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Holonomic quantum computation using rf superconducting quantum interference devices
coupled through a microwave cavity
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We propose a different scheme to realize holonomic quantum computation with rf superconducting quantum
interference devicéSQUID) qubits in a microwave cavity. In this scheme associated with the non-Abelian
holonomies, the single-qubit gates and a two-qubit contratlesse gate as well as a controlledsT gate can
be easily constructed by tuning adiabatically the Rabi frequencies of classical microwave pulses coupled to the
SQUIDs. The fidelity of these gates is estimated to be possibly higher than 90% with the current technology.
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Since the proposal of holonomic quantum computation [®,Q]=it. (2)
[1], research on quantum gates based on Abelian or non-

Abelian geometric phases has attracted significant interegt s well known that in general the Hamiltonian of Ed) is
both experimentally and theoreticallg-10. It is believed  qyite similar to that of a particle moving in a double well
that these quantum gates could be inherently robust againghtential. By changing the device paramet€rs., and the
some local perturbations since the Abelian or non-Abeliarontro| parameterg,, ®,, one can control the structure of
geometric phasehiolonomies depend only on the geometry gnergy levels in the SQUID.

of the path executed. On the other hand, quantum informa- | ot s address €8 +1)-type system with three lowest lev-

tion processjng using Jo;ephson-junctioq systgms couplegg (|lag).|a),|g)) and an excited levelle)) in the SQUID
through a microwave cavity has been paid particular atten(See Fig. 1 In the system, thdg)«|e) transition with

tion recently[11~-19. energy-level differencey is coupled to a one-mode cavity

In this paper, we propose a different scheme to aChiev'ﬁeld with frequencyw, and the|a;)« |e) transition with the

holonomlg quantum - computation using Sup.erconducnnglanergy—level differencev,; (i=0, 1) is coupled to the classi-
quantum mterferer_]ce deV'CQSQ.UIDS) In a cavity. Based_ cal microwave pulse with the magnetic component as
g_r;] Itg_e 8.?”’222“:2 q gotlv(\)/g?mlbe'?’cotm?ollgg:;:gmg;taa;mgBi(r ,t)codwot) where w; is the energy difference between
ingle-qunt g qubi 9 the stateda;) and|e) and B; can be adiabatically changed.

well as a contrp llediot ga}te are reah;ed by t'unmg adiabati- We may ensure that the “three-photon resonance” condition,
cally the Rabi frequencies of classical microwave pulse

coupled to the SQUIDs. The distinct advantages of the

present scheme may be summarized as follows.The

energy spectrum of each SQUID qubit may be adjusted Weg™ We= Wei ~ W = A, 3

by changing the bias field(ii) the strong-coupling limit

g°>(yk) may be easily realized, wheig is the coupling is satisfied. In the interaction picture, the Hamiltonian of the

coefficients between the SQUID qubit and the cavity figld, system can be written as

the lifetime of the photon in the cavity, andthe lifetime of

the excited state of the SQUID qubiiji) the decoherence |e>

caused by the external environment can be significantly sup- =~

pressedfiv) the fidelity of these gates may be higher than 7y y -y

90% with the current technology.
We consider an rf SQUID with junction capacitanCe 0, gl

and loop inductanck in a microwave cavity at a sufficiently

low temperature such that the SQUID works in the quantum |a,) y

regime. The Hamiltonian of the rf SQUID can be written as 0

(15,20

\4 |g>

A
Q@ (P-D)° S( @) |a)
He= ==+ ———* —E;cod 27— |, 1
sToc T oL R LS @)

FIG. 1. A schematic diagram of the energy level in the SQUID
whereE; is the maximum Josephson coupling enefythe  coupled to the single mode cavity fiefdith coupling constant)
external magnetic flux, and,=h/2e the flux quantum. The and two microwave pulsegvith coupling constants), and (2,).
conjugate variables of this system are the total ch@@®d  The three-photon resonance condition is satisfied Ani the
the magnetic flux® which satisfy detuning.
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H = Ale)e] + Qo(t)eXag| + Qa(t)|e)(ay] +gale)gl +H . c. Q, =gtan(f)secd)e’,

(4)  where6, £€[0,7/2) and ¢, €[0,2m) (i=0, 1). We take the
anglesé¢, 0, ¢y, and ¢, as the coordinates of the parameter
spaceM. The dark states of this invariant subspace spanned
by the stateg|a;)|0), |9)|1)c, |€)|0)c} of the Hamiltonian(4)

can be written as the vector functions Nt

9= LN od2ugh) (gDl f B.)-dS. (5 IDy) = cog#)[ag)|0). - sin©)lg)| 1),
S

wherea(a') is the photon annihilatiokcreation operator of
the cavity field. Here the coupling coefficie@<an be writ-
ten as

D.) = — sin(f)sin( &) (¢1-¢o
whereug is the vacuum permeabilitys the surface bounded D) sw(ﬁ)sm(g)e'. 2010
by the SQUID ring, andB.(r) the magnetic component of - sin(#)cog £)€%1|g)|1). + cog 6)|a)|0)..  (9)

the cav.ity field[15]. The R?‘bi frequencie;(t) (i=0, D ar®  We wish to point out that our choices of the coordinates and
prqportlonal to the matnx- elemente|le) [15]. It is dark states are quite different from those in Rg4s5]. Here,
pointed out that the detuning of the SQUID can be ad- the dark state$D,) and|D,) are single valued at the point
justed by changing the bias field. _0(#=£=0), e.g.,|Di(0))=|a)|0).

Regarding single-qubit operations, our scheme is similar ¢ j5 \vell known that any single-qubit gate operation can
to that proposed in Ref§4,5]. We choose the statesy) and e gecomposed into the product of rotations about axesl
|a;) as the computational basis ajgl as an ancillary state. y: R(¢)=expliga,) and Ry(¢):eXF(i¢Uy), where ¢ is the

WhenQ,=0Q,=0, the state$,)|0). (i=0, 1) span an eigens- - - :
pace of the Hamiltoniaf4) with zero eigenvalue, whei8), angle,, andoy are Pauli matrices defined as

is the vacuum state of the cavity field. If the cavity is cooled oy =i(lap(ag| — [ag)(ay)),
to zero temperature and the quantum gate operations are (10)
switched off, i.e., the Rabi frequencies of all the classical a,= (|ag)(ag| — |a;X(ay).

microwave pulses are set to zero, the staf@)+fla,) of o

the qubit is isolated from the state of the cavity and does nol herefore we need only to show the realizatiorRge) and

change with time. When the Rabi frequenci@s and Q,  Ry(¢). To realize the gat®(¢), we let the phaseg,= ¢,

change adiabatically along a close p&tin the parameter =0. TheU (2) valued connections can be derived as

spaceM and return the point corresponding €,=0Q,=0 i —

(we refer to this point a®), an initial state A= =isin(O)oy,  Ay=0. 1D

After an adiabatic evolution along a closed pa&hin the

[Wo) = (alag) + Blay)|0). parameter spachl, the related unitary transformaticho-

of the qubit-cavity composite system evolves according tolonomy) s just the rotation abouty axis U(C)

the rule| W) — U(C)|¥ o) [5,21]. Here, =exfli¢(C)oy], where the angle

U(C) =P exp f A (6) e(C)=- ( fc Sin(a)df) (12
C

. . ) . is dependent of the looP. To achieve the gat,(¢), we can
is the non-Abelian holonomy associated with the patand  get,=¢=0 (i.e., Q,=0) and change and ¢, adiabatically.
A=Z,A,d\, is theU (2)-valued connectiorinoe-form ex- | this case, the nonzero connection is

pressed as

Ay = ilsinz(e)(l -0y). (13
D;(\), (7) 2

- 9

A =(Di(V) ‘ IV
" As a result, the holonomy associated with a close gatan

where{\ ,} are the coordinates of the parameter spdcand be written as
[D;(\)) (i=0, 1) the basis of the eigenspace of the Hamil- U(C) = e MO O (14)
tonian (4) with zero eigenvalughereafter we refer to the '
basis as dark statesSince the holonomyJ(C) is a unitary =~ where
transformation in the space spanned by the sta®). and
|a;)|0),, it can actually be considered as a unitary transfor- __ 1 i

11Pe y _ unrary x(C)=—= [ sir(6)de;. (15
mation that only acts on the qubit state which is the super- 2

posit!on of|ag) and|ay). . . Itis easy to see thdt(C) is just a rotation about the axis
Without loss of generality, we assume that the coupllngup to a global phase

coefficientg is real and positive, and choose We now illustrate how to realize the controlledase
Qo= gtan&e® gate as well as the controlleddT gate via the non-Abelian
’ holonomy in the present system of SQUID qubits, which is
(8) the main result of the present paper. At this stage, we con-
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i - - - . . i (2
sider thg (3+1) type energy level structure of two rf IDoo) = Agsin &V si @140 )| g)ol2)e
SQUIDs in a microwave cavity. We assume that e |g) _ o
transition of each SQUID is coupled to the single mode cav- -2 cog £V]sin €21 %0 |ag)1|9)l1)c
ity field. Also, we set the level spacing,; between the states 5
(), |a;), i=0, 1) to be different. The transitiors) < |ag) (or +12 cogéV]cod ¢?][ag)|ag)s|0).
la)) in both SQUIDs are coupled to two distinguishable — 2 sif&Ycod £27|g)|ag)s| 1],

classical microwave pulses with different frequendi&s]

and the three-photon resonance condition of each SQUID is _ " )

set to be satisfied. The Hamiltonian of such SQUIDs in a [Doy) = cog €™ ]ag)[ar)s|0) — sinl ¢V |g)ilan),|1)e,
microwave cavity may be written as (20

- 2) — ai £27d 4P
H= S [00le)(ad + OVlen(a + H.c] D10 = cog €?1]ay)1[ag,|0). = sl €21 % [ay)1|g)a| L),

1=1,2
Dyp) = 0)c
+ 3 [gValey(gl+ Hel+ S AVeye.  (16) ID19) = |ag)1/as)-|0)
1=1,2 1=1,2 where
Here Aoo= V2= SIFLEVISILE2]. (21)
Osdpolzaol a7

| It is obvious that at the poir® where&V=¢?=0, the above
is the detuning of théth SQUID and(}" is the Rabi fre- dark states are single valuel®;(0))=|a);|a;;|0) for i, |
quency of the microwave pulse coupled to the transition=0, 1. The nonzero elements 0f(4)-valued connections are

|e), < |a), of thelth SQUID. just
We still choose the statés), i=0, 1 as the computational
basis of thelth qubit. The two SQUIDs are coupled indi- A?bzz’?oziAgé{Z—sir?[g(l)]}sinz[g(z)],

rectly via the single mode cavity field. As in the previous
discussions for the single-qubit gate case, it is seen that when
all of the Rabi frequencie€) of the classical microwave
pulses are set to zero and the cavity is cooled to zero tem-
perature, the two-qubit state, which can be written in term3/Vhen the system evolves adiabatically along a closed @ath
of [a)1]a;),, is isolated from the state of the cavity and doesin the parameter spadé and returns to the poin®, the
not change with time. In the following, we show that the associated holonomy can be written as
holonomy, associated with the adiabatic evqutioanqt>
along a closed pat@ starting from the poinfli('):o (we also
refer to this point a® in the parameter spadé, can be used
to achieve a controlledHASE gate or a controlledoT gate
of the two qubits.

We first choose $(C) = f Agil2 = sirf[£Y] = AZlsin?[ ¢ 1d g,

0f =gVtar{ £V, (24)
(18 _ ; 274 .4(2)
o 7(C) = | sirf[£?]dgy.

10,10_ . _. 2) (22)
Ad;gz) =i sirf[£2].

U(C)=¢ 7(C)lag)2(agl gl ¢(C)lagag)(@paol (23)

Here, the angleg(C) and ¢(C) are defined as

0 = gPtar{ ¢V ]se¢ ¢

(1=1,2, and taket", ¢, 6", and ¢’ as the independent In the above expression &f(C), |ag)(ag| is the projection
coordinates in the parameter spadé. To realize the gperator of the second qubit to the sthtg,. It is easy to see
controlledPHASE gate, we set)=¢{'=¢("'=0. This means that the holonomyU(C) is the production of a controlled-
that we set the Rabi frequenci€s” and Q<12) to zero and  pHASE gate operation and a single-qubit rotation aboutzhe
only changeQ{” and \? adiabatically. It is found that the axis operated on the second qubit. Whg(T) # 0, U(C) is a

subspace spanned by the states nontrivial two-qubit operation. If we choose the p&hsat-
isfying 7#(C)=0, we can obtain an explicit controlletHASE

|a)112)210)c [)1|D) 2| Des  19)1]9)2]2)c, gate via the holonomy
|9 1/a)2 Ve, [€)1]a)20)c,  [ai)a]€)2lO)e, (19) U(C) = & #©lacao (@ (25)

. Moreover, we may also realize the controlled by set-
€192, [9)1]€)21)c,  [E)1]€)2]0)c (1, =0,D) ting 6‘(1)=¢g)=¢(1j)=0yand choose?, £V, and &2 ays the

is an invariance subspagee call it as the subspadgof the  control parameters. In this case, the dark states can also be
Hamiltonian (16). After some tedious derivations, the dark obtained with some straightforward derivations, but have
states, i.e., the basis of the eigenspace of Hamiltofi&  quite complicated formgnot presented hereOur main re-

with zero eigenvalue, can be obtained as sult is that, when
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AW =A@ = 0, (ENred) 32
f S 6271dE? - 9(C) = - /2, (26) 979 (32
C are satisfied, the accidental degeneracy at pGirtan be
) . avoided.
the holonomy associated with a closed path can be expressed gjnce the dark states have a nonzero projection to the
as single or two photon states, the photon dissipation caused by
the imperfection would tend to destroy the dark states. To
UC)=ge" 4/”R§,2)[6(C)]R(Zl)(E)R(ZZ)<7—T)UCNR(ZZ)<— 7_7), evaluate the influence of the photon dissipation, the Schro-
4 4 4 edinger equation controlled by the effective Hamiltonian
(27 Herr = H(D) — i(ky/2)a’a (33)
where needs to be solved. Herk(t) is the Hamiltonian defined in
Eq. (16) [or Eq. (4)], and k, the photon decay rate. The
— 2) (2) A . p .
Ucn=lao)(aol @ 1 + [an)i(ay| @ o (28 gissipation term Hx,/2)a'a can be considered as a pertur-

is just the controlledvoT operation. Herel? is the identity ~ bation. As a result of the first-order perturbation theory, the

operator of the second qubit and the ang(€) is defined as ~fidelity of the quantum gate operation, i.e., the probability of
the ideal finial state, may be expressed as

__ ~1,-14-3 2) _ ~15-14-3 1) T
6(C) = fcﬂ Ao1ooA 20! fcﬂ AgrAgpAsdéY, F~ 1—Kpf (Mprdt, (34)
0

29

29 whereT is the operation time anth),,=(¥(t)|a’al¥(t)) is
where Ay is defined as before and the other coefficients arghe instantaneous expectation value of photon number.
defined as Therefore the condition under which the influence of photon

/ dissipation can be neglected is simply
A1 =2 = sirf[¢Y]cos €2 ]sin[ 67],

T
(30) Kpf (Mprdt< 1. (35

a=— (112 AgaAgisir?[ £V]sin[2£]sin 6], 0

and B=\1+a2. Therefore, up to a global phase factd(C) On the other hand, since our scheme is based on the adia-

is just the product of control not operation and some single—batlc evolutloh (?f the an”“‘m states, the a~d|abat|c condition

qubit rotations. should be satisfied, which can be expresse@®s- 1, where

In most cases, the Hamiltoniarfl6) has a four- Q is the energy gap between the dark state and other eigen-

dimensional eigenspace with zero eigenvalue in the invariandiates of the Hamiltoniafs]. Here, Q) has the same order of
subspacd. The basis of the eigenspace are just the da”‘amplitude as the SQUID-cavity coupling constgntn prac-
state_sJDij>. Nevertheless, it is pointed out that, in some veryjjcq) quantum gate operations, we always have10° gL,
special cases, there may be accidental degeneracy in @ Sufhien the condition35) can be satisfied wheg/ x,= 10°.
manifold (we call it the AD submanifoldof the parameter — The coupling constant of the SQUID and the cavity available
spaceM. In the AD submanifold, in addition to the dark 4 present ig~ 1.8x 10° s [15]. The high quality factor of
stategDj;), the Hamiltonian has another two eigenstates withe cavity Q=10F—10® might be achieved experimentally

zero eigenvalue and thus the dimension of the Hamiltonian',5]. This will lead tox [5(Mprdt= 1072 and thus the fidelity
eigenspace with zero eigenvalue is 6 rather than 4. It is ap-~ _ P

parent that if the path of the adiabatic evolution of the Rabi Nc;w let us look in some detail into a typical controlled-
frequencies cross the AD manifold, there might be a transiy,, e gate operation discussed before. In this operation, we
tion from the four dark statd@ij) to the two external states. assumegV=2g?=g=1.8x10° s and A®=A®=0. The

To avoid this kind of unwanted transition, we should control . . (1) 2 :

the evolution path of the Rabi frequencies in the paramete]ia'orng\ll:;{ilrjgetshgfégi SZ;?: ;L?%%g?g%é tigg?’ {1y are varied
spaceM be far away enough from the AD submanifold. On '

the other hand, since the evolution of the Rabi frequencies in le) =2.5ellt- 37)/712,

M is assumed to begin and end at the same giwhere all (36)
the Rabi frequencies are set to zero, the accidental degen-
eracy atO should be avoided. This can be implemented by
adjusting the coupling strengtf’ via controlling the posi- herer=144g™L. The phases\(t) is set to be a hyperbolic
tion of the SQUIDs in the cavity, or the detunind’ of each tangent function of time: 0

SQUID via changing the bias fields. For instance, if the con-

ditions () = 7 X {1 + tanl’(—t )] . (37
0.75r
AD =A@ + 0, g(l) - g(2) (31)

Q@ =gelt- 39/ d{f’(t)’

As in the above discussions, the controlled gate operation
or can be written as a unitary transformation
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our scheme. We estimate this influence using the same
method as that used to estimate the influence of the photonic
decay. Thus the formulé34) should be rewritten as

T T
F~1-x, f (Mot = g f (ngdlt, (39)
0 0

where k4 is the decay rate of statig) (for simplicity we
assume that thegs of the two SQUIDs are identigaand
(Mg = (P ®)|[lg)™gl + |9)(gI¥ (1) (40

is the probability that the SQUIDs are in the sti® It is
straightforward to show thai)y=(n),,. The fidelity of the
guantum logical gate can be expressed as

FIG. 2. The fidelities of a controlledHASE gate for the initial
statesfag)|ag), (solid line), [ag)s[ay), (dashed ling |ag)1|ag), (dot- T
ted ling, and|a,)|a,), (dashed-dotted linewhere the quantity is F=1-(kp+t "g)f (Mprdt. (41)
defined by the relation/ x,=10". 0
Therefore to analyze the influence of the dissipation of state
U = & 72020l gl dlagaoi(@agaol (39) |g), we can replace, by «,+ k4 in the last two paragraphs.
o ) ) Finally, it is pointed out that if the decay raig, is too
where¢~ /6 and»=~4. The operation time of this gate is |5rge, we can change the device parameters so that the effec-
about 8< 107 g™*. We estimate the fidelity of this operation tjye potential in Eq.(1) is of a triple well, rather than a
using Eq.(34). In Fig. 2, the fidelity of the quantum gate goyple well[23]. In this case we can treat each of the three
operation with four possible initial states are plotted as gowest levels to be localized in one well. The lifetimes of

function of the ratiog/«,. It is seen that wheng/x,  these three states are always sufficiently long.
~10°-10, the fidelity is larger than 90%. In particular,

wheneverg/ «,~ 10°, the fidelity is improved to reach 99%. We thank P. Zanardi and Y. Li for useful discussions. We

As we have shown, during the adiabatic evolution dis-are also grateful to Siyuan-Han for his suggestion to use an
cussed above, the SQUID is in the stie), |ag), and|g). effective triple well for the rf SQUID. The work was sup-
Since the corresponding three energy levels are the lowegiorted by the RGC grant of Hong KongGrant No.
three, we neglected the dissipation of the state. In practicalKU7114/02P, the CRCG grant of HKU, the NSFC, the
cases, the lifetimes of the two substrateg and |a,) are  Knowledge Innovation PrograitiKIP) of the Chinese Acad-
always much longer than the operation time and can be reemy of Sciences, and the National Fundamental Research
garded to be infinite. The decay of the st@gemay influence  Program of ChindGrant No. 001CB309310
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