PHYSICAL REVIEW B VOLUME 55, NUMBER 17 1 MAY 1997-|

Vortex state and dynamics of ad-wave superconductor: Finite-element analysis
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The finite-element method is extended to simulatediwave time-dependent Ginzburg-Landau equations.
By utilizing this method and in the context of thed)-wave pairing, we discuss the nature of a single vortex,
the structure of equilibrium vortex lattices in bulk samples, the nature of vortices in finite-size samples, and
most importantly the transport of the vortices. In particular, the low-field free-flux-flow resistivity turns out to
obey the law of corresponding states discovered in conventional superconductors, while the high-field resis-
tivity reveals a noticeable effect of trewave coupling on lifting the effective upper critical field. The flux
flow near and above the depinning current in the presence of a twin boundary or random impurities also
assumes a conventional behavior: The current dependence of the flux-flow resistivity can be well described by
an overdamped model for a particle subject to driving and pinning forces. However, our results show a
noticeable difference between the flux-flow resistivities at large currents in the presence and absence of
pinning.[S0163-1827)07617-F

I. INTRODUCTION the vortex structure numerically within the framework of the
self-consistent Bogoliubov—de Gennes thebifhe detailed
The symmetry of the order parameter in high-temperaturatructure of ad-wave vortex was shown to be very different
superconductors appears to be a controversial subject preBom that of ans- or p-wave vortex. Far away from the
ently. Thed-wave pairing scenario is strongly supported byvortex core a pure wave exists, and near the center there is
evidence for a sign change of the order parameter betweef normal “inner core” where both the wave andd wave
thea andb axes and the observation of a spontaneous halfyanish: in the middle region the two wave components co-

magnetic flux quantum in three-grain-boundary Josephsopyist More interestingly, the-wave component decays as
junctions? However, there are also some observations thag 2 and an amplitude profile in a shape of a four-leafed

are consistent with the-wave pairing instea¢with possible clover arises from both-1 and+3 windings. These quali-

anisotropies in the amplitude of the order parametEor tative features as well as the quantitative details are obtain-

example, a sizable Josephson current io-axis tunneling .
. . PN _able from thed,._,2-wave Ginzburg-LandayGL) theory
junction between Y-Ba-Cu-QYBCO) and Pb was ob developed by Ren, Xu, and Tif§. Numerical simula-

served® andno angular dependence of the critical current of ., .
g b tions'!~**based on this theory showed that thevave vor-

YBCO-YBCO grain boundary junctions in tteeb plane was . .
found® The importance of the pairing symmetry lies in the tex lattice structure should also be different from the conven-

fact that it is an important probe to the underiying pairingtional triangular Igttice: With increasing temperatureT the
mechanism. On the one hand, a repulsive interaction pel-wave vortex lattice would change from a square lattice to
tween electrons can lead to pair formation wdttwave sym- ~ @n oblique one and finally to the conventional triangular lat-
metry, as in the case where the interaction is suggested fice near the critical temperature. Noticeably, the fact that
arise from the spin fluctuation exchary@n the other hand, €ven a square vortex lattice could be the most stable was also
an attractive interaction leads sewave pairing, with an or- reached by Maki and co-workéfsfrom theoretical studies
der parameter without any sign change on the Fermi surfacen the quasiparticle spectrum in the vortex state. The nu-
despite the possible anisotropy in the amplitude. Recentlymerical as well as theoretical studies provide reasonable in-
there have been further effattsy combining thes-wave and  terpretation for the experimental results of Keine¢ral. and
d-wave aspects in order to reconcile the contradictory exMaggio-Aprile et al®
perimental results. In this paper, we are concerned with the effects of the
In another context, given thd-wave symmetry of the d-wave symmetry on the equilibrium as well as the transport
pairing, it is interesting and important to ask how the mac-properties in the mixed state. We start with the GL equations
roscopic properties of unconventional supercondudtotse  of a d,2_ 2-wave superconductdf, derived on the basis of
mixed statewould be different from those of conventional the microscopic Gor'’kov equatiori8.The effectiveinterac-
superconductors. Volovik may be the first one who studiedion between electrons is assumed to be attractive in the
the density of states of d-wave vortex coré.Apart from  d-wave channel and repulsive in teavave channel, so that
other consequences of tdewave symmetry, he pointed out a uniform superconductor always possesses a gurave
that the density of state would scale linearly wifB, where  pairing state. The GL free energy functional for a two-
B is the magnetic induction. This behavior was observed in alimensionald-wave superconductor can be expressed in
recent specific heat measurem@®ininenet al. calculated  terms of two order parametegr) andD(r):°

0163-1829/97/54.7)/1175610)/$10.00 55 11 756 © 1997 The American Physical Society



55 VORTEX STATE AND DYNAMICS OF A d-WAVE . .. 11757

containing. It includes a substantially increased understand-

G:f dQ 2a S°— aqD|*+5]S/*+3|D|*+5|S?ID|? ing of the vortex dynamics in d-wave superconductor and
serves as an important extension of the earlier work. The
+2(S* 2D2+ H.c.)+ 2|I1S|?+ |TID|? structure of the rest of the paper is as follows. In Sec. II, we

outline the extended finite-element method for our purposes.
+(ILSIID* _HYSH; D*+H.c)+(VXA—He)% The application of the method is presented in Sec. IIl, where

(1)  Wwe investigate the behavior of vortices in finite-size samples
and bulk samples, subject to various types of pinning. The
equilibrium as well as the transport properties of the system
are discussed. Section IV contains a brief summary of this
article.

Here II=iV/k+A, with « being the GL parameter.
as=ag/(1-TIT,) and aqg=In(T./T), where
ago=4(1+2V./Vy)IN(0)Vy4 is a positive constant with
V>0 (—Vy<0) being the effective interaction strength in
thes (d) channel andN(0) being the density of states at the
Fermi level. FinallyH, is the applied magnetic field. Equa- Il. OUTLINE OF THE EXTENDED
tion (1) is understood to be dimensionless according to the FINITE-ELEMENT METHOD

following normalization: The order parameters are normal- The basic idea in the finite-element methsde, e.g., Ref.
ized by Ag=\4/3a with a=7{(3)/8(wT.)? the space by 19 is to expand, in each element cell of the sample, the
the magnetic penetration depthand the vector potential by functions to be solved by eompleteset of piecewise shape
®o/2mé with do=h/2e and ¢ being the flux quantum and functions(being unitary at the specified nodal points on the
the coherence length, respectively. The time-dependent Ghoundary of the celland to enforce orthogonality between
equations pertinent for E41) can be written a§ any of the shape functions and the residual of the governing
equations. The latter condition, together with the continuit
[nsdt ast3(|S*+|D*) +1I°]S+ 5D*S* condition across the element cells and the physical boundz;/ry
conditions concerned, determines the expansion coefficients
and thus the approximate solution. This condition ensures
that in the static case the free energy is stationary against any
small variations that could also be presumably expanded by
the shape functions. The completeness of the shape functions
(3) ; )
guarantees that the solution converges to the exact solution
IA with decreasing volume of each element. It is clear that in the
— +VXVXA+{S*IIS+ ;D*IID+ %[S*(HX—Hy)D static situations, the finite-element method, starting with
at minimizing the free energy in the each element cell, serves
as a global minimizer of the total free energy by assemblin
+D* (I~ I1y) S + H.cj = VXHe=0. ) the elements. In the time-dependent situation, the unknom?n
Here I, =X,I1,, and s and 74 are two phenomenological f_unctions are expande_d_ as the same shape functions but with
constants characterizing the relaxation rate of sheand time-dependent coefficients, which are to be solved by the

d-wave order parameters, respectively. The tinenormal- ~ Usual Euler schemes. , ,

ized by o, \2 with o, the normal-state conductivity of the _AS usual, we denote the inner product in the complex
superconductor. We shall take simpjy=27,=1 (see, e.g., HiIPert space by

Ref. 10. In the above equations, we have assumed such a

gauge in which the electrostatic potential does not appear. <U|V>:f dQU* .V, (5)
Due to the fully coupled nature among tkewave, thed

wave, and the ngwe_ll equations, rigqrous analyticgl Worlﬂ/vhereu andV are arbitrary complex scalars or vectors. In
on the GL equations is extremely difficult or even impos- ~ = ~ )

sible. Numerical simulations are indispensable in order tf" arbitrary element cell, I(S.’ D, andA be the shape_ func-
achieve a deeper understanding of thevave GL theory. tions that expand the fqnctmr& D, and A, respectively.
Earlier simulations® (based on the numerical-relaxation The orthogonality condition reads

method’) are limited to a low GL parameter. However, in a

+3(I;-11)D=0, ¥
[ 94di— ag+ §|S|?+|D|?>+ 11?]D + $S°D*

+(I—115)S=0,

realistic highT . superconductor, the GL parameter is rather (SIR(S,D,A))=0, 6)
high. Simulations of the mixed-state highsuperconductors -

might become difficult in the context of the usual discretiza- (D|R4(S,D,A))=0, (7
tion schemes due to the large ratio between the two relevant

length scaleg and\. On the other hand, although the relax- <K|Ra(S,D,A)>=O, (8)

ation method’ the authors used in their simulations is well

established for the purposes of calculating the equilibriumwhereRg(- - -), Ry4(- - -), andR,(- - -) are the residuals, i.e.,
properties, it has to be extended to simulate the vortex dythe left-hand sides of Eq$2)—(4) after the substitution of
namics. Motivated by these considerations, we resort to th&, D, andA expanded by the shape functions. After perform-
d-wave time-dependent GL equations and simulate them bing integration by parts with respect to the second-order dif-
an extension of an earlier method based on the finite-elemefgrentials(together with some of the first-order differentjals
method"® A preliminary announcement was made in an earin Rgq,, We have the weak form of Eq&2)—(4), namely,

lier short papef® The present paper, however, is self- the so-called Galerkin equations:
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S0+ as+ E(pst pa)|S) + (S| 2D?S* 1 1 4
< |t Qg 3(pS pd)| > < |3 > Bl3:§2((9x(9x_(9yay)+E(Ai_A§)+4SrDr+§DiSi!

+(IS| TS+ (1, —I1,) D)

; 1 4 4
| ~ A —— (X — — Y — N
I ; é S*n[HS+%(HX_Hy)D]dI, (9) Bl4 2K((9 AX AX(?X+Ay[?y J Ay)+ 3S|-D|+ 3DrSi,
— — 1 y 1 y 1 1
<D|‘9t_a’d+%Ps+pd|D>+<D|%SZD*> B15:; J Si+§‘“7 D; T (?xSi+§axDi +25A4
+(IID|TID + (I, — 1) S) +D,A,,
i f}g~ -
=—— O D*n-[1ID + (II,—I1,) S]dl, (10 1 1 1 1
K o Bi=—| #'S—5#Di|——| &S~ 54D | +2SA,

(A|9A+{S*TIS+ :D*TID + 3[ S* (I, — IL,) D —D,A,,

+D* (I~ L) S]+ H.c}) + (VX A|V X A) 1 4 8 2
Boo= ast — o+ A2+ 3 (pstpa) + 357~ 5(DF DY),
=(VXA[Ho) - fﬁﬂ-[ﬁx(VxA—He)]dL (12)
1 4 4
wherep.=|S|?, p4=|D|?2, and the contour integration of the ~B23= 5 (Axdx— At A= Aydy)) + 2SD + 2 SD;,
flux terms is performed over the boundary of the element

cell. Heren denotes the normal direction of the boundary. . 1, 4
Since we enforce continuity of the unknown flux terms B2a=%5=(J &x_&yay)"'E(Ax_Ay)+4SiDi+§SrDrl
across the boundaries between any two adjacent element

cells, the contour integrations cancel out after assembling all 1 1 1

of the element cells except at the boundary of the sample, 825:—( IS+ —ﬁxDr) - —(axsr+ —aXDr) +2SA,
where the specific physical boundary conditions are to be K 2 K 2
substituted(see below. In the following we shall suppress +DA,,

temporarily the flux terms everywhere.

To proceed, we linearize the nonlinear terms in the Galer- 1 1 1 1

kin equations using the Newton-Rampson scheme. In par- 526:—((9y8,—§(9yDr) ——(&ySr—EﬂyDr +2SA,
ticular, for arbitrary functionsU, V, and W in the right K K
bracket| - ), the productUVW is approximated as —-DiA,,

UVW=UNVW.+U NV (W—-W,)+UW.(V—V,) 5 1 ) 1 A2 4 1 02

=—— " — s agt s A%+ S pst spgt
+V W (U-U,), 3720 kT QAT R T3P S PdT

where the subscript denotes the value at the center of the n 3(35—32)
element cell. Decomposing the Galerkin equations in com- 3 ’

ponents, we have the element equations written in matrix

form: 1 . 4
Bas=5 (F"A—Akd) +D;Di+ 35S,
(il oa+BlW)=(ilF), (12

1 1
where ¢; is a real piecewise polynomial parent shape func- Bas=5—(9Di+"S) — 5—(9:Di+ 6xS) + DAt SA,
tion with i being the nodal index;
v=(S,S,D,,D; A, ,Ay)T is a six-component vector func- 1 1
tion representing, re;pectively, B Im(S), Re(D), BSGZZ(,;yDi_(gySi)_ Z(ﬁyDi_aySi)Jr D,A,—SA,
Im(D), A, and Ay; o is a 6X6 diagonal matrix with
011=02,=2033 145565 1; B is a 6x 6 matrix operator with 1 1 1 4 1
the elements B44:ZZakak_§ad+§A2+ §Ps+ §Pd+Di2

1 4 8 2 2

Bii=ast 7ﬁk0k+A2+ 3(pstpa)+ §Sr2+ §(Dr2— D), - §(Sr2—32),

1 8 4 1 1
812:;((9kAk_Ak(9k)+ §Sr5i+ §DrDi , B45:Z(&xDr+&xSr)_ Z(ﬁxDr‘FﬁXSr),
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1 1
B46:ﬂ(ayDr_’9ySr)_ Z(ayDr_(gySr)'l' DiAy—SAy,
1 . 1
B5525(‘5»/‘;'y+ €970y) + pst EPd+SrDr+SiDi )
1
B55=§(— Mo+ E&X(?y),

1 1
Bes=75 (" dx+ €5Vdy) + ps+ §Pd_(SrDr+SiDi)a

2

together with the symmet;; = B;rj (defined belowy; finally,
F is an internal “force” operatofarising from the lineariza-
tion of the nonlinear termswith the components

8 4 2 2 2
F1=|3(pstpa) + 3(Dr—DP)+2A%IS,
8 2_ a2 1 k
+3DDiSH(AAYD — L (Adk= I"AYS,
l X
- Z(Axﬁx—ﬁ At ﬁyAy—Ayﬁy)Di )
8 4 2 2 2
Fa=|3(pstpa) = 3(Dr—D)+2A%S
8 2_ a2 1«
+3DDiS (A= AYDi— (T A Ad) S
1 X
- Z(a AX—AX(9X+Ay(9y—¢9yAy)Dr ,
8 4 2 a2
Fs= §Ps+pd+§(sr_s|)+A D,
8 2_ 2 1 k
+3SSDi+(AAYS — 5 (Adk— "AYD;

2k
1 y y
— (A= P At A= AR)S,
8 4 22y, a2
Fa=|3psTpa— 3(S—S)+A%D;

8 2 2 1 k
+ 355D+ (A -ADS — 5 (A Adi)D;

1 y v
= S (PACAGH A= PA)S;,

1
Fs=[2ps+pat+2(SD;+SDi) JA - (SxS = S:xS)
1 1
+Z(DiaxDr_Dr(?xDi)‘l'ﬁ(&ngr‘FDiO”xSr

1 1
_SraxDi_ Dr’?xsi)_ anHe+ E‘]xy

11759

1
Fo=[2ps+ pa—2(SD+ SD)IA (53,5~ S4S)

1 1
+5-(Di3,D;~D3,D) = 5—(S3,D+D3yS,

1

1
~S9yD;=D.4,S)+ 5Het 5

Jy.

In the above equations, a repeated inétedmplies summa-
tion over thex,y componentsgX and d, denote partial de-
rivative operators acting on the left-hand and right-hand
nearest-neighbofunctions, respectiverIBiTj is the same as
Bi; except that the operato and d, are exchanged. In
obtainingB;; andF;, we have multiplied Eqg3) and(4) by

a factor of 1/2 in order to make the resulting matﬁxap-
parently conjugate. We have dropped, for simplicity, the sub-
scriptc for all of the functions inB;; andF; defined at the
center of the element cell, which are understood to be the
(time-dependentproperties of the cell(Note that some of
the properties are derivatives at the cell cent€he e terms

in B;; arise from the penalty functiona(V-A)? (e>0),
which is inserted into the integrand of Ed,) to enforce the
London gaugeV - A=0.18 (In the case of periodic boundary
conditions in bothx andy directions, theH, terms ande
terms can be ignoredMoreover, we have assumed that

H.=H.z is uniform over the sample and that a transport
currentd=J,x+Jy is applied.

The functionW® can be expanded in an element cell by the
real parent shape functionf as follows:

=2 Qéi, (13
whereQ; is a(time-dependentoefficient vector. After com-
pleting the integration over each element cell in E@) and
assembling all of the resulting element equations, we obtain
a set of ordinary differential equations, which can be for-
mally written as

(Co+Kra=f, (14)

whereC andK are usually referred to as the capacity matrix
and stiffness matrix, respectivelﬁ, is the global coefficient

vector, andf is the assembled force vector. The semidis-
cretized equatioril4) can be further discretized in time by
the usual implicit or explicit(backward or forwargd Euler
methods. The implicit scheme discretizes Efi4) at the
(n+1)th time step into

. 1.

ani=f— Hcén, (15)

Lotk
E+

which behaves as an overdamped system, converges abso-
lutely for an arbitrary time stept (>0) in the case of linear
evolution equation$’ and also proves to be extremely stable

in our (nonlineaj case(even if At~10). This is a desirable
feature if the system relaxes with a very long time scale.
However, the implicit scheme could be rather time-
consuming since the effective stiffness  matrix

Kes=(1/At)C+K has to be inverted at each time sielie
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to the time dependence &i). In the case of periodic bound- over an infinitesimal interval. Here ]~ means the jump of

ary conditions the problem is more severe since the relevaribe argument across the boundary. Note that when there are
matrix K o« is not banded at all and the usual matrix inversionMisorientations across the twin boundary or whenatend
scheme for banded matrices ceases to be efficient. In tHe @x€s of the superconducting crystalline are not aligned

explicit scheme, on the other hand, Ed4) is further dis-  With the operating frame, transformations with respect to the

cretized in time into spatial derivatives should be performed in the Galerkin equa-
tions according to the operating frame.

1.. S (1. -

—Can+1=f—(EC+K

At an 1 (16)

. Ill. EQUILIBRIUM AND TRANSPORT BEHAVIORS
where the effective stiffness matrix @t))C is constant and OF VORTICES
can be diagonalized trivially once and forever using the well-
known lumping methodsee, e.g., Ref. 19Thus the explicit
scheme could be desirable for large systdimgspectively For thed-wave superconductors, the equilibrium vortices
of the boundary conditions Unfortunately, the explicit and vortex structures have been studied recéhti§while
scheme converges conditionally at very smali<At,,, neither vortices in finite-size samples nor transport behaviors
(which could be determined from the extremum eigenvaluesf vortices have been examined with the GL equations. For
of the governing iteration equationsSee Ref. 19 for more finite-size samples the difficulty might lie in the implemen-
details on the assembling of the element equations and thation of the natural boundary conditions in the usual finite-
comparison between implicit and explicit Euler schemes. difference method. However, as discussed in the previous
In closing this section, we give a brief description for the section, the boundary conditions can be implemented with
implementation of the boundary conditions in a variety ofgreat ease in the present finite-element method. Another fea-
situations. There are two kinds of boundary conditions coniure of the latter method is a smooth and steady convergence.
cerned. The first is the so-called natural boundary conditionln this section, the vortices in both bulk and finite-size
which can be directly submitted into the force terms of thesamples are examined. Some of the results have been pre-
assembled Galerkin equations. Examples of natural boundasgented in a recent publicatibhand will be mentioned only
conditions are briefly in this paper.
R In Ref. 13, we found excellent agreement between the
n-[IIS+ %(HX—Hy)D]F=O, 17 results obtained by the finite-element method and by the re-
laxation methotf regarding the static single-vortex profile.
n-[TID + (IT,—11,)S]r=0, (18)  In particular, the fourfold symmetry as seen from the plots of
thes- andd-wave amplitudes was reproduced. Moreover, we
nx(VXA—Hg)|r=0, (199  have also simulated the vortex lattice for valuesxofip to
] 10, at which level the simulation by the usual algorithm be-
wherel” represents the sample boundary. Equatid7sand  comes not efficient enough. By using the implicit Euler
(18) guarantee that the supercurrent does not flow out of thgcheme for the time evolution of the coefficients in the finite-
sample, and Eq19) is the usual boundary condition for the element method, the iteration time step could be varied fairly
magnetic field. The second is the so-called essential boun%bitrarily up toAt=100, and the iteration would converge
ary condition, which prescribes the function values on the,fier only tens to hundreds of iteration steps whthbeing of
boundary. The periodic boundary conditions fall into this orger 10. Therefore, we can safely reach the steady-state so-
category. The degrees of freedom prescribed by the essentigkion of the GL equation and thus give reliable results re-
boundary conditions are eliminatgdior to calling a solver garding the equilibrium properties. For a fixed area of the
for the governing equations. In addition, in the presence of Qjt cell, we have obtained steady-state solutions as a func-
twin boundary, the properties of the system may chang@on of the lattice structure represented by the side-length
sharply across the boundary. For example, ratio r at variouss-wave channel parameter, (not plotted
_ here. In a realistic sample, the equilibrium vortex structure
®s,4= @500 Vs,a0(Y ~Yo) (20 corresponds to the optimal value othat minimizes the free
describes the variation ofts4 across the twin boundary energy. Our results showed that with increasing temperature
along the liney=y,. This property can also be incorporated (or «;) the vortex lattice would change from a square to a
naturally into the Galerkin equations as if the twin boundarytriangular structure, a phenomenon in agreement with earlier
were an extra boundary of the sample, with the discontinuitysimulations}™*?  predictions}* and seemingly some
conditions experiments? This effect has been ascribed to the fourfold
symmetry of the system: Restoring of the fourfold symmetry
lowers the potential energy while lifting the kinetic energy

A. Vortex structure

I 1 +
;n-[HS+ 2(I=I)D]-==VS, (1) and the field energy. With increasing, (or increasing tem-
perature below and nedr,), the s-wave component is sup-
i~ N pressed and plays less of a role. N&ar the system is well
;n-[HD +(IL—11,)S] == - VD, (220 described by the single order paramdierbeing equivalent
to a conventional isotropic system.
which follow immediately from an integration of Eqf2) Figure 1 shows the amplitudes of thewave and

and (3) along the normal directiom of the twin boundary d-wave component order parameters at=10 and



55 VORTEX STATE AND DYNAMICS OF A d-WAVE . .. 11761
0.0588 ----- 0172 —-
0.0471 ----- 0.138 -~
0.0353 (@) 0.104 -~ @
0.0235 --- 0.0697 -~
0.0118 ----- 0.0354 -----

___________ (b)
0.332 -~ 0.385 --- (b)
0.166 -~ 0.251 -

FIG. 1. Contour plot of the order parameters in an open bound- FIG. 2. Contour plot of the order parameters in an open bound-

ary, k=10, 1 X 10¢ sample under an applied field Bf,=1.5.(a)
The s-wave amplitude(b) the d-wave amplitude.

as=ag=1 in an open boundary ¥X10¢ square sample

ary, k=6, 11.£x11.4¢ sample under an applied field éf,=4.
(a) The s-wave amplitude(b) the d-wave amplitude.

s-wave component of the order parameter is seen to ride over

under an applied field ofi,= 1.5. A single vortex has pen- thed-wave component adiabatically. It should be pointed out
etrated the sample. While titlewave amplitude in Fig. (b) that the algorithm described in the previous section applies
is flat at the boundaries, treewave amplitude is enhanced at best for relaxation problems with no applied current, while in

the four corners of the sample. This is different from the casdéh® Presence of an applied current the vector potential would
of a dilute vortex lattice in a bulk sample, where the increase endlessly in the fixed gauge the absence of an

s-wave component is only enhanced around the vortesglectrostatic potentiagland one would soon lose accuracy in
core!™® Figure 2 is the same as Fig. 1 but in a thg iteration. The heuristic reason is as follows. A Iarg'e am-
11.46x 11.4¢ square sample withk=6 and H,=4. Eight plitude of the vector potential amounts to a large gradient in
vortices have penetrated into the sample. We see the sarfft€ Phasep (@nd thus in the real and imaginary pam$ the
corner effect as in Fig. 1. Moreover, the eight vortices have®'der parameter so as to keep the physically meaningful
arranged themselves in such a way as to form almost §auge-invariant phase—«[A-dr varying slowly in space.

square lattice, being consistent with the bulk property dis-This requi.res a smaller and smaller element c_ell_ular volume
cussed above. to approximate accurately violent spatial variations of the

relevant functions when the average vector potential
Ay=(A) becomes large. But we are using a fixed volume of
the element cells. To get around this problem, we have per-
In Ref. 13 we have also considered the evolution of theformed global gauge transformations after each step of itera-
vortices in a tapelike sample under an applied current alon§on,
the longitudinal direction of the tape. The vortices penetrate
from the right boundary, move in the direction of the Lorentz
force in the interior, and annihilate at the left boundary. The

B. Free vortex flow

A—A—-A,, QDHQD_K‘[ Aq-dr, (23
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linear law atB=0.5B,. The data for different at fixed

° field are scattered in a fashion with the magnitude of the
a © (reducedl resistivity increasing witheg. Moreover, the data

a o curve forag=0 is bent downward &~ B,, suggesting that

enhancement of the wave (at decreasing temperatiire

should stabilize the vortex state. Defining an effective upper

critical field B, as the field at which the flux-flow resistivity

reaches the normal state resistivity, we see clearly from Fig.

g 3 thatECz> B., for ag=0. The nonlinearity aB=0.5B,
for ag= may arise from the nonlinearity in the current-

1.0: T

0.8

0/ Pn

0.6

0.4 r1s¢

] voltage characteristics aroude: 0.1. Another aspect may be

] the boundary condition we have applied, which is in prin-
0.2 3 00000 =0 ciple inaccurate foa_sz % and atB~B,, where_the_vortic«_es

] amaoo 1 would be densely distributed ast@angular lattice in equi-

Aaaaa infinite librium (instead of a square lattice we have used at the out-
0.0 A LULRARRR L] LBARRRRREL LA AARRRLL LAGAREAREA} LA Seb.
0.0 0.2 0.4 0.6 0.8 1.0
B/B. C. Effects of twin boundaries

Next, we examine the effects of a twin boundary on the
FIG. 3. Magnetic field dependence of the free-flux-flow resistiv-vortices. To be clear off the sample boundary, we use again
ity at various values ofs. The solid line represents the conven- the periodic boundary condition with one flux quantum in a
tional law of corresponding states. 3.5\ X 3.5\ unit cell for k=3. We also apply a transport
currentJ in the x direction, in parallel to the periodic arrays
which is justified for adiabatic dynamics, e.g., when the ap©f twin boundariesiwith a transverse spacing &f=3.5\)
plied current is significantly lower than the depairing currentdescribed bya;= a; o+ V= 8(y —kL), where the subscript
Jeo (Ref. 20, so that the vortices can move steadijt | stands fors or d. Here we assume that the twin boundaries
should be pointed out that the periodic boundary conditiorare created by some chemical method in a parent crystal with
for the phasep should be twisted according)yin this case, N0 misorientations. Otherwise, two twin boundaries are
the instant spatial average of the electric field is simply giverneeded in one unit cell to apply the periodic boundary con-
by E=A,/At. Therefore, the transport behavior of the sys-dition. In Figs. 4 and 5,as0=aq40=1, Vs=0.1, and
tem can be simulated without difficulty. The above modifi- Vg=—0.5. (In fact, Vs is irrelevant as long a&s>0.) Fig-
cation for the dynamic case applies equally well in openures 4a), 4(b), and 4c) are contour plots of the-wave
boundary problems and periodic boundary problems. amplitude,d-wave amplitude, and the field distribution, re-
Since the boundary plays an important role in finite-sizespectively, atJ=J,=0.1. Along the twin boundary, the
samples, we would rather study the vortex transport usingl-wave order parameter is suppressed whilestveave or-
periodic boundary condition in order to mimic the bulk prop- der parameter is greatly enhanced. Due to the applied trans-
erties. We use a square unit cell of grid sizeport current, the vortex profile is displaced by the Lorentz
LyXLy=19X19, threaded by one or two vortices. The sideforce (in they direction. However, the vortex remains to be
length is varied so as to change the magnetic indudion pinned at the twin boundary up th=0.14 when the vortex
The GL parameter is set to be=3. Figure 3 shows th8 begins to move. On the other hand, as compared to the case
dependence of the free-flux-floWFFP resistivity for  in the absence of the twin boundaries, the order parameter
as=0 (diamond$, as=1 (crossel anda =0, respectively. profiles are deformed significantly, while the field profile is
In all the cases we fixedq=1. This is applicable since we only slightly changed into an ellipselike shape. This is an
can always rescale the order parameters and relevant vaimmediate consequence of the two well-defined length scales
ables. Recalling the temperature dependence of the origingl and N. A similar phenomenon has been observed in
as and ey described in Sec. |, we notice that these values of-wave superconductof$.Figure Ha) shows the evolution
ag correspond to, respectively, an extremely low temperaof the spatially averaged electric fiel at J=0.14 (dia-
ture, a temperature of roughl$.7—0.9T,, and a tempera- mondg and J=0.2 (crossey respectively. Evidently, the
ture in the immediate vicinity of the critical temperature. In twin boundary modulates the vortex motion. The resistivity
all cases we used a driving curredt=0.1. The current- is obtained fromp/p,=(E);/J where the average over time
voltage characteristics are linear at this level of current exis performed. Figure ®) shows the current dependence of
cept for fields close to the bare upper critical field the flux-flow resistivity. In contrast to the FFF resistivity, the
Beo= P /27 &2, The resistivity in Fig. 3 seems to be linear in flux-flow resistivity in the presence of pinning is highly non-
B at low fields. It is thus interesting to note that although thelinear in the applied current. Since we have not included the
thermal capacity of @-wave superconductor might vary as thermal noise in the simulations, we expect that
JB due to the same dependence in the quasiparticle/pn=avl—(J./J)? atJ=J., wherea is the asymptotic
spectrum:*’ the FFF resistivity seems to assume a behaviofeduced resistivity and, is the depinning currenfto be
similar to that in a conventiona-wave superconductor, i.e., determined, in a similar fashion to the case of a sinusoidal
the law of corresponding statep/p,B/B.,).2 However,  pinning potential in a more phenomenological overdamped
the B dependence of the resistivity begins to deviate from thamodel: X=F_+F,(X) with F_ as the Lorentz force and
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FIG. 4. Contour plots of(a) the s-wave amplitude,(b) the
d-wave amplitude, andc) the field distribution for a vortex in a
unit cell with a twin boundary. See the text for details.
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FIG. 5. (a) The time dependence & at J=0.14 (diamond$
and J=0.2 (crossey respectively.(b) The current dependence of
the flux-flow resistivity. The solid line represents a fitting at low
J. (¢) The pinning potential profile extracted frofa) for J=0.14.

(instead ofovert) and subtract by this average from tKe
dependence oE to find the X dependence of the pinning
force Fp(X), and hence the pinning potential
V(X)=—[F,(X)dX. Figure §c) is obtained in such a way
for J=0.14. The pinning potential profile around each dip

F, as the spatially periodic pinning force. The fitting for the mimics the standard result(X) ~ —Ko[2(X—Xo) ]+ const

J dependence gf in the vicinity of the depinning current in [with X being in units ofA and Ky(-) the zeroth-order
Fig. 5b) indicates indeed such a behavior and givesBessel functioh®® This indicates that the overdamped par-
a=0.26 andJ.=0.137. To bear out the pinning potential in ticle model still works well in thed-wave superconductor at

our case, we could perform an averageEobver X« [Edt

this level of applied current. However, with increasihghe
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FIG. 6. Contour plots ofa) the s wave, (b)
thed wave, andc) the local magnetic fieldd) is
a schematic plot of the location of the impurities
(bold star$.

resistivity increases violently, as is understandable since thmetry, while the field profile is hardly distorted. This is simi-
applied current is reaching the depairing currentlar to the case of a twin boundary mentioned in the previous
Jeo=0.3849?° Moreover, the asymptotic resistivity in the section. Moreover, thal-wave amplitude is slightly sup-
fitting curve of Fig. %b), 0.26,, is already significantly pressed by the impurities, while tlsewave amplitude is en-
larger than the corresponding resistivity0.05%,, in Fig. 3. hanced at the interfaces between the impurity siteh
Therefore, the presence of a twin boundary pins the vortex a4 ;.= —1) and the superconducting arésith e.q=1). Due

low J, on the one hand, and increases the asymptotic resigg the long-range coherence of the order parameter, however,
tivity at large J, on the other hand, presumably because thgne g wave retains an appreciable amplitude above zero ex-
twin boundary lowers the superfluid density from the view- et i the vortex core, and varies in space rather smoothly,
point of the two-fluid model. The latter fact is often ignored irrespective of the sharp changedf at the impurity bound-

tacitl_y in the overdampe_d model. Qur_finding suggests tha ries. In addition, we find that the maximutawave ampli-
caution should be taken in the application of the overdampe Lide in the sample is roughly 0.91 in the presence of the
model in which the asymptotic resistivity is assumed to be i . ' .
the corresponding FFF resistivity in disorder-free supercon'—mpt_mt'es’_ Wh'Ch should _be comparet_j to Linthe absence_ of
ductors. the impurities. The maximum magnitude of the superfluid
current(not shown herehas also been reduced to roughly
one-third of the intrinsic depairing current.

In principle, one could also obtain the current-voltage

Figures §a)—6(c) are, respectively, contour plots of the characteristics of a disordered superconductor. However,
s wave, thed wave, and the field of a vortex in a unit cell of since there are many channels for the vortices to move along
the same size and with the samas in Fig. 4, but with some in a specific realization of the disorders, the dynamics de-
randomly distributed pointlike impurities, schematically pends on the initial configuration of the vortices. To mimic
shown in Fig. &d) as bold starsag=—1 in the impurity  the bulk property, one would have to perform ensemble av-
cells while aq=1 elsewhere. Each impurity cell has dimen- erage over the realizations of the disorders. We shall not go
sions 1.ZX1.2¢ in space. The occupation of the impurities into these complications here, but merely present in Fig. 7
is p=0.2. From Fig. 6, we see that the order parameters arthe transport current dependence of the resistivity with re-

modulated by the disorders, which break the fourfold sym-spect to the realization in Fig(& in order to have a rough

D. Effects of disorders
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0.6 cerned. A more comprehensive study on the pinning effect of
0000 simulation R disorders as a function of impurity density as well as the
0.5 ] fitting ° magnetic field in al-wave superconductor awaits.
€ o]
~. 0.4 3 ° IV. SUMMARY
Q E °
0.3 o The time-dependent unconventional GL equations are
E analyzed by the finite-element method. The developed nu-
0.2 3 merical method is flexible to deal with both open and peri-
E odic boundary systems in equilibrium as well as dynamical
0.1 states in the presence of various types of disorders in
] d-wave superconductors. Simulation results of the single
0.0 qg g T vortex and vortex lattice in bulk and finite-size samples are
J(a.u presented. The FFF resistivity and the flux-flow resistivity in

the presence of a twin boundary or random impurities are
discussed. The low-field FFF resistivity turns out to obey the
law of corresponding states discovered in conventional su-
] o ) . perconductors, while the high-field resistivity reveals a no-
idea of the depinning current for the vortex motion. The solidjceaple effect of the-wave coupling on lifting the effective
line in Fig. 7 is a fitting for the low current resistivity, ypper critical field. The flux flow near and above the depin-
plpy=0.31y1—(0.03850)7, yielding a depinning current ping current in the presence of a twin boundary or random
J.=0.0385.(Note that the periodic boundary condition we jmpurities also assumes a conventional behavior, indicating
applied justifies this fitting. The quality of the fitting for low  that a model of overdamped particles subject to driving and
currents indicates that an effective overdamped particlgjnning forces is still applicable. However, our results raise
model for vortex motion is still plausible. However, the some doubts about the application of such a model since the
asymptotic resistivity (0.3d,) is again significantly larger asymptotic resistivity is almost one order of magnitude

than the corresponding FFF resistivity, and the depinningarger than the corresponding FFF resistivity in supercon-
current turns out to be drastically smaller than that in Fig.quctors without disorders.

5(b). The simulation data at larger current in Fig. 7 deviate
quickly from the fitting curve, and can also be attributed to
the same fact as in Fig.(, namely, that the current is

comparable with the maximum supercurrent around the vor- We are grateful to Professor Qiang Du for helpful discus-
tex in the absence of the driving current. Clearly, the impu-sions on the finite-element method. This work is supported

FIG. 7. The current dependence of the flux-flow resistivity. The
solid line represents a fitting at low
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