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Nonlinear Filtering for State Delayed Systems
with Markovian Switching

Zidong Wang, James Lam and K. J. Burnham

Abstract— This paper deals with the filtering problem for
a general class of nonlinear time-delay systems with Marko-
vian jumping parameters. The nonlinear time-delay stochas-
tic systems may switch from one to the others according to
the behavior of a Markov chain. The purpose of the prob-
lem addressed is to design a nonlinear full-order filter such
that the dyoamics of the estimation error is guaranteed to
be stochastically exponentially stable in the mean square.
Both filter analysis and synthesis problems are investigated.
Sufficient conditions are established for the existence of the
desired exponential filters, which are expressed in terms of
the solutions to a set of Linear Matrix Inequalities (LMIs).
The explicit expression of the desired filters is also provided.

Keywords— Nonlinear filtering; $tochastic exponential sta-
bility; Nonlinear systems; Markovian jump systems; Time-
delay systems; Linear matrix inequalities

iI. INTRODUCTION

Nonlinear filtering is one of the important issues in signal
processing, and has been an active research area over the
past three decades. Some recent representative work on
nonlinear filtering in the deterministic case can be found
in [4], {10]. For the stochastic case, the nonlinear filtering
problem has been extensively studied, see 6] for a survey.
In particular, the nonlinéar filtering problem was investi-
gated in [17] through the concepts of observers for stochas-
tic nonlinear systems, and an important stochastic stability
approach to designing the cbservers with guaranteed con-
vergence was developed.

It is now well known that the delayed state is very often
the cause for instability and poor performance of systems.
In the past few yecars, we have seen an increasing interest
in the controller as well as observer designs for linear sys-
tems with certain types of time-delays, see [11], [15], [16]
for more details. However, the nonlinear filtering problem
for general time-delay stochastic systems has received very
little attention. In [14], the nonlinear filtering problem was
studied for uncertain time-delay stochastic systems where
the nonlinearities were introduced in the form of additional
nonlinear disturbances.

On the ather hand, many physical systems arc subject
to frequent unpredictable structural changes, such as ran-
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dom failures, repairs of sudden environment disturbances,
abrupt variation of the operating point on a nonlinear
plant, etc. Markovian jump systems (MJS), which com-
prise an important family of models subject to abrupt vari-
ations, are very often used to describe the above class of
systems. In the past decade, the optimal regulator, con-
trollability, observability, stability and stabilization prob-
lems have been studied for jump linear systems (JLSs), see
e.g. [2], [3], [L3] and references therein. Also, the filtering
problem for JLSs has recently gained initial attention, see
e.g. [12].

In practice, a nonlinear system with Markovian jump-
ing parameters may be more reasonable to account for the
nonlinearities and structural changes. To the best of the
authors’ knowledge, so far, there have been very few pa-
pers dealing with filter design problem for general nonlin-
ear time-delay systems with or without Markovian jump
parameters. This situation encourage us to study the fil-
tering problem for a class of nonlinear time-delay systems
with Markovian switching.

This paper is concerned with the exponential filtering
problem for nonlinear jump time-delay systems. Our aim is
to design a nonlinear full-order filter such that the dynam-
ics of the estimation error of each system mode is stochas-
tically exponentially stable in the mean square. We show
that both the filter analysis and the filter synthesis prob-
lems can be solved in terms of the solutions to a set of
linear matrix inequalities (LMIs, see [1]). Therefore, in cur
study, the powerful Matlab LMI toolbox ([5]) can be ideally
employed to facilitate the filter design problem.

Notation. We let & > 0 and C{[—h,0]; R*) denote the
family of continuous functions ¢ from [—h,0] to R® with
the norm {@}] = sup_p<gep [¢(f)|, where | -| is the Eu-
clidean norm in R*. The operator norm of a matrix A is
defined by ||A|| = sup{|dz| : |z} = 1} = /Anax{ATA)
where Aqax(-) (respectively, Amia(-)) means the largest
(respectively, smallest) eigenvalue of A. Moreaver, let
(€, F,{F:}e>0, P) be a complete probability space with a
filtration {F,},;»o satisfying the usual conditions (i.e., the
filtration contains all P-null sets and is right continuous).
Denote by L% ([—#, 0];R") the family of all Fy-measurable
C([—h,0]; R*)-valued random variables £ = {£(d) : —h <
§ < 0} such that sup_p<y o El€(@)P < oo where E{-}
stands for the mathematical expectation operator with re-
spect to the given probability measure P.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Let {r(t), t > 0} be a right-.continuous Markov process
on the probability space which takes values in the finite
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space S = {1,2,..., N} with generator I = (y;) ({,j € S)
given by

'}’,‘jA + O(A)
1+ 744 +0(A)

o if i
. P{r(t+A)_3|r(t)_z}-{ if (=]
where A > 0 and lima ,00(A)/A =0, y%; > 0 is the
transition rate from 4 to j if { # j and i = — 30, vy
Let us consider a nonlinear state delayed jump system
in a fixed complete probability space (Q, F, {F: }1>0, P) de-
scribed by:

E(t) = f(z{t),u(t),r(t))+‘g(x(t—f),r(t)), (1)
z(t) = lt), r{t)=r0), tei-r,0, (2)
wt) = hR{z(t),r®), 3)

where z{t) € R" is the state, u() € R™ is the deterministic
input, y(t) € R? is the measurement output, and f(-,-,-) €
R®, g(-,-) € ™, h(,-) € & are nonlinear vector functions.
7 denotes the state delay, (¢) is a continuous vector valued
initial function.

Assumption 1: For any fixed system mode 7(£) = i €
&, the nonlinear vector functions f(-,-,-), g(-,-), k(")
are assumed to satisfy f(0,0,r7{t)) = 0, g(0,7(})) = 0,
h(0,r(t)) =0 and

Fflz(t) +o,ult) + é,r(t)) - f(a;(t),u(t),r(t))
~Laot) Bow) ]| G ]|<aneen|[5]] @

|g{z(t— )+ o,r(®)) — glz(t — 7),7(t))
—Ag(r(t))o| < ax(r(t))lol, (5)
|R{z(®) + 0, 7(8)) — 9(z(2), 7 (D))
—C(r(t))e| < aas(r(t))lol, (6)

where A(r(t)) € ™", B(r(t)) € R**™, Aq(r(t)) € ™",
C(r(t)) € RF*™ are known constant matrices, ¢ € R,
& € B™ are vectors, a1 (r(t)), aga(r()), and ass(r(t)) are
known positive constants.

Remark 1: The system (1)-(3) is called a nonlinear time-
delay system with jumping parameters, and can therefore
be utilized to describe many important physical systems
subject to nonlinearities, time-delay, random failures and
structural changes. The nonlinear descriptions {4)-(6) (see
[17]) reflect the “distance” between the originally nonlinear
model (1)-(3) and the “nominal” linear model whose sys-
tem parameters are (A(r(t)), B(r(t)), Aq(r(t)), C(r(2))).

Throughout this paper, we shall employ the full-order
nonlinear filter being of the following structure

FE@),u(®), (D) + g(@(t - 7),7(1)
+K(r(@)u() - h(&(1),7(1))] M

where & is the state estimate and the constant gains K (r(£))
are the filter parameters to be designed.

Notice that the Markov process {r(t), ¢t > 0} takes val-
ues in the finite space § = {1,2,...,N}. For notation

) =

convenience, we write:
A = A, Agli) = Ag, C6) =G (®)
o11(i) == @115,  @22(1) = Gami, aaa(i) ==z {9)
Let the error state be ’
e(t) = z(t) - £(t),
then it follows from (1)-(3) and (7) that
ér) = flz@)ul),r(t) - fEd),ut),r)

+g(@(t - 7),r(2)) — g(&(t — 7). (1))
= K(r(O)[h((#),r(t)) — h(2(8), r(t])]. (11)

Now we shall work on the system mode r(t) =4, ¥ie S.
To continue, we introduce the following definitions:

() = (), u(t), i) — f(E), ult), 5)

(10)

— Alie(t), (12)
mi(t —7) =g(e(t — 7),4) — g(&{t - 7),0)
— Aqlie(t - 1), (13)
i) s=h(x(t),2) — h(E(),7) — Clade(®).  (14)
Then, we can obtain from (8)-(14) that
e(t) = (Ai— KiCielt) + Agie(t — ) + 1i(t)
+m,:(t—-‘r) - K,j'l’li(t), (15)

Assumption 2: For all { € [—7,0], there exists a scalar
n > 0 such that Je(t + ¢)| < nle(t)).

As mentioned in [3], Assumption 2 is not restrictive since
the scalar n > 0 can be chosen arbitrarily. Now, let e(; &)
denote the state trajectory from the initial data e(f} =
£(6) on —7 < 8 < 0in L2, ([-7,0;B*). It is clear from
our assumption (1) that the system (15) admits a trivial
solution e(t; 0} = 0 corresponding to the initial data £ = 0.

Definition 1: For every & € L% ([-,0]; B*}, the trivial
solution of (15} is asymptotically stable in the mean square
if

. . 2 — .

Jim Ble(€)f* =0; (16)

and is exponentiaily stable in the mean square if there exist
constants « > 0 and 8 > 0 such that

Ble(t; ©))F < ae ?* sup EEO)I. 17)
—r<8<0

The primary objective of this paper is to provide a prac-
tical design procedure for an exponential filter of the non-
linear time-delay system (1)-(3). In other words, we shall
design the filter parameter K; such that the dynamics of
the estimation error (i.e., the solution of the system (15})
is guaranteed to be stochastically exponentially stable.

ITI. MAIN RESULTS AND PROOFS
Lemma 1: Letz € R*, y € R® and ¢ > 0. Then
Ty +yTz<erTz+eYyly.
The following theorem, which acts as a main key for solv-
ing the addressed nonlinear filtering problem, shows that
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the exponential stability of a given filter for the nonlin-
ear time-delay stochastic system (1)-(3) can be guaranteed
if positive definite solutions to a set of modified algebraic
Riccati-like matrix inequalities {quadratic matrix inequal-
ities) are known to exist.

Theorem 1:

&} such that the following matrix inequalities
N
(Ai — KiC)T P+ P4 — KiGi) + ) visFy
j=1
+Py[(ei + 21 +e3)] + e KGKT P,
+(e3, @y + 5 @35 + Qi <0 (18)
where
Qi = e} AL Ag; + g5t alo, ] (19)
have positive definite solutions P; > 0, then system (15) is
exponentially stable in the mean square.

Proof: Fix e L2yo([—'r, 0]; R*) arbitrarily and write
e(t;€) = e(t). For (e(t),t) € R* x Ry, we define the
stochastic Lyapunov functional V(-) : B* x By x & = Ry
as .

Vie(t),r(t) = i) =V (e(t), t,i)

t
=T ORelt) + [ Qe
t—r

(20)
where P; is the positive definite solution to the matrix in-

equality (18) and @Q; > 0 is defined in (19).
The weak infinitesimal operator A {see [7])
stochastic process {r(t},e(t})} (¢ = 0) is given by

AV.r6)
= Jim BV (elt + A),rlt = A)a(i), () = )

A0
V{z(t),r{t) = i)
= eT()[(A; - K:Ci)TP; + P(Ai - KiC)

of the

N

+ 3 7P + Qile(t)

=1

+ T () PiAgie(t — ) + eT{t — VAT, Pie(t)

+ eT(t)P,-[!,-(t) +myt — 1) — Kiny(t)]

+ [(8) +mut — 7) — King(t)] " Pe(t)

—eT(t — 7}Que(t — 7). (21)

Let €15, €2:, €34, 54; be positive scalars. It then follows

from Lemma 1 that

eT(t)PAd,- (t—7)+e”(t — )AL Pe(t)
< El,eT(t)P2e(t) +erteT(t — AL, Agelt —1).  (22)

Also, it results from the Assumption 1, the definitions
(10) and (12)-(14) that

L) < alule®) = o (Deld), (23)
my (t — T)mi(t — 7) < adge” (t— et — 7), (24)
ny (Hni(t) < algle(t)]? = aZye” (Be(t). (25)

Let the filter parameters K; be given. If
-there exists a sequence of positive scalars {£1;, €2, £3:,€4i,7 €

Considering (23)-(25), we can obtain from Lemma 1 that
e (OPL(t) + 5 (1) Pre(t)

< €T (t)enP? + e afiadlelt), ) (26)
e (Pt — 1) +mi (¢ — ) Pe(t)
< enel WPle(t) + et alpeT (t —T)e(t —7),  (27)
—e" (AP Kmi(t) - nf (W) K] Pe(t) '
< egel (@) (PKK] Pe(t) + 63 agaie” (Bet).  (28)

For simplicity, we denote

N
I := (4; — KiC) P, + P& - KiC)) + Y %P
J=1
+Fi{(e1i + 82 + ez + €4iKiK?]Pi _
Hegtad,, +ept R ) T+ et AT Ags + e300, 1, (29)
€9y Qr1; T Eyy Q334 Eyq Agiddi T g4 Uaail,y

then (18) and (19) result in that 1I; < 0.
Substituting (19), (22) and (26)-(28) into (21) yields

AV (e(t),1) < 7 (t)L;e(t) < —Amink—ni)eT(t)e(t). (30)

It follows from Assumption 2 that
AV (eft), §) =Amin(=I;)eT (Pe(t) .
Vie(t),) eT()Pe(t) + f1__ eT(s)Que(s)ds

—Amin(—11) e()]?
Amac(P)e(®)? + T2 Amax Q) le()?

. /\min(_ni)
= TRE {/\M(P,-) + 7 A (@) }
= =K

<

and therefore £ > 0 and AV (e(t),4} < —xV(e(t),1). Then,
similar to the proof of Theorem 1 in [3], by employing the
Dynkin’s formula and the Gronwall-Bellman lemma, we
can prove that E{V (e(t},1)} < e7*V(e(0),4). It then fol-
lows that the nonlinear jump stochastic time-delay system
{15) is asymptotically stable in the mean square. To show
the expected exponential stability (in the mean square) of
the system (15), we need to perform some standard ma-
nipulations on the relation (30) by utilizing the technique
developed in [8], [9]. The details are along the similar line
of the proof of Theorem 2.1 in [9], and are thus omitted
here. We just mention that, for the exponential stability
of (15), the required constant # > 0 in (17) is the umque
root of the equation

/\min(_Hi) - ;B/\r.nax(Pi)‘_ /BTAma.x(Qi)eﬁr =0,
and the required constant & > 0 can be determined by

a= Armn(Pt) [/\max( %) F TAmax (Q:)(1 + ‘reﬁ")]

This completes the proof of Theorem 1. |
The following corollary reveals that, for the nonlinear
time-delay jump system (15), the exponential stability in

(31)
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the mean square also implies the almost surely exponential
stability. The proof can be found in [§].

Corollary {: Under the same conditions as in Theorem
1, the nonlinear time-delay system (15) is almost surely
exponentially stable in the mean square. That is,

. 1 B
Jim sup = logle(t;€)| < -3

almost surely holds forall £ € L}O([—T, 0); R*) where 3> 0
is the the unique root of the equation (31).

Having obtained the analysis results in Theorem 1, we
are now ready to tackle the corresponding synthesis prob-
lem. That is, we need to derive the ezplicit expression of
expected filter gains and propose a practical design pro-
cedure. It should be pointed out that, in most literature

concerning nonlinear filtering, the solution to the nonlinear

filtering problem has not been given as an explicit repre-
sentation.
For presentation convenience, we further define

N
I = ATR+PA+ Z”ﬁij + (e1i + €24 + £3:) P?
j=1
+(eqi afy; +eg afe ) + Qs (32)
N
g = ATP+PA+ Em}‘} + (E1i +&2i + £3:) F?
=1
+en AfiAai + (657 @i + €5, 030 T 537 @a:)]
- 54110Tcw (33)
0; = (B pudl P paanal By pmosmld] (34)

where (); is defined in (19).

In principle, our task now consists of two parts. One is
to find the necessary and sufficient conditions for the exis-
tence of filter gains K; such that there exist positive definite
matrices F; satisfying (18), and the other one is to express
all expected filter gains in terms of the positive definite
solutions P; and, if any, some other free parameters. The
following theorem accomplishes the above specified task.

Theorem 2: There exist a sequence of positive scalars
{€1i» £2i, €34, €45, t € S} and positive definite matrices P;
such that the matrix inequalities (18) (for i € &) have so-
lutions K; if and only if one of the following two assertions
holds:

(1) There exist a sequence of positive scalars {€14, -+ , €44,
i € 8} and positive definite matrices P; such that Z; < 0
where = is defined in {33).

(2) There exist a sequence of positive scalars {fuz, - , foas,
i € 8} and positive definite matrices P; such that the fol-
lowing set of linear matrix inequalities

T; 0;

. 0
o  —diag{pnil, pid, poil, pail, pail, pail} <

(35)

hold, where
N

Ti= AT P+ PAi+ Y 1P + pai(ady, I — CT Cy). (36):

=1

Furthermore, if '(35) is true for positive scalars
i, B2iy M3i, M4s and positive definite matrices P, all ma-
trices A; meeting the matrix inequalities (18) can then be
parameterized by

Ki = uaiPr'CT 4 2PN 37)
where A; € R**P ig any matrix satisfying
AT < -5 (38)

for eg; = pp; (k=1;2,3,4) and U; € RP*? is an arbitrary
orthogonal matrix (i.e., U;UF = 1I).

Proof: 1t is straightforward to rearrange the matrix
inequality {18) as

~CYKIP, — PK,C; + e PK,KFP, +T; <0, (39)
where T'; is defined in (32), or
[64/ PK; — 64!1/2CT]{51/2P¢K1 - 5;1/2&;-}"]7'
<efc¥o; - T {40)

It is apparent that there exist filter gain mairices K; such
that the inequalities (18) (or equivalently, (40) for i € §)
kold for some positive scalars £1;, €94, €3, £4¢ and positive .
definite matrix F; if and only if the right-hand side of (40)
is positive definite. That is,

N
ATP + P + Z%JP + (Eu + E2i +E31)P
j=1
-1 - -
+er Ay Aa + (e5 aby, + e300l

teglad ) -5/ CTC <0 (41)

or Z; < 0 holds.

Notice that {41) is neither linear on P; nor linear on
€14, £2iy €34, £45. Our next goal is to convert (41) into
an LMI so that the powerful Matlab LMI Toolbox can be
applied. To do this, we continue to rewrite (41) as

T+ 07 <0 (42)
where Y; is defined in (36) (let juq; := ;1) and
Qi = [y Qail, (43)
where
O = g’ AT &R,
—1/2 1/2

Qo = [521' a11id 53/2Pa' 53; a22iI]-

It follows from Schur Complement Lemma that (42) holds
if and only if the following inequality holds:

T,
[ af -1 ] <0. (44)
Let .
pri =, k=1,2,3,4. (45)
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Pre- and post-multiplying the inequality (44) by
diag{I,e /2,5 2L eg L, e5 P e P 1,571}

yield (35). This proves the first part of this theorem.

Suppose now that (35} is true. Note that the dimension
of the filter gain K; is n x p and p < n. From (40) and the
definition of A; € BR"*P in (38), we have

sl PiR—eg PRV Pk =3 "CTIT = AT (46)
It then follows from [15] that {46) holds if and only if

e’ PK; — e *cT = AU, 47)
where U; € BP*? is an arbitrary orthogonal matrix. There-
fore, the expression (37) follows from (47) immediately, and
the proof of this thecrem is complete. |

As a summary, we give our main results as follows that
are easily derived from Theorem 1 and Theorem 2.

Theorem §: Consider the nonlinear jump state delayed
system (1}-{3) with the nonlinear filter (7). I there exist
a sequence of positive scalars {p;, pi, as, pas, t € S}
and positive definite matrices P; (i € S) such that the
LMISs (35) hold, then the filter {7) with its parameter given
in (37) will be such that the dynamics of the estimation
error (L.e., the solution of the error-state system (15)) is
stochastically exponentially stable in the mean square.

Remark 2: The solution to the addressed filter design
problem for nonlinear jump time-delay systetns is given in
Theorem 3. Note that the design procedure of the filter pa-
rameters depends solely on the feasibility of the LMIs (35)
that are linear on the scalar variables p; > 0, pg; > 0,
fai > 0, pag > 0 and the matrix variable P; > 0. Fortu-
nately, with the recently developed Matlab LMI Toolbox
[5], we can check the solvability of the LMIs (35) readily
and reliably. This makes our proposed design approach
very practical.

Remark 8: We can see that, if the set of desired filter
gains is not empty, it must be very large. We may utilize
the freedom (such as the choices of matrices A; and U;) in
the filter design to improve other system properties. One
of the future research topics is to exploit such remaining
freedom to achieve the specified reliable constraint on the
filtering process. Also, we point out that it is not difficult to
obtain parallel results for the muiti-delay case, and for the
case where there are bounded nonlinearities and uncertain
disturbances. The reason why we discuss the relatively
simple system (1)-(3) associated with (4)-(6) is to make
our theory more understandable and to avoid unnecessarily
complicated notations.

The simulation results, which verify that our expected
performance is well achieved, are omitted here due to space
limitation.

1V. CONCLUSIONS

In this paper we have investigated the filier design prob-
lem for a class of nonlinear time-delay systems with Markov

jumping parameters. Both the filter analysis and design is-
sues have been discussed in detail by means of linear matrix
inequalities. We have derived the existence conditions as
well as the analytical parameterization of desired filters.
The method relies not on the optimization theory but on
Lyapunov type stochastic stability results that can guar-
antee a mean square exponential rate of convergence for
the estimation error. It has been emphasized that, the
desired exponential filters for this class of nonlinear time-
delay systems, when they exist, are usually a large set, and
the remaining freedom can be used to meet other expected
performance requirements.
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