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Persistent current in disordered Aharonov-Bohm rings with interacting electrons
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The role of repulsive on-site and nearest-neighbor Coulomb interactions in disordered half-filled Aharanov-
Bohm rings is studied by world-line quantum Monte Carlo simulations. The diverse dependence of the equi-
librium persistent current on the couplings is found to relate systematically to the magnetic phase of the model:
the maximum charge stiffnegsr the persistent currentoexists with the phase-transition line between the
dominant charge-density-wave state and the dominant spin-density-wave state. The stiffness vanishes with an
increasing departure from the transition line. Thus in the disordered rings the Coulomb interactions can
enhance the charge stiffness over the noninteracting limit in such a way as to drive the system toward the
phase-transition regimgS0163-182606)01335-3

I. INTRODUCTION charge-density fluctuation could be smeared.

It should be pointed out that all of the above theoretical
The role of Coulomb interactions between electrons inand numerical studies gave a current magnitude in the diffu-

disordered metallic mesoscopic rings has been attractingive regime that is still significantly lower than the clean
much interest recently. The experiment performed on a ballimit for free electrons, even if the current could be enhanced
listic ring* showed an equilibrium persistent current drivenby interactions over the noninteracting limit. On the other
by an Aharonov-Bohn{AB) magnetic flux® =¢A-dl with  hand, the nearest-neighbor interaction was often ignored in
a magnitude of the current in agreement with the predictiorrenormalization-group studies. Since the latter is not at the
of Bittiker, Imry, and Landau€t. However, two other disposal of experimentalists, and the interplay between vari-
experiments;* believed to be in the diffusive regime, gave a ous couplings is nontrivial on the theoretical side, we per-
magnitude of the current one to two orders larger than whaform quantum Monte Carlo simulations for the extended dis-
would be expected from a simple theory of free electrons iryrdered half-filled band Hubbard model, in which the
disordered rings. It is natural to take Coulomb interactiongequction of the current by the disorder would be most se-

into account in order to resolve such a discrepancy. In §ere in the absence of Coulomb interactiéhdhe charge
weakly disordered one-dimensiondlD) spinless fermion  githess as a measure of the magnitude of the persistent

model, it was found from the Hartree-Fock apprommaﬂonc rrent, is calculated as a function of the Coulomb interac-

that the Coulomb intgraction _always suppresses the persistelriw ns at various disorder strengths. We find that at a fixed
current® In the localized regime of the same model, how- )

ever, the exact diagonalization calculations of Abraham an&ciiisorder strength the charge stiffness is a weII-FJefined func-
Berkovits show some enhancement of the curfevibre in- lon of the departur_e from the phase bqundary in the param-
terestingly, a recent exact diagonalization study by Berkovit£e SPace separating the charge-density-waw) domi-

and Avishi revealed a strong enhancement of the current jf2Nt Phase and the spin-density-wal@DW) dominant

the diffusive regime for 2D spinless systefa. similar ef-  Phase, being suppressed deeply in both phases. According to
fect was also found by the Hartree-Fock approximation forthis picture, C_:oulomb interactions enhance the curren_t_only if
2D (Ref. 8 and 3D(Ref. 9 spinless systems. The spinless they help drive the system toward the phase-transition re-
model is relevant when the separation of the spin and charg@ion. (The results in Ref. 11 turn out to be consistent with
degrees of freedom is fairly complete. Otherwise, one needdis picture) The distinctively different behaviors of interac-
to consider the original disordered Hubbard model to studyions in the weak and strong disorder limits are also dis-
the interplay between the disorder and interacttdn$Re-  cussed. The structure of this paper is as follows. After an
cently, it was found from renormalization-group calculationsoutline of the model and the simulation method in Sec. Il, the
of the Luttinger-liquid model that, with the spin degree of simulation results are presented and discussed in Sec. Ill.
freedom included, the repulsive on-site interaction also enFinally, Sec. IV contains a summary of this work.

hances the current beyond a critical disorder strength over

the noninteracting limit®'! Giamarchi and Shastry also dis-

cussed thg extended Hu_bbard model_with on-site gnd the II. MODEL AND SIMULATION METHOD
nearest-neighbor interactions, respectivVélyThey conjec-

tured that the currer(represented by their stiffness; see also The extended repulsive Hubbard model on a ring of size
below would be enhanced by interactions whenever thel threaded by an AB fluxp is described by the Hamiltonian
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, Equation(2) is a straightforward generalization of the for-
H=—t> (€%l ,Ci,+Hc)+UX ny ;| mula derived for the spin-less fermions in Ref. 17 and an
e ' analogous formula for bosons in one-dimensional rifigs.
also bears a close resemblance to the expression in the
VY ninat Y &g, (1) framework of a one-dimensional Luttinger-liquid thedry.
' ' Ref. 19. It should be pointed out that while we always have
_ . . P(—w;,—w)=P(w;,w,), the symmetry P(w,,— w5
wThere o=—o==1 denotes spin-up and spin-down StlateS;z(P(wL,w;)i)is br(okTen l|21 the pre)gence gf ((:oulombﬁcou-
¢, and Gio create and annihilate spn-fermions on site  jing This means thaP(w; ,w,) can only be factorized as
;N »=C¢; ,Ci,, i the density operator for spim-fermions;  p. (w,)P (w)) for free fermions. In general, there will be
0=2mwP/LD,, with do=h/e being a flux quantum; sjgnificant sign cancellation for arbitratyl,, and ¢ in the
ni=n; ;+n;  is the total density operator at siteand fi-  symmation of Eq(2), which imposes too stringent an accu-
nally, € is the quenched random site energy which is asracy requirement on the computation of the winding number
sumed to be uniformly distributed in the interyat W,W],  djstribution. However, the situation is simplified in the zero-
whereW is a measure of the disorder strength. In the absencgagnetization sectov (=M, (or in any other sector
of disorder and in the half-filled band with zero rnt':':lgne'[iZE':l-\Nhere|\/|T anc“\/|L enjoy the same pa”ty, however, fo”owing
tion (or with equal spin-up and -down fermiopsas mean-  conventiot® we shall limit ourselves to the zero-

field theory predicts a zero-temperature phase transition benagnetization sectpr The free energy is minimal at
tween the CDW and SDW phaseslat=2V. More elaborate = ¢ =2ns (or 2na+ ) when M, is odd (or even. At
guantum Monte Carlo simulatiohsshowed that the transi- @, we can define a charge stiffness as

tion line is slightly above the mean-field transition line in

favor of slightly largerV, and that the transition changes L 22

from second order to first order beyond a critical coupling D.=2 —F oo ((W;+w )2y =(w?), (3)
U.~ 3 (henceforth we measure all energies in units)ofOn 2 d¢ R

the other hand, it was shown in Ref. 10 that the suppression

of the current by the on-site energy in the absence of the '\ here the second proportion follows from a Taylor expan-
nearest-neighbor enerdy is the most severe when the sys- sion of Eq.(2) near¢,. The charge stiffness provides an

tem is close to the half-filled band. Therefore it is interesting, o ational definition for the persistent current for small val-

to note what the behavior will be with finit¢ and finite ues of flux changee (| 5¢|< ) with respect tag, , given

disgrdervvl. based i i M asJ=2D.d¢ (in units ofl;=et/LA). Although knowledge
ecently, based upon earlier world-line quantum Mont€,¢ ye \yinding number distribution provides the global phase
Carlo method$?-®we have developed a scheme to calcu-

I he alobal bh d q fth . dependence of the persistent curtémts well as the charge
ate the global phase dependence of the persistent current a&ﬁﬁness, the computation is too expensive to change the to-

fixed tgmp(_arature.fofermionsin one-dimensipnal rings. ological winding number of the checkerboard configuration
The reliability of this scheme has been established by checkt 5 i, of the lattice is not small. Instead, to determine

ing it against rigorous known results for noninteracting spin-D we borrow a page from Ref. 15, so that we only need to
. C . ’

§vork in the zero winding number sectow{=0). Consider

-y . o . 7BH
composition of the canonical partition functigh= Tre the pseudocurrent

(the checkerboard having a topology of a tgrukhe free
energyF can be expressed as a functional of the so-called

(normalized winding number distributiorP(w; ,w/): T T):iE RN o(7+ A7) =i o()], (4)
1 - 1
F=- Ean— E'” > P(w;,w) where R; is the space coordinate of thi¢h site, 7 is the
Wi, W

imaginary time along the Trotter direction of the checker-
board, and a periodic condition in the space direction is im-
><exp{i2 W+ (Ms=1)7] ¢, (2)  plied. Equation(4) measures the clockwise displacement of
7 the center-of-mass of the fermions during one imaginary-
_ time step. Then the averagav®) is proportional to the
whereZ is an auxiliary partition function with elements be- extrapolated zero-frequency limit of the Fourier trans-
ing positive-definite and independent of the AB phdse, form of the “current-current” correlation function

o=27d/d, is the reduced phase, anil, and w, C(T):<j(0)j(7-)>_20

(=0,£1,%£2,...) are theparticle number and the winding  To check the above simplified algorithm for the stiffness,
number contributed by ther-spin fermions, respectively. one should in principle compare the results with those of the
The winding number distribution is sampled accordingZto exact diagonalization. Since the latter results are presently
instead ofZ itself (which might include complex weighting not available to us for extended Hubbard systems, we would
terms in the checkerboard decomposition scheme in the pregther compare the Monte Carlo results with rigorous results
ence of the AB phagealso being independent of the mag- for clean and small systems with free electrons. This should
netic field’>'’ The response of the free energy to a finite be sufficient to show whether the simplified algorithm works.
Aharonov-Bohm flux is a measure of the equilibrium persis-We note that the same algorithm has long been used to
tent current given byl= —(e/#)(d/do)F (). evaluate the superfluid density in bose systdsee, e.g.,
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TABLE I. Charge stiffness vs the inverse temperature in a four- 15
site ring with four electronsD. and DQ"C are the rigorous stiffness , seess =0
and the Monte Carlo stiffness, respectively.

B 2 3 4 8

D, 0.6345 0.7010 0.7066 0.7071
DM®  0.636-.04 0.670-0.03 0.69%0.03 0.701-0.03

Ref. 15. Table | shows the stiffness versus inverse tempera-
ture in a four-site half-filled ring with free electrons, where
D, and DY are the rigorous stiffness and the Monte Carlo
stiffness from the correlation functio€(7) limited to the
zero-winding-number sector, respectively. Clearly, the
Monte Carlo results methods agree with the rigorous results.
The statistical error is lower than the errors given in the
table, which represent the uncertainties of the zero-frequency
extrapolation. We used imaginary time steps=3 and FIG. 1. The charge stiffness vs the on-ditein the absence of
AT:% in the Monte Carlo simulations, respectively, but the nearest-neighboV at various levels of disordersW=0
found no discrepancy larger than the extrapolation uncericircles, W=1 (squares W= 2 (triangleg, W=3 (diamonds, and

tainty. W=4 (starg. Lines are drawn for a guide to the eye.
To obtain a rough idea of the magnetic phase of the sys-
tem, we shall also need the CDW structure factor ll. SIMULATION RESULTS AND DISCUSSIONS

In this section we present the charge stiffnd3s)(versus
1 ) the Coulomb interactionsU and V) and the disorder
S(q)= [Z exdid(Ri—R)Kninj), () strength V) in rings of sizeL =8 in the half-filled band and
! zero-magnetization sector. While the results for larger rings
are briefly discussed at the end of this section. Up to 20
and the zero-frequency SDW susceptibility realizations of the quenched disorders have been used to per-
form the disorder averages. The errors of the data in the
108 following, obtained by _di\(iding the 20 diso_rder ensemb_les
x(q)= EJ dTZ exdiaq(Ri—R) N[N (1) —n; (7] into four groups, are within the corresponding symbol size.
0 i The systematic error of the zero-frequency extrapolation for
D. is fairly less than 0.1, and is not explicitly shown in the
X[n;,1(0)=n;  (0)]). 6) foTIowing ?‘/igures. P
Figure 1 shows th&) dependence dD. at variousW in
If we scale the spatial size and the inverse temperatuge  the absence of the nearest-neighbor interactiof=Q).
by the same factois(q= =) will diverge linearly withL if ~ There is an evident monotonic reduction®f with increas-
we are in the CDW phase characterized by the predominaring U in the clean ring, in contrast to the irrelevance of the
double occupation of fermions at every other site, andnteraction, as one would expect in an infinite system due to
x(g=) will diverge linearly in the SDW phase character- the Galilean invariance. This is understandable from the fact
ized by the predominant single occupation of the fermions athat even in the clean lattice model, the center-of-mass mo-
each site. By comparing(m) and (=) as functions of the mentum is conserved only up to the reciprocal-lattice vector.
parameters, we can determine the transition line qualitaWith the inclusion of impurities, there exists a critical on-site
tively. Of course, to determine the transition line more accu-couplingU.(V=0,W) beyond which the charge stiffness is
rately, one should study the scaling behavior of the correlaenhanced by the disorder over the clean limit. Furthermore,
tion functions versus different lattice sizes. However, weat a fixed disorder strength we see tBatdevelops a maxi-
shall see that, combining with the correlation functions, onemum with increasingJ from zero, and the maximum be-
can readily determine the transition line in finite systems bycomes broader for stronger disorders. In Ref. 10, from
investigating the distinctive behavior &, without going renormalization-group calculations the authors were able to
into scaling analysis, which is too expensive for us. identify a critical disorder strengtV/.(V=0) beyond which
The quantum Monte Carlo simulations give the finite-the on-site interaction always enhances the charge stiffness
temperature charge stiffness. In order to probe the groundsver the noninteracting stiffnegsf. Ref. 11. (Note that in
state property we have to go into inverse temperatures, scaleir work the increase of the effective disorder is reflected
ing linearly with the sizel. of the ring. We usg8=L inthe by enlargement of the system size at fixed bare disorder
following simulations. That the results represent the zerostrength, which is not plausible for us in the Monte Carlo
temperature limit is checked by halving and doubling thesimulations due to limit computation resouicg&he curve at
inverse temperature. Our experience showed@al gives W=4 in Fig. 1 clearly shows such a tendency, as it increases
an already reliable ground-state limit at least for the presenmonotonically in the parameter range we considered. How-
purposedcf. Ref. 13. ever, we are unable to go into stronger disorders since the
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FIG. 2. (a) The charge stiffness Vg at various values of the FIG. 4. The same plot as Fig. 2, except thid& 2.

on-site repulsionlJ =0 (circles, U=1 (squarep U =2 (triangles,

U =3 (diamond$, andU =4 (starg. The disorder strength is fixed
at W=0. (b) The corresponding CDW structure fact®()
(dashed line connectgdnd the zero-frequency SDW susceptibility
x(7) (solid line connected

tion is seen to enhandsuppressthe CDW (SDW) correla-
tions in all cases. On the other hand, the CDW correlations at
V=0 increases steadily with increasing disorders,Uuéen-
ders theS(7) smaller at each level of disorders. Therefore it
charge stiffness would be lower than our numerical resoluiS likely that the CDW correlation may be dominant at finite
tion (in the zero-frequency extrapolatijon but smallU even atv=0 in the presence of strong disorders.
Figure 2a) shows the charge stiffness versus the nearestSWitching onV would drive the system deeper into the
neighbor interactiorV at fixed U in clean rings yv=0).  Pinned CDW phase. This explains why there are no peaks at
Obviously D, develops a peak at somé=V (W=0uU), SmallU in the left panels of Figs. 3-5.
beyond whichD. is suppressed by. Figure Zb) shows the From the body of data in the above figures and the peaks
corresponding CDW structure factS(r) (dashed line con- for D¢, we are able to draw a schematic phase-transition line
nected and the zero-frequency SDW susceptibilig(r)  (due to the limited numerical resolution availabie the V-
(solid line connected We observe that/ (W=0U)~U/2 U parameter space at each level of disorders in Fig. 6. Below
consistently follows the on-set value f at which S(7) ~ (@bove the transition line, the system is in the SDWDW)
[ x(7)] begins to increas@ecreasesharply with increasing dominant phase. The transition line shifts towards the right-
V from V<U/2. This strongly signals that the maximum Pottom side of the/-U parameter space and intersects with

charge stiffness coexists with the phase transition line. Acthe V=0 axis at elevated) ;(W,V=0) with increasing dis-
cording to this picture, the transition point ¥f at largeU ~ order. This is understandable from the fact that while the

can be estimated from Fig(& to be larger than the mean- repulsive qn—site coupling competes with the disorder, the
field valueV=U/2 (e.g., 2<V<2.5 atU=4), in accordance n_earest-nelghbor coupling helps the fgrmmns to form a
with the elaborate results of Hirséh.Thus our simplified Pinned CDW state. AV=0, the competition between the
determinations of the transition line is justified for qualitative disorder and the on-site c2:oupl|ng should come into balance at
purposes. roughly Uo(W,V=0)~(e) =W/ 3.

In the presence of disorders, there will be no |ong_range_ Collecting the above results, we conclude that at a fixed
ordered magnetic phases’ as the CDW can be pinned by tmgsorder strength, the charge stiffness will be enhanced by
disorders to form a pinned CDhW phase_ However, the dislhe Coulomb interactions which help drive the system to-
tinct behavior of the stiffness and the correlation functionsward the phase-transition regime. Therefore, at lajgand
can still be used to quantify the dominant correlation in themoderateW, the charge stiffness will be lifted essentially by
disordered systems. Figures 3-5 are the same plots as Figazsmall nearest-neighbor couplivg(e.g.,V<U/2), without
except that the disorders are included\&s=1, 2, and 3, Which the system would be deep inside the SDW phase with
respectively. We see the same qualitative behavior of th@ vanishing stiffness. The above picture is also consistent
charge stiffness versug, except that at the same level of With the results in Fig. 1: at a finite disordéand with
U, V(W,U) shifts to smaller values with increasing disor- V=0), increasingu from zero drives the system from the
der, and there is a significant reduction of the maximumpinned CDW phase to the SDW phasee Fig. 6, and one
value of D, at elevated disorder§With increasingW the  obtains a maximum stiffness in the transition regime.
peaks at lowelJ disappeay. The nearest-neighbor interac-

X().5()

FIG. 3. The same plot as Fig. 2, except thiét1. FIG. 5. The same plot as Fig. 2, except thét 3.
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FIG. 7. The stiffness v¥ in a 32-site ring and g8=16 and at
various values of on-site repulsiod,=0 (circles, U=1 (squarey
U=2 (triangleg, andU =3 (diamonds. (&) W=0. (b) W=1.

presence of interactions, the disorder effect enters the stiff-

ness as./&,<LW?, where £,~105W? (when W<27) is

the so-called localization lengthindeed, from Figs. 2—5, the
FIG. 6. A schematic plot of the phase-transition lines for theglobal maximum oD, at fixedW agrees approximately with

rings at fixed values of disorder strengths. The dashed line is thghe noninteracting value in disordered systems, D&.ax

mean field transition line in clean rings. xe~%, This indicates that inclusion of Coulomb interac-

tions is still not enough to compensate for the disorder effect,

We can qualitatively understand the suppression of th%md thus cannot explain the anomalously large current ob-
charge stifiness at both sides of the transition line by €Mserved in dirty rings. However, since the reduction of the

p:oy|n? qtdrppr:(tet ?igur’?ent i_nV|s|[one<3hbyCI-[l)|\r/§é‘Hrr]1 the persistent current by the disorders is most severe for nonin-
clean fimr, fignt at e transition fine, the LD phase Canteracting fermions, the possibility of the enhancement by the
tunnel freely to the S.DW phase by the formgtlo_n of d_roplets oulomb interactions discussed in this work is promising,
Efjgvzztateﬁ andtxlc? vers_tg. The dfroplet scljze IdS arbltrgr%/ nd we expect that the stiffness could be lifted higher by the
c~o, Where the transition IS of second order, and NaSysa actions over the noninteracting limit in disordered rings

to be larger th"’_“_‘ a_c““C?' SizBe at stronger coupling it jower filling fractions(i.e., <0.5). Work in this direc-
where the transition is of first order. Recalling the checker-

i tion has been undertaken.
board decompositiol we note that the strong spontaneous

tum fluctuati the 1 ition line bet the t In closing this section, we would like to point out that our
quantum fluctuations on the transition lin€ between the WQq g 1i5 are limited to the zero-magnetization sector, although

phases corresponds to the ab|2I|ty to give rise to a Ia_rge avethe algorithm applies equally well in other sectors as long as
age squared winding numbgw®) and thus a large stiffness the numbers of spin-up and -down electrons have the same

[see Eq.3)]. The first-order transition beyonid=3 in the o "Our choice is conventional. It is in fact plausible for

clean Iimit_ also explains the decreasing peak value®of |, ninteracting systems where one would have particle-hole
beyondU =3 in Fig. 2a). This effect is more prominent in gy metry but is only approximate for interacting systems.
Fig. 7(a), where the stiffness versus the Coulomb interacrhe stiffness may be sensitive to the magnetizatfdanfor-

tions is shown for a ring with. =32 and atg=L/2=16. tunately, the present world-line Monte Carlo method is un-
With increasing departure from the transition line, tunnelinggp e 1o deal with variable magnetization self-consistently.

to the other phase becomes more and more energeticakiy,ig may be a drawback of the world-line Monte Carlo

21; .
costly,”i.e., alarger and larger gap ensues for the low-lyingmeoq jtself. Nevertheless, we expect intuitively that the
excitations, so that we see a decreasing stiffness on botly, \nd state of an even number of fermions in the fing
sides of the transition line. From a scaling point of view, wegp5u1d be well approximated to lie in the zero-magnetization

thus expect thaD . vanishes beyontd =3 in aninfinite and  gactor as long as the Zeeman energy could be ignored, as
cleanring, irrespectively of the nearest-neighbor coupling. o< been done in this work.

This seems to be a pseudoeffect of the Hubbard model, and
needs further study. With the help of disorders, it is believ-
able that the droplet size can also be arbitrary in the vicinity IV. SUMMARY

of U=3, depending on the local realization of the disorders. . ) o
In other words, the critical point/, would be larger in the We have studied the charge stiffness in disordered half-

presence of disorders. The above scenario is consistent wiffi€d Hubbard rings with electrons interacting via both on-
Figs. 4a) and 5a), where the peak valuéf it exists) of site and nearest-n_elghb_or _Co_ulomb_lnteractlons. We have
D, does not decrease with in the range we considered. To showed that there is an intrinsic relation between the charge
further support the above viewpoint, in Figiby we present st!ffness and the magnetic P.has‘? of the system: The charge
the stiffness for the same parameters as in Fig) @cept  Stiffness peaks at the transition line.

that W=1. We see in Fig. (b) that the peak value for

U_=3_is <_:om_patible with that ofJ<3, in contrast to the ACKNOWLEDGMENT
situation in Fig. Ta).
The global amplitude of the stiffness in Figiby is close We acknowledge the support of an RGC grant of Hong

to that in Fig. 4a). This might suggest that, even in the Kong, under Grant No. HKU 262/95P.
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