matrix, namely

cally for our model. The correction term consists of two
parts. The first part dominates when the incident en&rgy

near the first subband threshold. On the other hand, the sec-
ond part is given by the amplitudes of the nonpropagating
modes and is significant near the resonant point. Finally, our
exact calculation reveals the interesting behavior of the senfhe first equality comes from the unitary condition
sitivity that describes the local electric current response to &; b;+c¢;b7 =0 or b} +(1+2b7)b;=0; the second equal-

+ bIXleik1x+ b’1( E anneian) v
n

(64
1+2br=— == —., (A2)

potential perturbation. ity is from Eq. (15). Since the incoming electron is in the
first subband, we havé} =—k, for n>1. Hence, for
ACKNOWLEDGMENTS n>1,
We thank Professor M. Btiker for pointing out that in
our problemG4;; can be nonzero only if the boundaries are ﬁ_ £ (A3)
nonsymmetric with respect to the location of the impurity. b} T oo

We gratefully acknowledge support by a RGC grant from the
Government of Hong Kong under Grant No. HKU 261/95P, Substituting Eqs(A2) and (A3) into Eg. (A1), we obtain
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0S11 0S12 1
* 4l x 012~ 2
iU TS5y 2k, L (Ad)

part of the left-hand side of EqA4) is proportional to the
emissivity. Its real part gives the sensitivigyi;+ 71,. From
the unitary condition we havey,;+ 71,=0, which agrees

which is equivalent to Eq(12). Notice that the imaginary with Eq. (A4).
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