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Nonlinear Filtering for State Delayed Systems 
with Markovian Switching 
Zidong Wang, James Lam and K. J. Burnham 

Abstmct-This paper deals with the  Altering problem for 
a general class of nonlinear t imedelay  systems with Marko- 
vian jumping parameters. The  nonlinear t imadelay stochas- 
t ic  systems may switch b o m  one to the  others according to 
the  behavior of a Markov chain. The  purpose of the  prob- 
lem addressed is to design a nonlinear full-order fllter such 
tha t  t he  dynamics of the  estimation error is guaranteed to 
he stochastically exponentially stable in t he  mean square. 
Both fllter analysis and  synthesis problems are investigated. 
SuWcient conditions are  established for the  existence of the  
desired exponential Rlters, which are expressed in terms of 
the  solutions t o  a set of Linear Matrix Inequalities (LMIs). 
The explicit expression of the  desired filters is also provided. 

Keywords- Nonlinear Altering; Stochastic exponential sta- 
bility; Nonlinear systems; Markovian jump  systems; T i m e  
delay systems; Linear matrix inequalities 

I. INTRODUCTION 

Nonlinear filtering is one of the important issues in signal 
processing, and has been an active research area over the 
past three decades. Some recent representative work on 
nonlinear filtering in the deterministic case can be found 
in [4], [lo]. For the stochastic case, the nonlinear filtering 
problem has been extensively studied, see [6] for a survey. 
In particular, the nonlinear filtering problem was investi- 
gated in [17] through the concepts of observers for stochas- 
tic nonlinear systems, and an important stochastic stability 
approach to designing the obsenws with guaranteed con- 
vergence was developed. 

It is now well known that the delayed state is very often 
the cause for instability and poor performance of systems. 
In the past few years, we have seen an increasing interest 
in the controller as well as observer designs for linear sys- 
tems with certain types of time-delays, see [ll], [15], [16] 
for more details. However, the nonlinear filtering problem 
for general time-delay stochastic systems has received very 
little attention. In [14], the nonlinear filtering problem was 
studied for uncertain timedelay stochastic systems where 
the nonlinearities were introduced in the form of additional 
nonlinear disturbances. 

On the other hand, many physical systems arc subject 
to frequent unpredictable structural changes, such as ran- 
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dom failures, repairs of sudden environment disturbances, 
abrupt variation of the operating point on a nonlinear 
plant, etc. Markovian jump systems (MJS), which com- 
prise an important family of models subject to abrupt var- 
ations, are very often used to describe the above class of 
systems. In the past decade, the optimal regulator, con- 
trollability, observability, stability and stabilization prob 
lcms have been studied for jump linear systems (JLSs), see 
e.g. [Z], [3], [13] and references therein. Also, the filtering 
problem for JLSs has recently gained initial attention, see 
e.g. [12]. 

In practice, a nonlinear system with Markovian jump- 
ing parameters may be more reasonable to account for the 
nonlinearities and structural changes. To the best of the 
authors' knowledge, so far, there have been very few pa- 
pers dealing with filter design problem for general nonlin- 
ear time-delay systems with or without Markovian jump 
parameters. This situation encourage us to study the a- 
tering problem for a class of nonlinear timedelay systems 
with Markovian switching. 

This paper is concerned with the exponential filtering 
probleni for n o n h e x  jump timedelay systems. Our aim is 
to design a nonlinear full-order filter such that the dynam- 
ics of the estimation error of each system mode is stochas- 
tically exponentially stable in the mean square. We show 
that both the filter analysis and the filter synthesis proh 
lems can be solvcd in terms of the solutions to a set of 
linear matrix inequalities (LMLs, see [l]). Therefore, in our 
study, the powerful Matlab LMI toolbox ([5]) can be ideally 
employed to facilitate the fdter design problem. 

Notation. We let h > 0 and C([-h,O];R") denote the 
family of continuous functions p from [-h,O] to Rn with 
the norm IlplI =  SUP_,^,^, lp(S)l, where I I is the Eu- 
clidean norm in R". The operator norm of a matrix A is 
defined by IIAll = sup{lAzI : 121 = 1) = ,,'- 
where A,,(.) (respectively, A,,(.)) means the largest 
(respectively, smallest) eigenvalue of A. Moreover, let 
(Ci,F,{Ft}t?o,P) be a complete probability space with a 
filtration {Ftt)t>o satisfying the usual conditions (i.e., the 
filtration contains all P-null sets and is right continuous). 
Denote by Lgo([-h, 01; R") the family of all Fo-measurable 
C([-h, 01; Rn)-ducd random wiables = {((S) : -h 5 
0 5 0) such that S U P - ~ < ~ ~ ~ I E I ( ( B ) I P  < CO where E{.} 
stands for the mathematic&xpectation operator with re- 
spect to the given probability measure P. 

11. PROBLEM FORMULATION AND ASSUMPTIONS 

Let {r(t) ,  t _> 0) be a right-continuous Markov process 
on the probability space which takes values in the finite 
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space S = {1,2, .  . . , N} with generator Il = (T;~) ( i , j  E S) 
given by 
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r i j A + o ( A )  if i # j  
1 + y;jA + o(A)  if i = j P{r( t  + A )  = j lr ( t )  = i }  = 

where A > 0' and lima+o o ( A ) / A  = 0, rij 2 0 is the 
transition rate from i to j if i # j and 7;; = - Cjfi ~ i j .  

Let us consider a nonlinear state delayed jump system 
in a k e d  complete probability space (Cl, +, {+ t } t>o ,  P )  d e  
scribed by: 

= f(.(t),u(t),r(t)) + , g ( 4  - T) ,T( t ) )>  (1) 
= d t ) ,  r(t)  = O), t E [ET,  01, (2) 

Y(t) = h(z(tLr(t)) ,  (3) 

where s(t) E R" is the state, u(t) E R'" is the deterministic 
input, y(t) E RP is the measurement output, and f(., ., .) E 
P, g(., .) E R", h(., .) E iwp are nonlinear vector functions. 
T denotes the state delay, p(t) is a continuous vector Valued 
initial function. 

Assumption I: For any k e d  system mode r(t)  = i E 
S, the nonlinear vector functions f(.,., ,), g(,,.), h(.,.) 
are assumed to  satisfy f(O,O,r(t)) = 0 ,  y(O,r(t)) = 0 ,  
h(O,r(t)) = 0 and 

1g(a(t - T )  + u,r(t)) - g ( d t  - TI, r ( t ) )  

Ih(z(t) + u,r(t))  - s ( z ( t ) , r ( t ) )  

- A d r ( t ) ) ~ l  5 a z z ( . ( t ) M ,  (5) 

-c(r(t))gl 5 adr(t))lol, (6) 

where A(r( t ) )  E R"'", B(r(t))  E R"'"', Ad(r(t)) E Rnx", 
C(r(t))  E Rpx" are known constant matrices, U E R", 
6 E K" are vectors, a ~ l ( r ( t ) ) ,  azz(r(t)), and ass(r(t))  are 
known positive constants. 

Remark 1: The system (1)-(3) is called anonlinear time- 
delay system with jumping parameters, and can therefore 
be utilized to describe many important physical systems 
subject to nonlinearities, time-delay, random failures and 
structural changes. The nonlinear descriptions (4)-(6) (see 
[17]) reflect the "distance" between the originally nonlinear 
model (1)-(3) and the 'hominal" linear model whose sys- 
tem parameters are (A(r( t ) ) ,B(r( t ) ) ,Ad(r( t ) ) ,  C(r(t))) .  

Throughout this paper, we shall employ the full-order 
nonlinear filter being of the following structure 

%t) = f(i(t),u@),r(t)) + g ( f ( t - ~ ) , r ( t ) )  

+ K(r(t))b(t) - h(f(t),r(t))l (7) 

where 5 is the state estimate and the constant gains K ( r ( t ) )  
are the filter parameters to be designed. 

Notice that the Markov process {r ( t ) ,  t 2 0) takes Val- 
ues in the finite space S = {1,2, .  . . , N}. For notation 

convenience, we write: 

A(i)  :=Ai, Ad(i )  := Ad;, C(i )  := C;, (8) 
U l l ( i )  := all;, azz(2) := a22;;, a33(i) := a33;. (9) 

(10) 

Let the error state be 

e( t )  = z(t)  - % ( t ) ,  

then it follows from (1)-(3) and (7) that 

= f(z(t),u(t),r(t)) - f ( W , 4 % r ( t ) )  
+ g ( z ( t - T ) , r ( t ) )  - M -  T ) > T ( t ) )  

- K(r( t ) ) [h(d t ) , r ( t ) )  - M W , r W l .  (11) 

Now we shall work on the system mode r( t )  = i, Vi  E S. 
To continue, we introduce the following definitions: 

li(t) :=f(.(t),u(t),i) - f t w , m i )  
- A(i)e(t) ,  (12) 

- Ad(i)e(t -.TI, (13) 
m i ( t - 7 )  : =g (z ( t -T ) , i )  - g ( i ( t - T ) , i )  

ni(t) :=h(z(t),i) - h(?(t),i) - C(i)e(t). (14) 

Then, we can obtain from (8)-(14) that 

i(t) = (Ai - K;C;)e(t) + Adie( t  - T )  + li(t) 
+ m& - T )  - K;ni(t) .  (15) 

Assumption 2: For all C E [-.,a], there exists a scalar 
7 > 0 such that le(t + ()I 5 qIe(t) l .  

As mentioned in [3], Assumption 2 is not restrictive since 
the scalar 7 > 0 can be chosen arbitrarily. Now, let e( t ;<)  
denote the state trajectory from the initial data e (@)  = 
E ( @ )  on -T 5 @ 5 0 in L$o([-r,O];Rn). It is clear from 
our assumption (1) that the system (15) admits a trivial 
solution e( t ;  0) L 0 corresponding to the initial data 5 = 0. 

Definition 1: For everyt E L > o ( [ - ~ , O ] ; P ) ,  the trivial 
solution of (15) is asymptotically stable in the mean square 
if 

lim Ele(t;()I2 = 0 ;  (16) 
t t m  

and is exponentially stable in the mean square if there exist 
constants U > 0 and B > 0 such that 

Ele(t ;c) IZ 5 a e d t  sup w((@)l2. (17) - .g<o 
The primary objective of this paper is to  provide a prac- 

tical design procedure for an exponential filter of the non- 
linear timedelay system (1)-(3). In other words, we shall 
design the filter parameter Ki such that the dynamics of 
the estimation error (i.e., the solution of the system (15)) 
is guaranteed to be stochastically exponentially stable. 

111. MAlN RESULTS AND PROOFS 

Lemma 1: Let a E R", y E R" and E > 0. Then 

ary +YTS 5 EXTX + &-'yTy. 
The following theorem, which acts as a main key for solv- 

ing the addressed nonlinear filtering problem, shows that 
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Considering (23)-(25), we can obtain from Lemma 1 that the exponential stability of a given filter for the n o d i -  
ear time-delay stochastic system (1)-(3) can be guaranteed 
if positive definite solutions to a set of modified algebraic 

ities) are known to exist. 
Theorem 1: Let the filter parameters K; be given. If 

thereexistsasequenceofpositivescdars {Eli,hirE3i,E4,,i E 
S} such that the following matrix inequalities 

eT(t)El;(t) + lT(t)Ee(t) 
Riccati-like matrix inequalities (quadratic matrix inequal- 5 eT(t)(E& + ~ ; ! a ? ~ ) e ( t ) ,  (26)  

eT(t)P;m;(t - T )  + mT(t - .r)Pie(t) 

-eT(t)P&ini(t) - nr(t)K,TP;e(t) j 
5 E3;eT(t)P:e(t) +~;:&;e~( t  - T)e ( t  - T ) ,  (27) 

5 E4ieT(t)(PiK,KTP;)e(t) + EG'&e'(t)e(t). (28) 
N 

(A; - Kicj)Tri + ~ 3 . 4 ;  - +E-& 
For simplicity, we denote j=1 

+P;[(Eli + €2; + E 3 i ) I +  E4iKIKTlPi 
N 

+(E;:& + EL:uL~)I + Q; < 0 ( la)  
where j=1 

(19) 
have positive definite solutions P; > 0, then system (15) is 
exponentially stable in the mean square. 

Pmof: Fix 5 E L$O([-~,O];R") arbitrarily and write 
e(t;E) = 
stochastic Lyapunov functional V(.) : R" x HS, x S + Et+ 
as dV(e(t) , i)  5 eT(t)II;e(t) 5 -Amin(-IIi)eT(t)e(t). (30) 

ni := (A; - KcC;)~P;  + Pi(A; - K;C;) + X ~ i j P j  

+Pi[(Eii + E z i  +%)I + E4;K;KTIPI 
Q..- , .- El: - A  %Ad< + E i : & i I  

+(E;la:l, + E;1u:3i)~'+ E , l ~ : i ~ d i  + E&&,~, (29) 

then (18) and (19) result in that II; < 0. 
For (e(t) , t)  E E" x k, we define the Substituting (19), (22) and (26)-(28) into (21) yields 

V(e( t ) , r ( t )  = i )  :=V(e(t),t,i) It follows from Assumption 2 that 

5 

5 

t 

-Amin(-ni)eT(t)e(t) , 

-Amin(-ni)le(W 
Am,(P;)le(t)12 + v2Am,(Qi)le(t)12 

dV(e( t ) , i )  =e*(t)Pie(t) + l-, eT(s)Q;e(s)ds, 

(20) V(e( t ) , i )  eT(t)P;e(t) + 6, eT(s)Qie(s)ds 
where Pi is the positive definite solution to the matrix in- 
equality (18) and Qi > 0 is defined in (19). 

A m h - W  
Am,(Pi) + VZAm,(Qi) 

The weak infinitesimal operator d (see [7]) of the 
stochastic process {r(t), e(t)} ( t  2 0)  is given by 

._ .- -n 
dV(e( tLr( t ) )  

1 

= lim ~ [ ~ V ( ~ ( t + a ) , r ( t + h ) ) l ~ ( t ) , ~ ( t )  = i }  
A+O 4 

-V(z(t),r(t) = i)] 
= eT(t)[(A, - KjCi)TPi + P;(A; - KiC;) 

+ 1 ~ j p j  + ~ i ] e ( t )  

+ eT(t)P;Adie(t - T )  + eT(t - TjATiPie(t) 
+ e T ( t ) P i [ l i ( t ) + m i ( t - ~ ) - ~ i n i ( t ) ]  
+ [l;(t) +mi(t - r )  - K,ni(t)lTPje(t) 
- eT(t - T)Qie(t - T) .  

N 

j=1 

(21) 
Let E I ~ ,  E Z ; ,  E Q ~ ,  €4, be positive scalars. It then follows 

from Lemma 1 that 

eT(t)P;Adie(t - 7) + eT( t  - T)AziPie(t) 
5 ElieT(t)j'f:2e(t) + €,'eT(t - T)Az;Adie(t - T) .  (22) 

Also, it results from the Assumption 1, the definitions 
(10),and (12)-(14) that 

and therefore n > 0 and dV(e( t ) , i )  5 -d'(e(t),i).  Then, 
similar to the proof of Theorem 1 in [3], by employing the 
Dynkin's formula and the Gronwdl-Bellman lemma, we 
can prove that v V ( e ( t ) , i ) }  5 e-stV(e(0),i). It then fol- 
lows that the nonlinear jump stochastic time-delay system 
(15) is asymptotically stable in the mean square. To show 
the expected exponential stability (in the mean square) of 
the system (15), we need to perform some standard ma- 
nipulations on the relation (30) by utilizing the technique 
developed in [a], [9]. The details are along the similar line 
of the proof of Theorem 2.1 in [9],  and are, thus omitted 
here. We just mention that, for the exponential stability 
of (15), the required constant B > 0 in (17) is the unique 
root of the equation 

Amin(-II;) -BA,,(Pi).- PTAmm(Q;)ea' = 0,  

and the required constant a > 0 can be determined by 

(31) 

a := X;fn(Pi)[A,(Pi) +TA,,(Q;)(~ +rePr)] 

This completes the proof of Theorem 1. w 
The following corollary reveals that; for the nonlinear 

time-delay jump system (15), the exponential stability in 
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the mean square also implies the almost surely exponential Furthermore, if ' (35)  is true for positive scalars 
stability. The proof can be found in [8]. PI;, p z i ,  p3ii p4i and positive definite matrices Pi, all ma- 

Corollary I: Under the same conditions as in Theorem trices Ki meeting the matrix inequalities (18) can then be 
1, the nonlinear timedelay system (15) is almost surely parkneterized by 
exponentially stable in the mean square. That is, 

1 P K, = p4%P;'C: + pi?P;'A,U, (37) 
lim sup-logle(t;()I 5 -- 

2 t t m  t where A, E RnxP is any matrix satisfying 
almostsurelyholdsforall~ E L$o([--r,O];Iw") whereB> 0 
is the the uniaue root of the equation (31). , ,  

Having obtained the analysis results in Theorem 1, we 
are now ready to tackle the corresponding synthesis prob 
lem. That is, we need to derive the q l i c i t  expression of 
expected filter gains and propose a practical design prw 
cedure. It should be pointed out that, in most literature 

for ~ k ;  = 
orthogonal matrix (i.e., U;UT = I ) .  

. inequality (18) as 

(k = 1;2,3,4) and U, E RPX* is anarbitrary 

It is straightforward to rearrange the matrix Proof: 

conceming nonlinear filtering, the solution to the nonlinear. 
filtering problem has not been given as an explicit repre 
sentation. 

For presentation convenience, we further define 

-CTKTP; - PiK;C; +E&K;KTP; + I?; < 0, (39) 

where ri is dehed  in (32), or 

[€:JzPiKi - €,'/'C,'][€:i"P;K; - €4;1/2CT]T 

< EZ'C~C, - r;. (40) 

It is apparent that there exist filter gain matrices K, such 
that the inequalities (18) (or equivalently, (40) for i E S) 
hold for some positive scalars E ~ ; ,  EZ; ,  c3;, c4i and positive 
definite matrix P; if and only if the right-hand side of (40) 
is positive definite. That is, 

N 

ATP; + E A ;  + 1 y ; j P j  + (€1; + €2; + EQ;)P,? 
i=1 

where Q; is defined in (19). +E;; 1 Adi T A .  d, + (E;'& +E,'a;,, 

(41) 

Notice that (41) is neither bnear on pi nor linear on 

In principle, our task now consists of two parts. One is 

tence of filter gains K; such that there exist positive definite 

aU expected filter gains in tcrms of the positive definite 
d u t i o m  pi and, if any, Some other free parameters. The 
following theorem accomplishes the above specified task. 

Theorem 2: There exist a sequence of positive scalars 

to find the necessary and sufficient conditions for the exis- 

matrices pi sati.ifying (181, and the other one is to express 

+EZlu;,i)l - €q;c:C; < 0 

or E; < 

E ~ ; ,  E*;, z3i, €4;. Our next goal is to convert (41) into 
an LMI so that the powerful Matlab LMI Toolbox be 
applied, To do this, we continue to rewrite (41) as 

{el;. EZ;, EQ;, ~ q i ,  i E S} and positive definite matrices P; 
such that the matrix inequalities (18) (for i E S) have SD 

lutions K; if and only if one of the following two assertions 
holds: 
(1) There exist a sequence of positive scalars { ~ l i ,  . . , ~4;, 

i E S} and positive definite matrices Pi such that Si < 0 
where 3 is defined in (33). 
(2) There exist a sequence of positive scalars {pl;,  . . , p4;, 
i E S} and positive definite matrices P; such that the fol- 
lowing set of linear matrix inequalities 

hold, where 
N 

Ti := ATP; + P;Ai + y<jPj + p4;(ag3;Z - CTC;). (36) 
j=1 

ri +R,R: < o (42) 

where T; is defined in (36) (let p4; := €7;) and 

n< := [RI, cl,,], (43) 

where 

l lZp. - l l 2 ~ T  
%I = [Eli I €1; d; z i  Pal, 
nzi = [E;1/2allii E ~ " P ;  E ; ~ / ~ u ~ ~ ~ ~ I  

It follows from Schur Complement Lemma that (42) holds 
if and only if the following inequality holds: 

Let 
phi :=EL), k = 1,2,3,4.  (45) 
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Pre- and post-multiplying the inequality (44) by 

yield (35). This proves the first part of this theorem. 
Suppose now that (35) is true. Note that the dimension 

of the filter gain Ki is n x p and p 5 n. From (40) and the 
definition of A; E RnXp in (38), we have 

It then follows from [15] that (46) holds if and only if 

where Ui E lwpxP is an arbitrary orthogonal matrix. There- 
fore, the expression (37) follows from (47) immediately, and 
the proof of this theorem is complete. w 

As a summary, we give our main results as follows that 
are easily derived from Theorem 1 and Theorem 2. 

Theorem 3: Consider the nonlinear jump state delayed 
system (1)-(3) with the nonlinear filter (7). If there exist 
a sequence of positive scalars {p l ; ,  p2i r  psi, p4i, i E S} 
and positive definite matrices P; (i E S) such that the 
LMk (35) hold, then the filter (7) with its parameter given 
in (37) will be such that the dynamics of the estimation 
error (i.e., the solution of the error-state system (15)) is 
stochastically exponentially stable in the mean square. 

Remark 2: The solution to the addressed filter design 
problem for nonlinear jump time-delay systems is given in 
Theorem 3. Note that the design procedure of the filter pa- 
rameters depends solely on the feasibility of the LMJs (35) 
that are linear on the scalar variables p ~ i  > 0, p2; > 0, 
psi > 0, pqi > 0 and the matrix miable Pi > 0. Fortu- 
nately, with the recently developcd Matlab LMI Toolbox 
151, we can check the solvability of the LhfJs (35) readily 
and reliably. This makes our proposed design approach 
very practical. 

Remark 3: We can see that, if the set of desired filter 
gains is not empty, it must be very large. We may utilize 
the freedom (such as the choices of matrices A; and U;) in 
the filter design to improve other system properties. One 
of the future research topics is to exploit such remaining 
freedom to achieve the specified reliablc constraint on the 
filtering process. Also, we point out that it is not dfficult to 
obtain parallel results for the multi-delay case, and for the 
case where there are bounded nonlinearities and uncertain 
disturbances. The reason' why we discuss the relatively 
simple system (1)-(3) associated with (4)-(6) is to make 
our theory more understandable and to avoid unnecessarily 
complicated notations. 

The simulation results, which verify that our expected 
performance is well achieved, are omitted here due to space 
l i t a t i o n .  

IV. CONCLUSIONS 
In this paper we have investigated the filter design prob 

lem for a class of nonlinear time-delay systems with Markov 

jumping parameters. Both the filter analysis and design is- 
sues have been discussed in detail by means of linear matrix 
inequalities. We have derived the existence conditions as 
well as the analytical parameterization of desired filters. 
The method relies not on the optimization theory but on 
Lyapunov type stochastic stability results that can guar- 
antee a mean square exponential rate of convergence for 
the estimation error. It has been emphasized that, the 
desired exponential filters for this class of nonlinear time- 
delay systems, when they exist, are usually a large set, and 
the remaining freedom can be used to  meet other expected 
performance requirements. 
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