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Vortex state and dynamics of ad-wave superconductor: Finite-element analysis
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The finite-element method is extended to simulate thed-wave time-dependent Ginzburg-Landau equations.
By utilizing this method and in the context of the (s1d)-wave pairing, we discuss the nature of a single vortex,
the structure of equilibrium vortex lattices in bulk samples, the nature of vortices in finite-size samples, and
most importantly the transport of the vortices. In particular, the low-field free-flux-flow resistivity turns out to
obey the law of corresponding states discovered in conventional superconductors, while the high-field resis-
tivity reveals a noticeable effect of thes-wave coupling on lifting the effective upper critical field. The flux
flow near and above the depinning current in the presence of a twin boundary or random impurities also
assumes a conventional behavior: The current dependence of the flux-flow resistivity can be well described by
an overdamped model for a particle subject to driving and pinning forces. However, our results show a
noticeable difference between the flux-flow resistivities at large currents in the presence and absence of
pinning. @S0163-1829~97!07617-0#
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I. INTRODUCTION

The symmetry of the order parameter in high-temperat
superconductors appears to be a controversial subject
ently. Thed-wave pairing scenario is strongly supported
evidence for a sign change of the order parameter betw
thea andb axes1 and the observation of a spontaneous h
magnetic flux quantum in three-grain-boundary Joseph
junctions.2 However, there are also some observations t
are consistent with thes-wave pairing instead~with possible
anisotropies in the amplitude of the order parameter!. For
example, a sizable Josephson current in ac-axis tunneling
junction between Y-Ba-Cu-O~YBCO! and Pb was ob-
served,3 andno angular dependence of the critical current
YBCO-YBCO grain boundary junctions in thea-bplane was
found.4 The importance of the pairing symmetry lies in th
fact that it is an important probe to the underlying pairi
mechanism. On the one hand, a repulsive interaction
tween electrons can lead to pair formation withd-wave sym-
metry, as in the case where the interaction is suggeste
arise from the spin fluctuation exchange.5 On the other hand
an attractive interaction leads tos-wave pairing, with an or-
der parameter without any sign change on the Fermi surf
despite the possible anisotropy in the amplitude. Recen
there have been further efforts6 by combining thes-wave and
d-wave aspects in order to reconcile the contradictory
perimental results.

In another context, given thed-wave symmetry of the
pairing, it is interesting and important to ask how the ma
roscopic properties of unconventional superconductorsin the
mixed statewould be different from those of convention
superconductors. Volovik may be the first one who stud
the density of states of ad-wave vortex core.7 Apart from
other consequences of thed-wave symmetry, he pointed ou
that the density of state would scale linearly withAB, where
B is the magnetic induction. This behavior was observed
recent specific heat measurement.8 Soininenet al. calculated
550163-1829/97/55~17!/11756~10!/$10.00
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the vortex structure numerically within the framework of th
self-consistent Bogoliubov–de Gennes theory.9 The detailed
structure of ad-wave vortex was shown to be very differe
from that of ans- or p-wave vortex. Far away from the
vortex core a pured wave exists, and near the center there
a normal ‘‘inner core’’ where both thes wave andd wave
vanish; in the middle region the two wave components
exist. More interestingly, thes-wave component decays a
1/r 2 and an amplitude profile in a shape of a four-leaf
clover arises from both21 and13 windings. These quali-
tative features as well as the quantitative details are obt
able from thedx22y2-wave Ginzburg-Landau~GL! theory
developed by Ren, Xu, and Ting.10 Numerical simula-
tions11–13 based on this theory showed that thed-wave vor-
tex lattice structure should also be different from the conv
tional triangular lattice: With increasing temperature t
d-wave vortex lattice would change from a square lattice
an oblique one and finally to the conventional triangular l
tice near the critical temperature. Noticeably, the fact t
even a square vortex lattice could be the most stable was
reached by Maki and co-workers14 from theoretical studies
on the quasiparticle spectrum in the vortex state. The
merical as well as theoretical studies provide reasonable
terpretation for the experimental results of Keimeret al.and
Maggio-Aprileet al.15

In this paper, we are concerned with the effects of
d-wave symmetry on the equilibrium as well as the transp
properties in the mixed state. We start with the GL equatio
of a dx22y2-wave superconductor,10 derived on the basis o
the microscopic Gor’kov equations.16 The effectiveinterac-
tion between electrons is assumed to be attractive in
d-wave channel and repulsive in thes-wave channel, so tha
a uniform superconductor always possesses a pured-wave
pairing state. The GL free energy functional for a tw
dimensionald-wave superconductor can be expressed
terms of two order parametersS(r ) andD(r ):10
11 756 © 1997 The American Physical Society
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G5E dV 2asuSu22aduDu21 4
3 uSu41 1

2 uDu41 8
3 uSu2uDu2

1 2
3 ~S* 2D21H.c.!12uPSu21uPDu2

1~PxSPx*D*2PySPy*D*1H.c.!1~“3A2He!
2.

~1!

Here P5 i“/k1A, with k being the GL parameter
as5as0 /(12T/Tc) and ad5 ln(Tc /T), where
as054(112Vs /Vd)/N(0)Vd is a positive constant with
Vs.0 (2Vd,0) being the effective interaction strength
thes (d) channel andN(0) being the density of states at th
Fermi level. FinallyHe is the applied magnetic field. Equa
tion ~1! is understood to be dimensionless according to
following normalization: The order parameters are norm
ized byD05A4/3a with a57z(3)/8(pTc)

2, the space by
the magnetic penetration depthl, and the vector potential by
F0/2pj with F05h/2e and j being the flux quantum and
the coherence length, respectively. The time-dependent
equations pertinent for Eq.~1! can be written as10

@hs] t1as1
4
3 ~ uSu21uDu2!1P2#S1 2

3D
2S*

1 1
2 ~Px

22Py
2!D50, ~2!

@hd] t2ad1
8
3 uSu21uDu21P2#D1 4

3S
2D*

1~Px
22Py

2!S50, ~3!

]A

]t
1“3“3A1$S*PS1 1

2D*PD1 1
2 @S* ~Px2Py!D

1D* ~Px2Py!S]1H.c.%2“3He50. ~4!

HerePk5 x̂kPk , andhs andhd are two phenomenologica
constants characterizing the relaxation rate of thes- and
d-wave order parameters, respectively. The timet is normal-
ized bysnl

2 with sn the normal-state conductivity of th
superconductor. We shall take simplyhs52hd51 ~see, e.g.,
Ref. 10!. In the above equations, we have assumed suc
gauge in which the electrostatic potential does not app
Due to the fully coupled nature among thes wave, thed
wave, and the Maxwell equations, rigorous analytical wo
on the GL equations is extremely difficult or even impo
sible. Numerical simulations are indispensable in order
achieve a deeper understanding of thed-wave GL theory.
Earlier simulations11 ~based on the numerical-relaxatio
method17! are limited to a low GL parameter. However, in
realistic high-Tc superconductor, the GL parameter is rath
high. Simulations of the mixed-state high-k superconductors
might become difficult in the context of the usual discretiz
tion schemes due to the large ratio between the two rele
length scalesj andl. On the other hand, although the rela
ation method17 the authors used in their simulations is we
established for the purposes of calculating the equilibri
properties, it has to be extended to simulate the vortex
namics. Motivated by these considerations, we resort to
d-wave time-dependent GL equations and simulate them
an extension of an earlier method based on the finite-elem
method.18 A preliminary announcement was made in an e
lier short paper.13 The present paper, however, is se
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containing. It includes a substantially increased understa
ing of the vortex dynamics in ad-wave superconductor an
serves as an important extension of the earlier work. T
structure of the rest of the paper is as follows. In Sec. II,
outline the extended finite-element method for our purpos
The application of the method is presented in Sec. III, wh
we investigate the behavior of vortices in finite-size samp
and bulk samples, subject to various types of pinning. T
equilibrium as well as the transport properties of the syst
are discussed. Section IV contains a brief summary of
article.

II. OUTLINE OF THE EXTENDED
FINITE-ELEMENT METHOD

The basic idea in the finite-element method~see, e.g., Ref.
19! is to expand, in each element cell of the sample,
functions to be solved by acompleteset of piecewise shap
functions~being unitary at the specified nodal points on t
boundary of the cell! and to enforce orthogonality betwee
any of the shape functions and the residual of the govern
equations. The latter condition, together with the continu
condition across the element cells and the physical bound
conditions concerned, determines the expansion coeffici
and thus the approximate solution. This condition ensu
that in the static case the free energy is stationary against
small variations that could also be presumably expanded
the shape functions. The completeness of the shape func
guarantees that the solution converges to the exact solu
with decreasing volume of each element. It is clear that in
static situations, the finite-element method, starting w
minimizing the free energy in the each element cell, ser
as a global minimizer of the total free energy by assembl
the elements. In the time-dependent situation, the unkno
functions are expanded as the same shape functions but
time-dependent coefficients, which are to be solved by
usual Euler schemes.

As usual, we denote the inner product in the comp
Hilbert space by

^UuV&5E dVU* •V, ~5!

whereU andV are arbitrary complex scalars or vectors.
an arbitrary element cell, letS̃, D̃, andÃ be the shape func
tions that expand the functionsS, D, andA, respectively.
The orthogonality condition reads

^S̃uRs~S,D,A!&50, ~6!

^D̃uRd~S,D,A!&50, ~7!

^ÃuRa~S,D,A!&50, ~8!

whereRs(•••), Rd(•••), andRa(•••) are the residuals, i.e.
the left-hand sides of Eqs.~2!–~4! after the substitution of
S, D, andA expanded by the shape functions. After perfor
ing integration by parts with respect to the second-order
ferentials~together with some of the first-order differential!
in Rs,d,a , we have the weak form of Eqs.~2!–~4!, namely,
the so-called Galerkin equations:



e
en
ry
s
e
a
pl
b
s

le
pa

he
m
tr

nc
;
-

11 758 55Z. D. WANG AND QIANG-HUA WANG
^S̃u] t1as1
4
3 ~rs1rd!uS&1^S̃u 23D2S* &

1^PS̃uPS1 1
2 ~Px2Py!D&

52
i

k R S̃* n̂•@PS1 1
2 ~Px2Py!D#dl, ~9!

^D̃u] t2ad1
8
3rs1rduD&1^D̃u 43S2D* &

1^PD̃uPD1~Px2Py!S&

52
i

k R D̃* n̂•@PD1~Px2Py!S#dl, ~10!

^Ãu] tA1$S*PS1 1
2D*PD1 1

2 @S* ~Px2Py!D

1D* ~Px2Py!S#1H.c.%&1^“3Ãu“3A&

5^¹3ÃuHe&2 R Ã•@ n̂3~“3A2He!#dl, ~11!

wherers5uSu2, rd5uDu2, and the contour integration of th
flux terms is performed over the boundary of the elem
cell. Here n̂ denotes the normal direction of the bounda
Since we enforce continuity of the unknown flux term
across the boundaries between any two adjacent elem
cells, the contour integrations cancel out after assembling
of the element cells except at the boundary of the sam
where the specific physical boundary conditions are to
substituted~see below!. In the following we shall suppres
temporarily the flux terms everywhere.

To proceed, we linearize the nonlinear terms in the Ga
kin equations using the Newton-Rampson scheme. In
ticular, for arbitrary functionsU, V, andW in the right
bracketu•&, the productUVW is approximated as

UVW'UcVcWc1UcVc~W2Wc!1UcWc~V2Vc!

1VcWc~U2Uc!,

where the subscriptc denotes the value at the center of t
element cell. Decomposing the Galerkin equations in co
ponents, we have the element equations written in ma
form:

^f i uŝ] t1B̂uC&5^f i uF&, ~12!

wheref i is a real piecewise polynomial parent shape fu
tion with i being the nodal index
C5(Sr ,Si ,Dr ,Di ,Ax ,Ay)

T is a six-component vector func
tion representing, respectively, Re(S), Im(S), Re(D),
Im(D), Ax , and Ay ; ŝ is a 636 diagonal matrix with
s115s2252s33,44,55,66[1; B̂ is a 636 matrix operator with
the elements

B115as1
1

k2 ]k]k1A21
4

3
~rs1rd!1

8

3
Sr
21

2

3
~Dr

22Di
2!,

B125
1

k
~]kAk2Ak]k!1

8

3
SrSi1

4

3
DrDi ,
t
.
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e,
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r-

-
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-

B135
1

2k2 ~]x]x2]y]y!1
1

2
~Ax

22Ay
2!14SrDr1

4

3
DiSi ,

B145
1

2k
~]xAx2Ax]x1Ay]y2]yAy!1

4

3
SrDi1

4

3
DrSi ,

B155
1

k S ]xSi1
1

2
]xDi D2

1

k S ]xSi1
1

2
]xDi D12SrAx

1DrAx ,

B165
1

k S ]ySi2
1

2
]yDi D2

1

k S ]ySi2
1

2
]yDi D12SrAy

2DrAy,

B225as1
1

k2 ]k]k1A21
4

3
~rs1rd!1

8

3
Si
22

2

3
~Dr

22Di
2!,

B235
1

2k
~Ax]x2]xAx1]yAy2Ay]y!1

4

3
SiDr1

4

3
SrDi ,

B245
1

2k2 ~]x]x2]y]y!1
1

2
~Ax

22Ay
2!14SiDi1

4

3
SrDr ,

B255
1

k S ]xSr1
1

2
]xDr D2

1

k S ]xSr1
1

2
]xDr D12SiAx

1DiAx ,

B265
1

k S ]ySr2
1

2
]yDr D2

1

k S ]ySr2
1

2
]yDr D12SiAy

2DiAy ,

B335
1

2k2 ]k]k2
1

2
ad1

1

2
A21

4

3
rs1

1

2
rd1Dr

2

1
2

3
~Sr

22Si
2!,

B345
1

2k
~]kAk2Ak]k!1DrDi1

4

3
SrSi ,

B355
1

2k
~]xDi1]xSi !2

1

2k
~]xDi1]xSi !1DrAx1SrAx ,

B365
1

2k
~]yDi2]ySi !2

1

2k
~]yDi2]ySi !1DrAy2SrAy

B445
1

2k2 ]k]k2
1

2
ad1

1

2
A21

4

3
rs1

1

2
rd1Di

2

2
2

3
~Sr

22Si
2!,

B455
1

2k
~]xDr1]xSr !2

1

2k
~]xDr1]xSr !,
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B465
1

2k
~]yDr2]ySr !2

1

2k
~]yDr2]ySr !1DiAy2SiAy ,

B555
1

2
~]y]y1e]x]x!1rs1

1

2
rd1SrDr1SiDi ,

B565
1

2
~2]y]x1e]x]y!,

B665
1

2
~]x]x1e]y]y!1rs1

1

2
rd2~SrDr1SiDi !,

together with the symmetryBji5Bi j
† ~defined below!; finally,

F is an internal ‘‘force’’ operator~arising from the lineariza-
tion of the nonlinear terms! with the components

F15F83 ~rs1rd!1
4

3
~Dr

22Di
2!12A2GSr

1
8

3
DrDiSi1~Ax

22Ay
2!Dr2

1

k
~Ak]k2]kAk!Si

2
1

2k
~Ax]x2]xAx1]yAy2Ay]y!Di ,

F25F83 ~rs1rd!2
4

3
~Dr

22Di
2!12A2GSi

1
8

3
DrDiSr1~Ax

22Ay
2!Di2

1

k
~]kAk2Ak]k!Sr

2
1

2k
~]xAx2Ax]x1Ay]y2]yAy!Dr ,

F35F83 rs1rd1
4

3
~Sr

22Si
2!1A2GDr

1
8

3
SrSiDi1~Ax

22Ay
2!Sr2

1

2k
~Ak]k2]kAk!Di

2
1

2k
~Ax]x2]xAx1]yAy2Ay]y!Si ,

F45F83 rs1rd2
4

3
~Sr

22Si
2!1A2GDi

1
8

3
SrSiDr1~Ax

22Ay
2!Si2

1

2k
~]kAk2Ak]k!Dr

2
1

2k
~]xAx2Ax]x1Ay]y2]yAy!Sr ,

F55@2rs1rd12~SrDr1SiDi !#Ax1
1

k
~Si]xSr2Sr]xSi !

1
1

2k
~Di]xDr2Dr]xDi !1

1

2k
~Si]xDr1Di]xSr

2Sr]xDi2Dr]xSi !2
1

2
]yHe1

1

2
Jx ,
F65@2rs1rd22~SrDr1SiDi !#Ay1
1

k
~Si]ySr2Sr]ySi !

1
1

2k
~Di]yDr2Dr]yDi !2

1

2k
~Si]yDr1Di]ySr

2Sr]yDi2Dr]ySi !1
1

2
]yHe1

1

2
Jy .

In the above equations, a repeated indexk implies summa-
tion over thex,y components,]k and ]k denote partial de-
rivative operators acting on the left-hand and right-ha
nearest-neighborfunctions, respectively,Bi j

† is the same as
Bi j except that the operators]k and ]k are exchanged. In
obtainingBi j andFi , we have multiplied Eqs.~3! and~4! by
a factor of 1/2 in order to make the resulting matrixB̂ ap-
parently conjugate. We have dropped, for simplicity, the s
script c for all of the functions inBi j andFi defined at the
center of the element cell, which are understood to be
~time-dependent! properties of the cell.~Note that some of
the properties are derivatives at the cell center.! The e terms
in Bi j arise from the penalty functionale(¹•A)2 (e.0),
which is inserted into the integrand of Eq.~1! to enforce the
London gauge¹•A50.18 ~In the case of periodic boundar
conditions in bothx and y directions, theHe terms ande
terms can be ignored.! Moreover, we have assumed th
He5Heẑ is uniform over the sample and that a transp
currentJ5Jxx̂1Jyŷ is applied.

The functionC can be expanded in an element cell by t
real parent shape functionsf i as follows:

C5(
i
Qif i , ~13!

whereQi is a~time-dependent! coefficient vector. After com-
pleting the integration over each element cell in Eq.~12! and
assembling all of the resulting element equations, we ob
a set of ordinary differential equations, which can be fo
mally written as

~Ĉ] t1K̂ !aW 5 fW , ~14!

whereĈ andK̂ are usually referred to as the capacity mat
and stiffness matrix, respectively,aW is the global coefficient
vector, andfW is the assembled force vector. The semid
cretized equation~14! can be further discretized in time b
the usual implicit or explicit~backward or forward! Euler
methods. The implicit scheme discretizes Eq.~14! at the
(n11)th time step into

S 1DtĈ1K̂ DaW n115 fW2
1

Dt
ĈaW n , ~15!

which behaves as an overdamped system, converges a
lutely for an arbitrary time stepDt (.0) in the case of linear
evolution equations,19 and also proves to be extremely stab
in our ~nonlinear! case~even ifDt;10). This is a desirable
feature if the system relaxes with a very long time sca
However, the implicit scheme could be rather tim
consuming since the effective stiffness matr
K̂eff5(1/Dt)Ĉ1K̂ has to be inverted at each time step~due
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11 760 55Z. D. WANG AND QIANG-HUA WANG
to the time dependence ofK̂). In the case of periodic bound
ary conditions the problem is more severe since the rele
matrix K̂eff is not banded at all and the usual matrix inversi
scheme for banded matrices ceases to be efficient. In
explicit scheme, on the other hand, Eq.~14! is further dis-
cretized in time into

1

Dt
ĈaW n115 fW2S 1DtĈ1K̂ DaW n , ~16!

where the effective stiffness matrix (1/Dt)Ĉ is constant and
can be diagonalized trivially once and forever using the w
known lumping method~see, e.g., Ref. 19!. Thus the explicit
scheme could be desirable for large systems~irrespectively
of the boundary conditions!. Unfortunately, the explicit
scheme converges conditionally at very smallDt<Dtmax
~which could be determined from the extremum eigenval
of the governing iteration equations!. See Ref. 19 for more
details on the assembling of the element equations and
comparison between implicit and explicit Euler schemes.

In closing this section, we give a brief description for t
implementation of the boundary conditions in a variety
situations. There are two kinds of boundary conditions c
cerned. The first is the so-called natural boundary condit
which can be directly submitted into the force terms of t
assembled Galerkin equations. Examples of natural boun
conditions are

n̂•@PS1 1
2 ~Px2Py!D#G50, ~17!

n̂•@PD1~Px2Py!S#G50, ~18!

n̂3~¹3A2He!uG50, ~19!

whereG represents the sample boundary. Equations~17! and
~18! guarantee that the supercurrent does not flow out of
sample, and Eq.~19! is the usual boundary condition for th
magnetic field. The second is the so-called essential bou
ary condition, which prescribes the function values on
boundary. The periodic boundary conditions fall into th
category. The degrees of freedom prescribed by the esse
boundary conditions are eliminatedprior to calling a solver
for the governing equations. In addition, in the presence
twin boundary, the properties of the system may cha
sharply across the boundary. For example,

as,d5as0,d01Vs,dd~y2y0! ~20!

describes the variation ofas,d across the twin boundar
along the liney5y0. This property can also be incorporate
naturally into the Galerkin equations as if the twin bounda
were an extra boundary of the sample, with the discontinu
conditions

i

k
n̂•@PS1 1

2 ~Px2Py!D#2
152VsS, ~21!

i

k
n̂•@PD1~Px2Py!S#2

152VdD, ~22!

which follow immediately from an integration of Eqs.~2!

and ~3! along the normal directionn̂ of the twin boundary
nt
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over an infinitesimal interval. Here@•#2
1 means the jump of

the argument across the boundary. Note that when there
misorientations across the twin boundary or when thea and
b axes of the superconducting crystalline are not align
with the operating frame, transformations with respect to
spatial derivatives should be performed in the Galerkin eq
tions according to the operating frame.

III. EQUILIBRIUM AND TRANSPORT BEHAVIORS
OF VORTICES

A. Vortex structure

For thed-wave superconductors, the equilibrium vortic
and vortex structures have been studied recently,11,12 while
neither vortices in finite-size samples nor transport behav
of vortices have been examined with the GL equations.
finite-size samples the difficulty might lie in the impleme
tation of the natural boundary conditions in the usual fini
difference method. However, as discussed in the previ
section, the boundary conditions can be implemented w
great ease in the present finite-element method. Another
ture of the latter method is a smooth and steady converge
In this section, the vortices in both bulk and finite-si
samples are examined. Some of the results have been
sented in a recent publication13 and will be mentioned only
briefly in this paper.

In Ref. 13, we found excellent agreement between
results obtained by the finite-element method and by the
laxation method11 regarding the static single-vortex profile
In particular, the fourfold symmetry as seen from the plots
thes- andd-wave amplitudes was reproduced. Moreover,
have also simulated the vortex lattice for values ofk up to
10, at which level the simulation by the usual algorithm b
comes not efficient enough. By using the implicit Eul
scheme for the time evolution of the coefficients in the fini
element method, the iteration time step could be varied fa
arbitrarily up toDt5100, and the iteration would converg
after only tens to hundreds of iteration steps withDt being of
order 10. Therefore, we can safely reach the steady-state
lution of the GL equation and thus give reliable results
garding the equilibrium properties. For a fixed area of t
unit cell, we have obtained steady-state solutions as a fu
tion of the lattice structure represented by the side-len
ratio r at variouss-wave channel parameteras ~not plotted
here!. In a realistic sample, the equilibrium vortex structu
corresponds to the optimal value ofr that minimizes the free
energy. Our results showed that with increasing tempera
~or as) the vortex lattice would change from a square to
triangular structure, a phenomenon in agreement with ea
simulations,11,12 predictions,14 and seemingly some
experiments.15 This effect has been ascribed to the fourfo
symmetry of the system: Restoring of the fourfold symme
lowers the potential energy while lifting the kinetic energ
and the field energy. With increasingas ~or increasing tem-
perature below and nearTc), thes-wave component is sup
pressed and plays less of a role. NearTc , the system is well
described by the single order parameterD, being equivalent
to a conventional isotropic system.

Figure 1 shows the amplitudes of thes-wave and
d-wave component order parameters atk510 and
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as5ad51 in an open boundary 10j310j square sample
under an applied field ofHe51.5. A single vortex has pen
etrated the sample. While thed-wave amplitude in Fig. 1~b!
is flat at the boundaries, thes-wave amplitude is enhanced
the four corners of the sample. This is different from the c
of a dilute vortex lattice in a bulk sample, where th
s-wave component is only enhanced around the vor
core.11,13 Figure 2 is the same as Fig. 1 but in
11.4j311.4j square sample withk56 andHe54. Eight
vortices have penetrated into the sample. We see the s
corner effect as in Fig. 1. Moreover, the eight vortices ha
arranged themselves in such a way as to form almos
square lattice, being consistent with the bulk property d
cussed above.

B. Free vortex flow

In Ref. 13 we have also considered the evolution of
vortices in a tapelike sample under an applied current al
the longitudinal direction of the tape. The vortices penetr
from the right boundary, move in the direction of the Loren
force in the interior, and annihilate at the left boundary. T

FIG. 1. Contour plot of the order parameters in an open bou
ary,k510, 10j310j sample under an applied field ofHe51.5. ~a!
The s-wave amplitude,~b! thed-wave amplitude.
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s-wave component of the order parameter is seen to ride o
thed-wave component adiabatically. It should be pointed o
that the algorithm described in the previous section app
best for relaxation problems with no applied current, while
the presence of an applied current the vector potential wo
increase endlessly in the fixed gauge~in the absence of an
electrostatic potential!, and one would soon lose accuracy
the iteration. The heuristic reason is as follows. A large a
plitude of the vector potential amounts to a large gradien
the phasew ~and thus in the real and imaginary parts! of the
order parameter so as to keep the physically meanin
gauge-invariant phasew2k*A•dr varying slowly in space.
This requires a smaller and smaller element cellular volu
to approximate accurately violent spatial variations of t
relevant functions when the average vector poten
A05^A& becomes large. But we are using a fixed volume
the element cells. To get around this problem, we have p
formed global gauge transformations after each step of it
tion,

A→A2A0 , w→w2kE A0•dr , ~23!

- FIG. 2. Contour plot of the order parameters in an open bou
ary, k56, 11.4j311.4j sample under an applied field ofHe54.
~a! The s-wave amplitude,~b! thed-wave amplitude.
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11 762 55Z. D. WANG AND QIANG-HUA WANG
which is justified for adiabatic dynamics, e.g., when the
plied current is significantly lower than the depairing curre
Jc0 ~Ref. 20!, so that the vortices can move steadily.~It
should be pointed out that the periodic boundary condit
for the phasew should be twisted accordingly.! In this case,
the instant spatial average of the electric field is simply giv
by E5A0 /Dt. Therefore, the transport behavior of the sy
tem can be simulated without difficulty. The above mod
cation for the dynamic case applies equally well in op
boundary problems and periodic boundary problems.

Since the boundary plays an important role in finite-s
samples, we would rather study the vortex transport us
periodic boundary condition in order to mimic the bulk pro
erties. We use a square unit cell of grid si
Lx3Ly519319, threaded by one or two vortices. The si
length is varied so as to change the magnetic inductionB.
The GL parameter is set to bek53. Figure 3 shows theB
dependence of the free-flux-flow~FFF! resistivity for
as50 ~diamonds!, as51 ~crosses!, andas5`, respectively.
In all the cases we fixedad51. This is applicable since we
can always rescale the order parameters and relevant
ables. Recalling the temperature dependence of the orig
as andad described in Sec. I, we notice that these values
as correspond to, respectively, an extremely low tempe
ture, a temperature of roughly~0.7–0.9!Tc , and a tempera-
ture in the immediate vicinity of the critical temperature.
all cases we used a driving currentJx50.1. The current-
voltage characteristics are linear at this level of current
cept for fields close to the bare upper critical fie
Bc25F0/2pj2. The resistivity in Fig. 3 seems to be linear
B at low fields. It is thus interesting to note that although t
thermal capacity of ad-wave superconductor might vary a
AB due to the same dependence in the quasipar
spectrum,14,7 the FFF resistivity seems to assume a behav
similar to that in a conventionals-wave superconductor, i.e
the law of corresponding states (r/rn}B/Bc2).

21 However,
theB dependence of the resistivity begins to deviate from

FIG. 3. Magnetic field dependence of the free-flux-flow resist
ity at various values ofas . The solid line represents the conve
tional law of corresponding states.
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linear law atB>0.5Bc2. The data for differentas at fixed
field are scattered in a fashion with the magnitude of
~reduced! resistivity increasing withas . Moreover, the data
curve foras50 is bent downward atB;Bc2, suggesting that
enhancement of thes wave ~at decreasing temperature!
should stabilize the vortex state. Defining an effective up
critical field B̃c2 as the field at which the flux-flow resistivity
reaches the normal state resistivity, we see clearly from
3 that B̃c2.Bc2 for as50. The nonlinearity atB>0.5Bc2
for as5` may arise from the nonlinearity in the curren
voltage characteristics aroundJ50.1. Another aspect may b
the boundary condition we have applied, which is in pr
ciple inaccurate foras5` and atB;Bc2 where the vortices
would be densely distributed as atriangular lattice in equi-
librium ~instead of a square lattice we have used at the o
set!.

C. Effects of twin boundaries

Next, we examine the effects of a twin boundary on t
vortices. To be clear off the sample boundary, we use ag
the periodic boundary condition with one flux quantum in
3.5l33.5l unit cell for k53. We also apply a transpor
currentJ in thex direction, in parallel to the periodic array
of twin boundaries~with a transverse spacing ofL53.5l)
described bya i5a i ,01Vi(kd(y2kL), where the subscrip
i stands fors or d. Here we assume that the twin boundari
are created by some chemical method in a parent crystal
no misorientations. Otherwise, two twin boundaries a
needed in one unit cell to apply the periodic boundary c
dition. In Figs. 4 and 5,as,05ad,051, Vs50.1, and
Vd520.5. ~In fact, Vs is irrelevant as long asas.0.! Fig-
ures 4~a!, 4~b!, and 4~c! are contour plots of thes-wave
amplitude,d-wave amplitude, and the field distribution, re
spectively, atJ5Jx50.1. Along the twin boundary, the
d-wave order parameter is suppressed while thes-wave or-
der parameter is greatly enhanced. Due to the applied tr
port current, the vortex profile is displaced by the Loren
force ~in they direction!. However, the vortex remains to b
pinned at the twin boundary up toJx50.14 when the vortex
begins to move. On the other hand, as compared to the
in the absence of the twin boundaries, the order param
profiles are deformed significantly, while the field profile
only slightly changed into an ellipselike shape. This is
immediate consequence of the two well-defined length sc
j and l. A similar phenomenon has been observed
s-wave superconductors.22 Figure 5~a! shows the evolution
of the spatially averaged electric fieldE at J50.14 ~dia-
monds! and J50.2 ~crosses!, respectively. Evidently, the
twin boundary modulates the vortex motion. The resistiv
is obtained fromr/rn5^E& t /J where the average over tim
is performed. Figure 5~b! shows the current dependence
the flux-flow resistivity. In contrast to the FFF resistivity, th
flux-flow resistivity in the presence of pinning is highly non
linear in the applied current. Since we have not included
thermal noise in the simulations, we expect th
r/rn5aA12(Jc /J)

2 at J>Jc , wherea is the asymptotic
reduced resistivity andJc is the depinning current~to be
determined!, in a similar fashion to the case of a sinusoid
pinning potential in a more phenomenological overdamp
model: hẊ5FL1Fp(X) with FL as the Lorentz force and

-
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55 11 763VORTEX STATE AND DYNAMICS OF A d-WAVE . . .
Fp as the spatially periodic pinning force. The fitting for th
J dependence ofr in the vicinity of the depinning current in
Fig. 5~b! indicates indeed such a behavior and giv
a50.26 andJc50.137. To bear out the pinning potential
our case, we could perform an average ofE overX}*Edt

FIG. 4. Contour plots of~a! the s-wave amplitude,~b! the
d-wave amplitude, and~c! the field distribution for a vortex in a
unit cell with a twin boundary. See the text for details.
s

~instead ofover t) and subtract by this average from theX
dependence ofE to find theX dependence of the pinnin
force Fp(X), and hence the pinning potentia
V(X)52*Fp(X)dX. Figure 5~c! is obtained in such a way
for J50.14. The pinning potential profile around each d
mimics the standard resultV(X);2K0@2(X2X0)#1const
@with X being in units ofl and K0(•) the zeroth-order
Bessel function#.23 This indicates that the overdamped pa
ticle model still works well in thed-wave superconductor a
this level of applied current. However, with increasingJ, the

FIG. 5. ~a! The time dependence ofE at J50.14 ~diamonds!
and J50.2 ~crosses!, respectively.~b! The current dependence o
the flux-flow resistivity. The solid line represents a fitting at lo
J. ~c! The pinning potential profile extracted from~a! for J50.14.
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FIG. 6. Contour plots of~a! the s wave, ~b!
thed wave, and~c! the local magnetic field.~d! is
a schematic plot of the location of the impuritie
~bold stars!.
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resistivity increases violently, as is understandable since
applied current is reaching the depairing curre
Jc050.3849.20 Moreover, the asymptotic resistivity in th
fitting curve of Fig. 5~b!, 0.26rn , is already significantly
larger than the corresponding resistivity;0.05rn in Fig. 3.
Therefore, the presence of a twin boundary pins the vorte
low J, on the one hand, and increases the asymptotic re
tivity at largeJ, on the other hand, presumably because
twin boundary lowers the superfluid density from the vie
point of the two-fluid model. The latter fact is often ignore
tacitly in the overdamped model. Our finding suggests t
caution should be taken in the application of the overdam
model in which the asymptotic resistivity is assumed to
the corresponding FFF resistivity in disorder-free superc
ductors.

D. Effects of disorders

Figures 6~a!–6~c! are, respectively, contour plots of th
s wave, thed wave, and the field of a vortex in a unit cell o
the same size and with the samek as in Fig. 4, but with some
randomly distributed pointlike impurities, schematica
shown in Fig. 6~d! as bold stars.ad521 in the impurity
cells whilead51 elsewhere. Each impurity cell has dime
sions 1.2j31.2j in space. The occupation of the impuritie
is p50.2. From Fig. 6, we see that the order parameters
modulated by the disorders, which break the fourfold sy
he
t
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is-
e
-

t
d
e
-

re
-

metry, while the field profile is hardly distorted. This is sim
lar to the case of a twin boundary mentioned in the previo
section. Moreover, thed-wave amplitude is slightly sup
pressed by the impurities, while thes-wave amplitude is en-
hanced at the interfaces between the impurity sites~with
ad521) and the superconducting area~with ad51). Due
to the long-range coherence of the order parameter, howe
the d wave retains an appreciable amplitude above zero
cept in the vortex core, and varies in space rather smoot
irrespective of the sharp change ofad at the impurity bound-
aries. In addition, we find that the maximumd-wave ampli-
tude in the sample is roughly 0.91 in the presence of
impurities, which should be compared to 1 in the absence
the impurities. The maximum magnitude of the superflu
current ~not shown here! has also been reduced to rough
one-third of the intrinsic depairing current.

In principle, one could also obtain the current-volta
characteristics of a disordered superconductor. Howe
since there are many channels for the vortices to move a
in a specific realization of the disorders, the dynamics
pends on the initial configuration of the vortices. To mim
the bulk property, one would have to perform ensemble
erage over the realizations of the disorders. We shall no
into these complications here, but merely present in Fig
the transport current dependence of the resistivity with
spect to the realization in Fig. 6~d! in order to have a rough
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55 11 765VORTEX STATE AND DYNAMICS OF A d-WAVE . . .
idea of the depinning current for the vortex motion. The so
line in Fig. 7 is a fitting for the low current resistivity
r/rn50.31A12(0.0385/J)2, yielding a depinning curren
Jc50.0385.~Note that the periodic boundary condition w
applied justifies this fitting.! The quality of the fitting for low
currents indicates that an effective overdamped part
model for vortex motion is still plausible. However, th
asymptotic resistivity (0.31rn) is again significantly larger
than the corresponding FFF resistivity, and the depinn
current turns out to be drastically smaller than that in F
5~b!. The simulation data at larger current in Fig. 7 devia
quickly from the fitting curve, and can also be attributed
the same fact as in Fig. 5~b!, namely, that the current i
comparable with the maximum supercurrent around the v
tex in the absence of the driving current. Clearly, the imp
rities in Fig. 6~d! are less efficient than the twin boundary
Fig. 5 as far as the pinning effect for vortex motion is co

FIG. 7. The current dependence of the flux-flow resistivity. T
solid line represents a fitting at lowJ.
g,
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le
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cerned. A more comprehensive study on the pinning effec
disorders as a function of impurity density as well as t
magnetic field in ad-wave superconductor awaits.

IV. SUMMARY

The time-dependent unconventional GL equations
analyzed by the finite-element method. The developed
merical method is flexible to deal with both open and pe
odic boundary systems in equilibrium as well as dynami
states in the presence of various types of disorders
d-wave superconductors. Simulation results of the sin
vortex and vortex lattice in bulk and finite-size samples
presented. The FFF resistivity and the flux-flow resistivity
the presence of a twin boundary or random impurities
discussed. The low-field FFF resistivity turns out to obey
law of corresponding states discovered in conventional
perconductors, while the high-field resistivity reveals a n
ticeable effect of thes-wave coupling on lifting the effective
upper critical field. The flux flow near and above the dep
ning current in the presence of a twin boundary or rand
impurities also assumes a conventional behavior, indica
that a model of overdamped particles subject to driving a
pinning forces is still applicable. However, our results ra
some doubts about the application of such a model since
asymptotic resistivity is almost one order of magnitu
larger than the corresponding FFF resistivity in superc
ductors without disorders.
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