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Exponential Filtering for Uncertain Markovian Jump
Time-Delay Systems With Nonlinear Disturbances

Zidong Wang, Senior Member, IEEE, James Lam, Senior Member, IEEE, and Xiaohui Liu

Abstract—In this paper, we study the robust exponential filter
design problem for a class of uncertain time-delay systems with
both Markovian jumping parameters and nonlinear disturbances.
The jumping parameters considered here are generated from
a continuous-time discrete-state homogeneous Markov process,
and the parameter uncertainties appearing in the state and
output equations are real, time dependent, and norm bounded.
The time-delay and the nonlinear disturbances are assumed to
be unknown. The purpose of the problem under investigation
is to design a linear, delay-free, uncertainty-independent state
estimator such that, for all admissible uncertainties as well as
nonlinear disturbances, the dynamics of the estimation error is
stochastically exponentially stable in the mean square, indepen-
dent of the time delay. We address both the filtering analysis
and synthesis issues, and show that the problem of exponential
filtering for the class of uncertain time-delay jump systems with
nonlinear disturbances can be solved in terms of the solutions to a
set of linear (quadratic) matrix inequalities. A numerical example
is exploited to demonstrate the usefulness of the developed theory.

Index Terms—Linear matrix inequalities (LMIs), Markovian
jump systems, nonlinear disturbances, robust filtering, time delay.

I. INTRODUCTION

THE well-known Kalman filtering approach assumes that
the system model is well-posed and its disturbances are

Gaussian noises with known statistics. Therefore, Kalman fil-
ters can be sensitive to system data and have poor performance
robustness when a good system model is hard to obtain or the
system drifts. Motivated by this problem, the research on robust
filtering has been very attractive in the past decade and many
results have been obtained with respect to various filtering per-
formance criteria, see [2], [5], and references therein.

On the other hand, many physical systems have variable
structures subject to random abrupt changes, which may result
from abrupt phenomena such as random failures and repairs of
the components, changes in the interconnections of subsystems,
sudden environmental changes, modification of the operating
point of a linearized model of a nonlinear systems, etc. A
system with this character may be modeled as a hybrid one;
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that is, the state space of the system contains both discrete and
continuous states. A special class of hybrid systems are the
so-called jump linear systems (JLSs) which have attracted a lot
of research interest since the mid 1960s. In the past decade, the
optimal regulator, controllability, observability, stability and
stabilization problems have been extensively studied for JLSs,
see [2], [11] and references therein. Also, the filtering problem
of systems with jumping parameters has recently begun to gain
initial attention. Shi et al. [11] have studied the robust Kalman
filtering problem for linear jump systems and have shown that
the problem is solvable if two sets of coupled algebraic Riccati
equations have positive definite solutions.

It is now well recognized that the dynamic behavior of many
industrial processes contains inherent time delays and time de-
lays are very often the cause for instability and poor perfor-
mance of systems. In the past few years, a great many of pa-
pers have appeared on this general topic of robust and/or
controller design problems for linear uncertain time-delay sys-
tems, see, e.g., [8] for a survey. In the filtering case, the robust
Kalman filter design problem has been investigated in [2] and
[5] for linear continuous and discrete time-delay systems. Un-
fortunately, in [2] and [5], only the asymptotical stability has
been considered on the filtering process and, therefore, a pos-
sibly long convergence time may lead to poor performance. The
exponential filtering problem has been recently studied in [12]
for a class of nonlinear time-delay systems. It should be pointed
out that, to date, there have been very few papers tackling the ex-
ponential filter design problem for Markovian jump time-delay
systems, not to mention the case where parameter uncertainty
and nonlinear disturbance also exist in the system model. This
situation motivates our present investigation.

This paper is concerned with the exponential filtering
problem for a class of continuous time-delay uncertain systems
with Markovian jumping parameters and nonlinear distur-
bances. We aim at designing a robust filter such that, for all
admissible uncertainties as well as nonlinear disturbances,
the dynamics of the estimation error of each system mode
is stochastically exponentially stable in the mean square,
independent of the time delay. We show that both the filter
analysis and the filter synthesis problems can be tackled in
terms of the solutions to a set of linear matrix inequalities
(LMIs) (see [3]) or quadratic matrix inequalities (QMIs) (see
[9]). We demonstrate the usefulness and applicability of the
developed theory by means of a numerical example.

A. Notation

The notations in this paper are quite standard. and
denote, respectively, the -dimensional Euclidean space
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and the set of all real matrices. The superscript “ ”
denotes the transpose and the notation (respectively,

) where and are symmetric matrices, means
that is positive semi-definite (respectively, positive
definite). is the identity matrix with compatible dimen-
sion. We let and denote the family of
continuous functions from to with the norm

, where is the Euclidean norm in
. If is a real matrix, we denote by its operator norm,

i.e., , where
[respectively, ] means the largest (respectively,

smallest) eigenvalue of . is the space of square inte-
grable vector. Moreover, let be a complete
probability space with a filtration satisfying the usual
conditions (i.e., the filtration contains all -null sets and is
right continuous). Denote by the family of
all -measurable -valued random variables

such that ,
where stands for the mathematical expectation operator
with respect to the given probability measure .

II. PROBLEM FORMULATION AND ASSUMPTIONS

Let be a right-continuous Markov process
on the probability space which takes values in the finite space

with generator ( ) given
by

if
if

where and , is the transi-
tion rate from to if and .

In this paper, we consider a class of uncertain con-
tinuous-time state delayed jump systems with nonlinear
disturbances described by

(1)

(2)

(3)

where is the state, is the measurement
output, is an unknown nonlinear exoge-
nous disturbance input, denotes the constant, bounded, but
unknown state delay, is a continuous vector valued initial
function. For a fixed system mode, , , ,
and are known constant matrices with appropriate di-
mensions. and are real-valued matrix
functions representing norm-bounded parameter uncertainties
and satisfy

(4)

where for a fixed system mode, , , and
are known real constant matrices of appropriate

dimensions which characterize how the deterministic uncertain

parameter in enters the nominal matrix and
, and is an unknown time-varying matrix

function meeting

(5)

The uncertainties , are said to be admissible
if both (4) and (5) are satisfied.

Remark 1: We point out that the exogenous nonlinear
time-varying disturbance term in the system
model (1)–(3) has not been taken into account in the research
literature concerning jump systems. Such a kind of disturbances
may result from the linearization process of an originally highly
nonlinear plant or may be actual external nonlinear inputs.

Remark 2: A more general case is that the external distur-
bances appear in both the system equation and the output mea-
surement equation and one of the design objectives is to guar-
antee a given disturbance rejection attenuation level for the fil-
tering process, in terms of a -norm for the nonlinear time-
delay systems. This gives a significant topic for future research.

Assumption 1: The system matrix ( )
is Hurwitz stable. That is, for each , all eigenvalues
of are located in the left-half complex plane.

Assumption 2: The matrix ( ) is of
full row rank.

Assumption 3: For a fixed system mode, there exists a known
real constant matrix such that the unknown
nonlinear vector function satisfies the following bounded-
ness condition:

(6)

In this paper, the linear filter under consideration is of the
following structure:

(7)

where is the state estimate, and for a fixed system mode,
the constant matrices and are filter parameters
to be designed.

Recall that the Markov process takes values in
the finite space . For the sake of simplicity,
we write

(8)

(9)

(10)

Now, we shall work on the system mode .
Let the error state be

(11)

Then, it follows from (1) to (3) and (7) that

(12)
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Moreover, we define

(13)

(14)

(15)

Then, combining (1)–(3), (4), and (12) gives the following
augmented system:

(16)

Observe the system (16) and let denote the state tra-
jectory from the initial data on

in . Clearly, (16) admits a trivial solution
corresponding to the initial data .

Definition 1: For the uncertain time-delay jump system (16)
and every , the trivial solution is expo-
nentially stable in the mean square if, for every system mode,
there exist scalars and such that

(17)

The aim of this paper is to design a filter for the uncertain
time-delay system with nonlinear disturbances in (1)–(3).
We intend to design the filter parameters, and , such
that for all admissible time-varying parameter uncertainties

and the nonlinear disturbance input , the
augmented system (16) (and, therefore, the error dynamics) is
exponentially stable in the mean square, independent of the
unknown time delay .

III. MAIN RESULTS AND PROOFS

Lemma 1: (See, e.g., [11]) Let , , and be real matrices
of appropriate dimensions with . Then, for any scalar

, we have .

A. Filter Analysis

Theorem 1: Let the filter parameters and be given. If
there exist a sequence of positive scalars such
that the following matrix inequalities:

(18)

have positive definite solutions ( ) and ,
then, the augmented system (16) is exponentially stable in the
mean square, independent of the unknown time delay .

Proof: First, we let denote the
family of all nonnegative functions on
which are continuously twice differentiable in and differen-
tiable in .

Fix arbitrarily and write
. Define a Lyapunov functional candidate

by

(19)

It is known (see [7] and [10]) that ( )
is a -valued Markov process. From (16),
the weak infinitesimal operator of the stochastic process

( ) is given by (20), shown at the bottom of
the page.

Note that and, therefore

Furthermore, since and
, it follows from Lemma 1 that, for any scalar

(21)

(20)
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Moreover, it results from , the inequality
(6) and the inequality

that

(22)

Denote

(23)

(24)

Then, substituting (21) and (22) into (20) results in

(25)

From the Schur complement Lemma [3], we know that
if and only if , which is the same as

the inequality (18). Therefore, we arrive at the conclusion that
.

Based on the inequality (25), the exponential stability (in the
mean square) of the system (16) can be proved as follows by
using the techniques developed in [6].

Define

where and are solutions to (18), and is defined
in (24). Let be the unique root to the equation

To prove the mean square exponential stability, we modify
the Lyapunov function candidate (19) as

(26)

and then, obtain the equation shown at the bottom of the page,
where is given in (20) and an upper bound
is provided in (25). It follows from (25) that

Noticing the definition of and the two facts of

and

we have

(27)

Moreover, since , we have

(28)
It follows from (26)–(28) that

, or ,
which indicates that the trivial solution of (16) is exponentially
stable in the mean square. This completes the proof of this the-
orem.

It can be seen from Theorem 1 that, for a given filter struc-
ture, to check the stochastic exponential stability of the system
(16), one needs to verify whether there exist scalars ,
matrices ( ) and that solve the
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coupled matrix inequalities. This may be difficult since the
inequalities are coupled and nonlinear on and in their

present forms. Fortunately, we can transform them into the as-
sociated LMIs [3], and then, we will be able to determine the
exponential stability of the system (16) readily by checking the
solvability of the LMIs [4]. We restate Theorem 1 in terms of
LMIs as follows.

Theorem 2: Let the filter parameters and be given.
If there exist a sequence , positive definite
matrices ( ) and satisfying the following
LMIs:

(29)

where is defined by
; then, the system (16) is exponentially stable

in the mean square.
Proof: Rearrange (18) as

(30)
If follows from the Schur complement Lemma ([3]) that, the

above inequality holds if and only if

(31)
Note that (31) is not linear on . Let .

Pre- and post-multiplying the inequality (31) by
yield (29). The proof follows from

Theorem 1 immediately.
Remark 3: The inequality (29) is linear on ,

( ) and , and thus standard LMI techniques
[3], [4] can be exploited to check the exponential stability of the
closed-loop system (16) when the filter is given.

B. Filter Design

The following lemma, which is easily accessible, will be used
in the proofs of our main results in this paper.

Lemma 2: For a given negative definite matrix (
), there always exists a matrix ( ) such

that .
For the sake of simplicity, we give the following definitions:

(32)

(33)

The following theorem establishes an approach to designing
the desired filter parameters in terms of the positive definite so-
lutions to two sets of matrix inequalities.

Theorem 3: If there exist a sequence of positive scalars
such that the following two sets of matrix

inequalities:

(34)

(35)

have positive definite solutions , ( ),
, and , where the matrices , , are defined,

respectively, in (32)–(33); then, the filter (7) with parameters

(36)

(37)

where is defined in (33), is arbitrary orthogonal
(i.e., ), is an arbitrary matrix meeting

and is defined in (35), will be such
that the augmented system (16) is exponentially stable in
the mean square for all admissible parameter uncertainties

, and the nonlinear disturbance input ,
independent of the unknown time-delay .

Proof: First, we define

(38)

Then, by setting and
, we have

(39)

(40)

(41)
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It follows directly from (34) that . Also, Assumption
2 ensures exists. In the light of and
the definitions of and , we obtain

(42)

By utilizing (36) and the orthogonality of , we can see that

(43)

and therefore, it follows from the definition of in (33) that

(44)

where is defined in (35). Since is an arbitrary
matrix meeting , the conclusion
follows from (35) easily.

Furthermore, substituting (37) into (40) immediately yields
, and therefore we have the conclusion that . Fi-

nally, it follows from Theorem 1 that the augmented system (16)
is exponentially stable in the mean square for all admissible pa-
rameter uncertainties , and the nonlinear distur-
bance input , independent of the unknown time-delay

. This proves Theorem 2.
Remark 4: Theorem 3 gives a QMI approach to the design

of robust filters for a class of uncertain time-delay jump sys-
tems with nonlinear disturbances. The solvability of the coupled
QMIs (34) and (35) plays a crucial role in the filter design. For-
tunately, the parameters ( ) of (35) are not included in
(34). Thus, we may first solve (34) for , ( )
and . Then, the inequalities (35) are coupled QMIs for

( ), and can be solved by the generalized matrix Ric-
cati inequality/equation approach (see [1]). It remains to focus

on the algorithm for solving (34). Similar to Theorem 2, it is
easy to convert (34) into the following LMIs:

(45)

where , and
. Since the inequality (45) is linear on and

( ), we can employ the standard LMI techniques
[3], [4] to check the solvability of the original matrix inequality
(34).

IV. A NUMERICAL EXAMPLE

We assume that the system (1)–(3) has two modes and the
data are as follows:

Letting and solving the LMIs (45) ( ,
2) by using the LMI toolbox [4], we obtain that ,

, and

and therefore and . Next, solve the
QMIs (35) ( , 2) to give
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We first consider the system mode 1. In this case, we choose
(meeting ) and the orthogonal matrix

as , , and then it follows from
(36)–(37) that

Now, let us consider the system mode 2. We set (meeting
) and the orthogonal matrix as and

, and then we have

V. CONCLUSION

We have studied the problem of robust filtering for a class
of uncertain time-delay systems with Markovian jumping pa-
rameters and nonlinear disturbances. A linear filter has been
designed to achieve the prescribed robust exponential stability
constraints (in the mean square), regardless of the admissible pa-
rameter uncertainties, the bounded nonlinear disturbance input
and the unknown state delay. Both the filter analysis and design
issues have been discussed in detail by means of LMIs. We have
derived both the existence conditions and the analytical expres-
sion of desired filters. It has been emphasized that, using the de-
veloped approach, the expected robust exponential filters, when
they exist, are usually a large set, and the remaining freedom

can be used to meet other desired performance requirements.
We may also extend our results to the discrete-time case. The
results will appear in the near future.
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