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We propose a different scheme to realize holonomic quantum computation with rf superconducting quantum
interference devicesSQUIDd qubits in a microwave cavity. In this scheme associated with the non-Abelian
holonomies, the single-qubit gates and a two-qubit controlled-PHASE gate as well as a controlled-NOT gate can
be easily constructed by tuning adiabatically the Rabi frequencies of classical microwave pulses coupled to the
SQUIDs. The fidelity of these gates is estimated to be possibly higher than 90% with the current technology.
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Since the proposal of holonomic quantum computation
f1g, research on quantum gates based on Abelian or non-
Abelian geometric phases has attracted significant interest
both experimentally and theoreticallyf2–10g. It is believed
that these quantum gates could be inherently robust against
some local perturbations since the Abelian or non-Abelian
geometric phasessholonomiesd depend only on the geometry
of the path executed. On the other hand, quantum informa-
tion processing using Josephson-junction systems coupled
through a microwave cavity has been paid particular atten-
tion recentlyf11–19g.

In this paper, we propose a different scheme to achieve
holonomic quantum computation using superconducting
quantum interference devicessSQUIDsd in a cavity. Based
on the non-Abelian holonomies, two noncommutating
single-qubit gates and a two-qubit controlled-PHASE gate as
well as a controlled-NOT gate are realized by tuning adiabati-
cally the Rabi frequencies of classical microwave pulses
coupled to the SQUIDs. The distinct advantages of the
present scheme may be summarized as follows.sid The
energy spectrum of each SQUID qubit may be adjusted
by changing the bias field;sii d the strong-coupling limit
g2@ sgkd may be easily realized, whereg is the coupling
coefficients between the SQUID qubit and the cavity field,k
the lifetime of the photon in the cavity, andg the lifetime of
the excited state of the SQUID qubit;siii d the decoherence
caused by the external environment can be significantly sup-
pressed;sivd the fidelity of these gates may be higher than
90% with the current technology.

We consider an rf SQUID with junction capacitanceC
and loop inductanceL in a microwave cavity at a sufficiently
low temperature such that the SQUID works in the quantum
regime. The Hamiltonian of the rf SQUID can be written as
f15,20g

Hs =
Q2

2C
+

sF − Fxd2

2L
− EJ cosS2p

F

F0
D , s1d

whereEJ is the maximum Josephson coupling energy,Fx the
external magnetic flux, andF0=h/2e the flux quantum. The
conjugate variables of this system are the total chargeQ and
the magnetic fluxF which satisfy

fF,Qg = i". s2d

It is well known that in general the Hamiltonian of Eq.s1d is
quite similar to that of a particle moving in a double well
potential. By changing the device parametersC, L, and the
control parametersEJ, Fx, one can control the structure of
energy levels in the SQUID.

Let us address as3+1d-type system with three lowest lev-
els sua0l , ua1l , ugld and an excited levelsueld in the SQUID
ssee Fig. 1d. In the system, theugl↔ uel transition with
energy-level differenceveg is coupled to a one-mode cavity
field with frequencyvc and theuail↔ uel transition with the
energy-level differencevei si =0, 1d is coupled to the classi-
cal microwave pulse with the magnetic component as
Bisr ,tdcossv0td where vi is the energy difference between
the statesuail and uel and Bi can be adiabatically changed.
We may ensure that the “three-photon resonance” condition,
i.e.,

veg− vc = vei − vi = D, s3d

is satisfied. In the interaction picture, the Hamiltonian of the
system can be written as

FIG. 1. A schematic diagram of the energy level in the SQUID
coupled to the single mode cavity fieldswith coupling constantgd
and two microwave pulsesswith coupling constantsV0 and V1d.
The three-photon resonance condition is satisfied andD is the
detuning.
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H = Duelkeu + V0stduelka0u + V1stduelka1u + gauelkgu + H . c.

s4d

whereasa†d is the photon annihilationscreationd operator of
the cavity field. Here the coupling coefficientsg can be writ-
ten as

g = L−1Îvc/s2m0"dkguFuelE
S

Bcsr d ·dS, s5d

wherem0 is the vacuum permeability,S the surface bounded
by the SQUID ring, andBcsr d the magnetic component of
the cavity fieldf15g. The Rabi frequenciesVistd si =0, 1d are
proportional to the matrix elementskaiuFuel f15g. It is
pointed out that the detuningD of the SQUID can be ad-
justed by changing the bias field.

Regarding single-qubit operations, our scheme is similar
to that proposed in Refs.f4,5g. We choose the statesua0l and
ua1l as the computational basis andugl as an ancillary state.
WhenV0=V1=0, the statesuailu0lc si =0, 1d span an eigens-
pace of the Hamiltonians4d with zero eigenvalue, whereu0lc
is the vacuum state of the cavity field. If the cavity is cooled
to zero temperature and the quantum gate operations are
switched off, i.e., the Rabi frequencies of all the classical
microwave pulses are set to zero, the stateaua0l+bua1l of
the qubit is isolated from the state of the cavity and does not
change with time. When the Rabi frequenciesV0 and V1
change adiabatically along a close pathC in the parameter
spaceM and return the point corresponding toV0=V1=0
swe refer to this point asOd, an initial state

uC0l = saua0l + bua1ldu0lc

of the qubit-cavity composite system evolves according to
the ruleuC0l→UsCduC0l f5,21g. Here,

UsCd = P expE
C

A s6d

is the non-Abelian holonomy associated with the pathC and
A=omAmdlm is theU s2d-valued connectionsnoe-formd ex-
pressed as

Am
i j = kDisldU ]

]lm
UDjsldl, s7d

wherehlmj are the coordinates of the parameter spaceM and
uDisldl si =0, 1d the basis of the eigenspace of the Hamil-
tonian s4d with zero eigenvalueshereafter we refer to the
basis as dark statesd. Since the holonomyUsCd is a unitary
transformation in the space spanned by the statesua0lu0lc and
ua1lu0lc, it can actually be considered as a unitary transfor-
mation that only acts on the qubit state which is the super-
position of ua0l and ua1l.

Without loss of generality, we assume that the coupling
coefficientg is real and positive, and choose

V0 = g tansjdeif0,
s8d

V1 = g tansudsecsjdeif1,

whereu, jP f0,p /2d andfi P f0,2pd si =0, 1d. We take the
anglesj , u , f0, andf1 as the coordinates of the parameter
spaceM. The dark states of this invariant subspace spanned
by the stateshuailu0lc, uglu1lc, uelu0lcj of the Hamiltonians4d
can be written as the vector functions inM:

uD0l = cossjdua0lu0lc − sinsjdeif0uglu1lc,

uD1l = − sinsudsinsjdeisf1−f0dua0lu0lc

− sinsudcossjdeif1uglu1lc + cossudua1lu0lc. s9d

We wish to point out that our choices of the coordinates and
dark states are quite different from those in Refs.f4,5g. Here,
the dark statesuD0l and uD1l are single valued at the point
Osu=j=0d, e.g.,uDisOdl= uailu0lc.

It is well known that any single-qubit gate operation can
be decomposed into the product of rotations about axesz and
y: Rzswd=expsiwszd and Ryswd=expsiwsyd, wherew is the
angle,sz andsy are Pauli matrices defined as

sy = isua1lka0u − ua0lka1ud,

s10d
sz = sua0lka0u − ua1lka1ud.

Therefore we need only to show the realization ofRzswd and
Ryswd. To realize the gateRyswd, we let the phasesf0=f1

=0. TheU s2d valued connections can be derived as

Aj = − i sinsudsy, Au = 0. s11d

After an adiabatic evolution along a closed pathC in the
parameter spaceM, the related unitary transformationsho-
lonomyd is just the rotation about y axis UsCd
=expfiwsCdsyg, where the angle

wsCd = − SE
C

sinsuddjD s12d

is dependent of the loopC. To achieve the gateRzswd, we can
setf0=j=0 si.e., V0=0d and changeu andf1 adiabatically.
In this case, the nonzero connection is

Af1
= i

1

2
sin2suds1 − szd. s13d

As a result, the holonomy associated with a close pathC can
be written as

UsCd = e−ixsCdeixsCdsz, s14d

where

xsCd = −
1

2
E sin2suddf1. s15d

It is easy to see thatUsCd is just a rotation about thez axis
up to a global phase.

We now illustrate how to realize the controlled-PHASE

gate as well as the controlled-NOT gate via the non-Abelian
holonomy in the present system of SQUID qubits, which is
the main result of the present paper. At this stage, we con-
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sider the s3+1d-type energy-level structure of two rf
SQUIDs in a microwave cavity. We assume that theuel↔ ugl
transition of each SQUID is coupled to the single mode cav-
ity field. Also, we set the level spacingvei between the states
suel, uail, i =0, 1d to be different. The transitionsuel↔ ua0l sor
ua1ld in both SQUIDs are coupled to two distinguishable
classical microwave pulses with different frequenciesf15g
and the three-photon resonance condition of each SQUID is
set to be satisfied. The Hamiltonian of such SQUIDs in a
microwave cavity may be written as

H = o
l=1,2

fV0
slduellka0u + V1

slduellka1u + H.c.g

+ o
l=1,2

fgsldauellkgu + H.c.g + o
l=1,2

Dslduellkeu. s16d

Here

Dsld = veg
sld − vc

sld = vei
sld − vi

sld s17d

is the detuning of thelth SQUID andVi
sld is the Rabi fre-

quency of the microwave pulse coupled to the transition
uell ↔ uaill of the lth SQUID.

We still choose the statesuaill i =0, 1 as the computational
basis of thelth qubit. The two SQUIDs are coupled indi-
rectly via the single mode cavity field. As in the previous
discussions for the single-qubit gate case, it is seen that when
all of the Rabi frequenciesVi

sld of the classical microwave
pulses are set to zero and the cavity is cooled to zero tem-
perature, the two-qubit state, which can be written in terms
of uail1uajl2, is isolated from the state of the cavity and does
not change with time. In the following, we show that the
holonomy, associated with the adiabatic evolution ofVi

sld

along a closed pathC starting from the pointVi
sld=0 swe also

refer to this point asO in the parameter spaceM, can be used
to achieve a controlled-PHASE gate or a controlled-NOT gate
of the two qubits.

We first choose

V0
sld = gs1dtanfjsldgeif0

sld
,

s18d
V1

sld = gs2dtanfusldgsecfjsldgeif1
sld

sl =1,2d, and takejsld , f0
sld , usld, and f1

sld as the independent
coordinates in the parameter spaceM. To realize the
controlled-PHASE gate, we setusld=f1

sld=f0
s1d=0. This means

that we set the Rabi frequenciesV1
s1d and V1

s2d to zero and
only changeV0

s1d and V0
s2d adiabatically. It is found that the

subspace spanned by the states

uail1uajl2u0lc,uail1ugl2u1lc, ugl1ugl2u2lc,

ugl1uail2u1lc,uel1uail2u0lc, uail1uel2u0lc, s19d

uel1ugl2u1lc,ugl1uel2u1lc, uel1uel2u0lc si, j = 0,1d

is an invariance subspaceswe call it as the subspaceId of the
Hamiltonian s16d. After some tedious derivations, the dark
states, i.e., the basis of the eigenspace of Hamiltonians16d
with zero eigenvalue, can be obtained as

uD00l = L00
−1fsinfjs1dgsinfjs2dgeif0

s2d
ugl1ugl2u2lc

− Î2 cosfjs1dgsinfjs2dgeif0
s2d

ua0l1ugl2u1lc

+ Î2 cosfjs1dgcosfjs2dgua0l1ua0l2u0lc

− Î2 sinfjs1dgcosfjs2dgugl1ua0l2u1lcg,

uD01l = cosfjs1dgua0l1ua1l2u0lc − sinfjs1dgugl1ua1l2u1lc,

s20d
uD10l = cosfjs2dgua1l1ua0l2u0lc − sinfjs2dgeif0

s2d
ua1l1ugl2u1lc,

uD11l = ua1l1ua1l2u0lc

where

L00 = Î2 − sin2fjs1dgsin2fjs2dg. s21d

It is obvious that at the pointO wherejs1d=js2d=0, the above
dark states are single valued:uDijsOdl= uail1uajl2u0lc for i, j
=0, 1. The nonzero elements ofU s4d-valued connections are
just

Af0
s2d

00,00= iL00
−2h2 − sin2fjs1dgjsin2fjs2dg,

s22d
Af0

s2d
10,10= i sin2fjs2dg.

When the system evolves adiabatically along a closed pathC
in the parameter spaceM and returns to the pointO, the
associated holonomy can be written as

UsCd = eihsCdua0l2ka0ueifsCdua0a0lka0a0u. s23d

Here, the angleshsCd andfsCd are defined as

fsCd =E L00
−2f2 − sin2fjs1dg − L00

2 gsin2fjs2dgdf0
s2d,

s24d

hsCd =E sin2fjs2dgdf0
s2d.

In the above expression ofUsCd, ua0l2ka0u is the projection
operator of the second qubit to the stateua0l2. It is easy to see
that the holonomyUsCd is the production of a controlled-
PHASE gate operation and a single-qubit rotation about thez
axis operated on the second qubit. WhenfsCdÞ0, UsCd is a
nontrivial two-qubit operation. If we choose the pathC sat-
isfying hsCd=0, we can obtain an explicit controlled-PHASE

gate via the holonomy

UsCd = eifsCdua0a0lka0a0u. s25d

Moreover, we may also realize the controlled-NOT by set-
ting us1d=f0

s jd=f1
s jd=0 and chooseus2d ,js1d, and js2d as the

control parameters. In this case, the dark states can also be
obtained with some straightforward derivations, but have
quite complicated formssnot presented hered. Our main re-
sult is that, when
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E
C

sinfus2dgdjs2d − usCd = − p/2, s26d

the holonomy associated with a closed path can be expressed
as

UsCd = e−i 4/ pRy
s2dfusCdgRz

s1dSp

4
DRz

s2dSp

4
DUCNRz

s2dS−
p

4
D ,

s27d

where

UCN = ua0l1ka0u ^ I s2d + ua1l1ka1u ^ sx
s2d s28d

is just the controlled-NOT operation. Here,I s2d is the identity
operator of the second qubit and the angleusCd is defined as

usCd = −E
C

b−1L01
−1L00

−3L2djs2d −E
C

b−1L01
−1L00

−3L1djs1d,

s29d

whereL00 is defined as before and the other coefficients are
defined as

L01 = Î2 − sin2fjs1dgcos2fjs2dgsin2fus2dg,
s30d

a = − s1/2dL00
−1L01

−1sin2fjs1dgsinf2js2dgsinfus2dg,

andb=Î1+a2. Therefore, up to a global phase factor,UsCd
is just the product of control not operation and some single-
qubit rotations.

In most cases, the Hamiltonians16d has a four-
dimensional eigenspace with zero eigenvalue in the invariant
subspaceI. The basis of the eigenspace are just the dark
statesuDijl. Nevertheless, it is pointed out that, in some very
special cases, there may be accidental degeneracy in a sub-
manifold swe call it the AD submanifoldd of the parameter
spaceM. In the AD submanifold, in addition to the dark
statesuDijl, the Hamiltonian has another two eigenstates with
zero eigenvalue and thus the dimension of the Hamiltonian’s
eigenspace with zero eigenvalue is 6 rather than 4. It is ap-
parent that if the path of the adiabatic evolution of the Rabi
frequencies cross the AD manifold, there might be a transi-
tion from the four dark statesuDijl to the two external states.
To avoid this kind of unwanted transition, we should control
the evolution path of the Rabi frequencies in the parameter
spaceM be far away enough from the AD submanifold. On
the other hand, since the evolution of the Rabi frequencies in
M is assumed to begin and end at the same pointO where all
the Rabi frequencies are set to zero, the accidental degen-
eracy atO should be avoided. This can be implemented by
adjusting the coupling strengthgsld via controlling the posi-
tion of the SQUIDs in the cavity, or the detuningDsld of each
SQUID via changing the bias fields. For instance, if the con-
ditions

Ds1d = Ds2d Þ 0, gs1d = gs2d s31d

or

Ds1d = Ds2d = 0, gs1d Þ gs2d s32d

are satisfied, the accidental degeneracy at pointO can be
avoided.

Since the dark states have a nonzero projection to the
single or two photon states, the photon dissipation caused by
the imperfection would tend to destroy the dark states. To
evaluate the influence of the photon dissipation, the Schro-
edinger equation controlled by the effective Hamiltonian

Heff = Hstd − iskp/2da†a s33d

needs to be solved. Here,Hstd is the Hamiltonian defined in
Eq. s16d for Eq. s4dg, and kp the photon decay rate. The
dissipation term −iskp/2da†a can be considered as a pertur-
bation. As a result of the first-order perturbation theory, the
fidelity of the quantum gate operation, i.e., the probability of
the ideal finial state, may be expressed as

F < 1 − kpE
0

T

knlphdt, s34d

whereT is the operation time andknlph=kCstdua†auCstdl is
the instantaneous expectation value of photon number.
Therefore the condition under which the influence of photon
dissipation can be neglected is simply

kpE
0

T

knlphdt ! 1. s35d

On the other hand, since our scheme is based on the adia-
batic evolution of the quantum states, the adiabatic condition

should be satisfied, which can be expressed asṼT@1, where

Ṽ is the energy gap between the dark state and other eigen-

states of the Hamiltonianf5g. Here,Ṽ has the same order of
amplitude as the SQUID-cavity coupling constantg. In prac-
tical quantum gate operations, we always haveT,103 g−1.
Then the conditions35d can be satisfied wheng/kp*104.
The coupling constant of the SQUID and the cavity available
at present isg,1.83108 s−1 f15g. The high quality factor of
the cavity Q=106–108 might be achieved experimentally
f22g. This will lead tokpe0

Tknlphdt&10−2 and thus the fidelity
F.1.

Now let us look in some detail into a typical controlled-
PHASE gate operation discussed before. In this operation, we
assumegs1d=2gs2d=g=1.83108 s−1 and Ds1d=Ds2d=0. The
amplitudes of the Rabi frequenciesV0

s1d andV0
s2d are varied

following the Gaussian functions of time:

V0
s1d = 2.5ge−fst − 3td/tg2,

s36d
V0

s2d = ge−fst − 3td/tg2eif0
s2dstd,

wheret=144g−1. The phasef0
s2dstd is set to be a hyperbolic

tangent function of time:

f0
s2dstd = p 3 F1 + tanhS t

0.75t
DG . s37d

As in the above discussions, the controlled gate operation
can be written as a unitary transformation
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U = eihua0l2ka0ueifua0a0lka0a0u, s38d

wheref<p /6 andh<4. The operation time of this gate is
about 83102 g−1. We estimate the fidelity of this operation
using Eq.s34d. In Fig. 2, the fidelity of the quantum gate
operation with four possible initial states are plotted as a
function of the ratio g/kp. It is seen that wheng/kp
,103–104, the fidelity is larger than 90%. In particular,
wheneverg/kp,105, the fidelity is improved to reach 99%.

As we have shown, during the adiabatic evolution dis-
cussed above, the SQUID is in the stateua1l , ua0l, and ugl.
Since the corresponding three energy levels are the lowest
three, we neglected the dissipation of the state. In practical
cases, the lifetimes of the two substratesua1l and ua0l are
always much longer than the operation time and can be re-
garded to be infinite. The decay of the stateugl may influence

our scheme. We estimate this influence using the same
method as that used to estimate the influence of the photonic
decay. Thus the formulas34d should be rewritten as

F < 1 − kpE
0

T

knlphdt − kgE
0

T

knlgdt, s39d

where kg is the decay rate of stateugl sfor simplicity we
assume that thekgs of the two SQUIDs are identicald and

knlg = kCstdufugls1dkgu + ugls2dkguguCstdl s40d

is the probability that the SQUIDs are in the stateugl. It is
straightforward to show thatknlg=knlph. The fidelity of the
quantum logical gate can be expressed as

F < 1 − skp + kgdE
0

T

knlphdt. s41d

Therefore to analyze the influence of the dissipation of state
ugl, we can replacekp by kp+kg in the last two paragraphs.

Finally, it is pointed out that if the decay ratekp is too
large, we can change the device parameters so that the effec-
tive potential in Eq.s1d is of a triple well, rather than a
double wellf23g. In this case we can treat each of the three
lowest levels to be localized in one well. The lifetimes of
these three states are always sufficiently long.
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