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Local Stability of Limit Cycles for Time-Delay seen, in the stability analysis, a limit cycle is always assumed to exist
Relay-Feedback Systems a priori.

In this brief, we consider the local stability of limit cycles for a time-
delay relay-feedback system with the relay containing asymmetric hys-
teresis. The relay is not required merely to switch two times a period

Abstract—This brief is concerned with the local stability of limit cy- f"md the asgumed limit CyCI_e is not confingd l_[o be symmetric. BeSide‘_s’ it
cles for linear systems under relay feedback, for the cases where the linear iS NOt required that the trajectory of the limit cycle is nontangent with
system includes a time-delay in its dynamics and the relay can possess asymthe switching planes at the switching instants. From an engineering
metric hysteresis. The limit cycle considered can be asymmetric, have more point of view, time-delay systems are of considerable interest (most

than two switchings a period, zero output derivatives at the switching in- ; : : : :
stants. It shows that if a certain constructed matrix is Schur stable, then, industrial processes have time delay). Theoretically, the nonzero time

the local stability of the considered limit cycle is guaranteed. The effective- de!ay ensures a system tr_ajeCtory evolves _unique_ly at the intersecting
ness of the presented results is illustrated by a numerical example. points. Also, the nonzero time delay makes it possible to relax the non-
Index Terms—Hysteresis, limit cycles, local stability, relay-feedback sys- tar?gent andltl.on of the trajegtory of the “.mlt Cyclg at the. traverSIr?g
tems, time delay. points. This relies on the continuity at the intersecting points, and in-
tuitively it is the “overshoot” effect. For delay-free systems, the non-
tangent condition at traversing points has to be assumed, like the case

Chong Lin, Qing-Guo Wang, Tong Heng Lee, and James Lam

|. INTRODUCTION considered in [1], [8], and [10]. Such a condition makes the local sta-
Relay-feedback systems have been widely employed in a ratlpgganalis:;slslmpler. We willincludes this case for delay-free systems
emark 3.1.

broad range of settings for many decades. One of the important p'Qr- AR . . .
ticularity of relay-feedback systems, as well as many other nonlinearTh'S brief is organized as follows. Section Il is the problem formula-
ign. Section Il presents a sufficient condition for the local stability of

systems, is that periodic motions may occur in the trajectories. Th Qo

periodic orbits are often termed limit cycles if they are isolated arfy/Mit cycle with two switchings a period. Section IV gives the exten-
have a limiting nature that attracts and/or repels nearby trajectorign result for limit cycles with more than two switchings a period. An

The limit cycle property is very useful in modern control appliCationglustrative example is also given. This brief is concluded in Section V.
such as automatic tuning of controllers and identification [2], [3], [15].

This activates the intensive investigation for limit cycle behaviors. The Il. PROBLEM FORMULATION AND PRELIMINARIES
involved study consists in establishing their existence, determining)n, this brief, the following notations are adopted.
their frequency and form, investigating their stability and so on. Fgf Field of real numbers.
single-input single-output (SISO) systems, the existence problggm n-dimensional real Euclidean space.
was investigated early by describing the function method [4], [13}. Identity matrix.
Exact methods are reported recently in [1] to determine limit cycleg—1 Inverse of matrixA.
with two switches a period. This type of periodic orbits is revisiteq( 4), 5(.4) Eigenvalues, spectral radius of square mattix
and investigated further in [14] for delay-free systems. Another woik v 3 Belong to, for all, sum, respectively.
[8] presents a sufficient condition for the existence of a symmetrfc Ll Absolute value (or modulus), spectural norm, re-
stable limit cycle with chattering. For evaluating limit cycle periods spectively.
f(t) = limc_o + f(t —¢€).
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wherex(t) € R", y(¢t) € R, andu(t — 7) € R are the state, output,
and control input, respectively, b, ¢ are constant real matrices or
vectors with appropriate dimensions;> 0 stands for the time delay.
The plant is under relay feedback, as shown in (2), at the bottom of
the page, where, 3 € R with « < 3 stand for the hysteresis;, ,

ug € Randu. # ug. Due to time delay- > 0, we specify the initial
functionw(t) for ¢ € [—,0] as

() = ug, ify(0)>a« //
o, If y(0) < a.

We call (1)—(3) a relay-feedback system and denote Eby
We see for syster®, if 7 > 0 then, the existence and uniqueness '\
of trajectories is guaranteed.df= 0, the existence and uniqueness is X,
always guaranteed if > j3;if @« = 3, the existence of solutions is
discussed in [6]. Note that with the definition of relay as above or in
[6], even if existence is guaranteed, unigueness is not.
We define the switching planes as

y@®
So ={6ER": ct =0} 4) ——~ extt cx’ ()
Syi={¢ €R": c¢ = A}, O A\ L
7 - '\\ %

LetSia := {£ €R" : ¢ > a}andS_, := {£ € R" : € < a}, \ 1 S/
and letS; s andS_ g be defined similarly. Starting at time= 0 with 15=0 i /,| +THL, “
y(0) > « (respectivelyy(0) < «), if a trajectory of systenkt in- Y
tersectsS,. (respectivelySs) atz. (respectivelys) from Sy (re- a N4
spectivelyS_ ), we call the state,, (respectivelyy:z) anintersecting S hy T LSS TR
point The time corresponding to the intersecting point is caitheer-
secting instantlt should be stressed that in our convention, if a trajec- (b)

tory Inter_seCt§‘” (respectivelyss) at‘l"‘. (respec_tlvely;v/g). from Si.“ Fig. 1. (a) The trajectories of*(t) andz(¢) starting fromz, € R.. (b) The
(respectivelys. 5), the stater (respectivelyy ;) isnotanintersecting (rajectories of-* () (solid) andez(#) (dashed).

point and the corresponding time is not intersecting instant, since such

intersecting does not cause any switch.{n). If a trajectory not only ~ Proposition 3.1: Assume thatd has no roots in the imaginary axis.
intersects but also travers8s (respectivelyS;) at . (respectively, Ifthereisalimitcyclein Form 1, theh,, andh; satisfy the following:

xg) from Si. (respectivelyS_z) to S_. (respectivelySy ), we call o= (I _ cA(zr+ha+hB))—1
such an intersecting point, (respectivelyxs) atraversing pointThe
time corresponding to the traversing point is calietversing instant hotrths 2rthaths
It should be noted that far > 0, at traversing instant, the relayt— ) % </h ¢ buads £ /h frth ¢ bupds
remainsus (or u.) for a time duration of- after which it changes to i hy ° ?
o (Orug). + / ‘ eASbugcls)
J0
lll. L OCAL STABILITY OF LIMIT CYCLES 8 =c (I _ 6,4(27+h0+;,ﬁ))*1

In the local stability analysis for limit cycles of systéinwe assume hatrths 2rthathg
that there exists a limit cycle™ of the following form. X </ e bugds + / e buads

Form 1: The limit cyclez* makes the relay switch twice a period ha Jhatrths

with traversing pointse}, € S, andxzj € Sg. The period is(7 + N /ha ey, d@) ©
ha)+ (7 +hg) with b, > 0andhs > 0, wherer + h,, (respectively, Jo o
T + hg) is the time forz" to move fromz?, to z; (respectively, from and.’ anda? are given by
wptowa). i ] , . _ AQ@rtha+hp)) !

For illustration, see Fig. 1 wher€ (¢) denotes the system solution ~ 7o« = (I - )
corresponding to the limit cycle®. As for determining the existence hotrths 2rthoths
and the period of a limit cycle of the above form with = hz, a X </ eMbuads + / e bugds
numerical method is stated in [1], and, for= 0, the result is further Jhs Shatrthg
developed in [14]. For determining a limit cycle in Form 1, the fol- L
lowing is a straightforward necessary condition. + /0 ¢ bug ds)

ug, if y(t) > 3, 0ry(t) > aandu(t_) = ug,
w(t) =< ta, if y(t) < o, ory(t) < gandu(t_) = ua (2)

ug Of o, If y(t) = aandu(t—)=wugory(t) =g andu(t_) = wa
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ah = (I - e’“(ZTJF”a*’”‘ﬁ))_l We denote
/‘ha+r+h,3 /1sb p N /‘27—+ha+hg Asb p 3(6@3) = {5 € Sa . ||£ - ii” § E} (15)
X e “bugds e U dSs - .
ha : hotrthg Sewy) 1= {€esSs: ||E - w/3|| <e}. (16)
i o Asp ds 7 Now, we analyze the trajectory starting from a nearby pointjo
o R By continuity, if||zo — x5 ]| is small enough, then the trajectoryaft)

Proof: By assumption, we see that ¢ is invertible fort # 0. starting fromzo will traverseS,, at a nearby point te},. Besides, the

The desired result follows easily from the expressions of the solutidfl'® taken by the trajectory to move to the traversing point is close
corresponding to the limit cycle. g tohg. To study the local stability of*, we need to verify the occur-

Without loss of generality, we séf = 0 corresponding to the time "€NC€ of successive switchings. The next lemma is useful, which char-
instant when the trajectory of* makes the relay switch from, to acterizes a fixed scalas, > 0 such that any trajectory evolving from
us, see Fig. 1. We define traversing points iS., o) (orS((éO,IS)) will traverseSg (or Sa.).

) n N Lemma 3.2: For any6y € (0, rmia], there exists a scalag, > 0
Re:={6 € R":|I¢ - x| < ) - - gt
such that the trajectory evolving from any traversing poirin .- )

={é€eR":(=ai+A,AeR"JA| <} 8 (orS(QO,IE)) (Here, set the traversing instant to be zero.) will traverse
Sincecz§ > «, let a scalag; satisfy Sg (orS.), and the traversing instantf ¢i;av satisfieqtiay — ha| <
=1 : o (Of |teray — h| < 60).
O < < . 1, — ). 9 0 B i
e <llell™ (exg = a) ©) Proof: See Appendix. O

Then, from (3),u(—7) = ug holds for any trajectory starting from | ot the first traversing pointbe(t;) € S... Then,||(t;) —«7|| can

Ry ) o . be made arbitrarily small by choosing close toxg. The next lemma
To achieve our stability result, we need to establish some lemmas,cerns the second traversing point.

first. Let Lemma 3.3: There existses € (0,¢;] such that any trajectory

starting fromR., will traverseS; after the first traversing instant,
and the second traversing poiftt; + 7 + ¢») satisfies

Fs(t — ha)c>
fﬂ(tz - h(y)

N={01.....,n—1). (10)

The first lemma specifies two integers, nz € A", which will be used .
in the development. ety +7+t2) —ap = <I -
Lemma 3.1: For the limit cyclex™ in Form 1, there exist two even

- A(r+t2) (. o
integersn,,ns € N such that xe la(ty) —wa) (A7)
AT 4 cATbug =0, i=0,1,...,n0—1 wherer + ¢, with #; > 0 is the time duration for(#) to move from
Aratl ATa z(t) tox(ts + 7 + t2).
ed jj‘* j_ ed jbug <0 . (1) Proof: See Appendix. O
AT g+ eAdbua =0, j=0.1,....n5 =1 To specify a local stability regioR.., we need the following lemma
cA"PTY L 2% AP hu, >0. (12) as well.

Proof: See Appendix. Lemma 3.4: Given a positive integep, suppose thatl;, ©;; €

Itis seen that if., = ns = 0, then, the trajectory of the limit cycle RV (i =12....p;j=12...)andp(A1 4, - 4,) <1.Then,
is nontangent with the switching plane®, andS;, at the traversing [N€re exist¥ > 0 such that for alb.; satisfying||©i; — Ai[| < bo,
points. The conditions in Lemma 3.1 ensures that the vector fields poiff©!dS|I IT;—=, (©1;©2; - -- ©p))|| — 0 ask — cc.
in the “right” direction on both sides of the switching planes, e.g., the Froof: Sincep(Aidz---4,) < 1, there is a scalaf > 0

trajectory of the limit cycle traverses the switching planes. Here, fgHCh that for all©; € R"*" satisfying [|©:]] < 6, it holds

k A/ / Q) . . i
convenience, we introduce some quantities for later uset RorR, || IIj=1 (A1dz2 ==~ 4p + ©,)| — 0ask — co. For this¢ > 0,
define there existdy > 0 such that if||©;; — A;|| < 6o, then the matrix
¢ 0,04, ---0,; is expressed as
Fo(t) :i=(e™ = Ial + / e bugds
0 01;02; - Op; = A1 Az Ap + 8
() i=cF, (T e .
falt) :=cFu(t) y where(; satisfies||(2,]| < 6. This proves the lemma. O
Fs(t) ::(ef“ —Dxy+ / e bugds With the above lemmas in hands, we are now in a position to present
- ‘ 0 the main result.
fa(t) :==cFp(t). (13)  Theorem 3.1: The limit cyclex* in Form 1 is locally stable if
By deflr.ung . p(W W) < 1 (18)
fa(t) =1 fal(t)
t'ln+l —o T tg}% t“n+l Where
1 il . . A" (Axl, +bug)e\  a(rtngy)
_ Anratl, A" by, VvV, =T — B
Y (A" al + A" bug) <0 W < A (A by ) ©
fs(t) f5(t) A"B(AxY 4 bug)c
n = n Wy=T- 87 20 ) Alrtha) 19
trott +=0 =0 fratl 2 CA””(A:L'E + buq) ‘ (19)
1 n « n : L
:(ng——i—l)‘ (cA ot 4 cA “bun) >0 Here,n. andng are even integers as given in Lemma 3.1.
' ' Proof: See Appendix. O

there exist two scalars, > 0 andrj; > 0 such thatf. (t)/t"=*' <
0 and f5(t)/t"=*1 > 0 are continuous on € [—r%,r%] andt €
[—rj, rj], respectively. Let

Theorem 3.1 presents a criterion to check the local stability of the
limitcyclez*. The ideais to find a scalar> 0 such that any trajectory
starting fromR. of the form (8) will tend asymptotically to*(¢) and
Pmin = min {ha,hp, r5, 75} (14) make the relay switch consecutively. SingdV.W,) = p(W, Ws),
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verified by lettingt, = 0 correspond to a time instant when the relay 5|
switches fromus to u. . iL
Remark 3.1: We should make it clear that our results in this brie 5

are for the case > 0. If 7 = 0, the technique developed here is
not applicable due to possible occurrence of multiple trajectories
traversing instant. For = 0, if no, = ng = 0, then Theorem 3.1 still

works. Indeedn., = nz = 0 implies that the limit cycle is nontangent

with the switching planes at traversing instant, like the case considered

in [1], [8], [10]. However, the methods used in [1], [8], and [10] are ncx

applicable to deal with the local stability of limit cycles in Form 1.

IV. EXTENSION

In this section, we give an extension result for the local stability ¢
limit cycles with2¢(g > 1) switchings a period. The limit cycle con-
sidered is as follows.

Form 2: The limit cyclez™ makes the relay switchy times a period
with traversing points:?,; € S. andzj; € Sz (i = 1,2,...,¢9). The
period is}"?_ (7 + hai + 7+ hpgi) with ha; > 0 andhg; > 0 (i =

1873
thenp(W.W1) < 1 is an alternative sufficient condition. This can be" oF j T . T T T T ]
0 = : : -
-051 ; : .
-1t | I i | | 1 I t
35 36 37 38 39 40 41 42 43
(@
15 T T T T T T T
1k
0.5+
ok
1 L L L 1 L L L t
35 36 37 38 39 40 41 42 43
(b)
Fig. 2. (@ The control wu(¢); (b) The trajectories of
a*(t)y = [ai(t) a3(t) 25)]T (vi(t) solid, x3(¢) dash-dot,xs(t)
dashed).

for = to move fromay, to x; (respectively, fromes; t0 @7 ;4 1))
Note thatl’:;(q+1) = élﬁzl.
Similar to Lemma 3.1, there exi8 even integers,;,ng € N,

1=1,2,...,q,such that the following holds forall=1. 2,. .., ¢:
cAt! Ty + cA4':b'zJ,ﬁ =0, 1 =0,1,....nq0 — 1,
Aty 4 cAM el bug <0
cx—’l“rl;v}l + cA'bua =0, t=0,1,...,n3 — 1,

(gl
cA"oTT xpy

+ cA" P bug >0. (20)

The extended stability result in this section is as follows.
Theorem 4.1: The limit cycle in Form 2 is locally stable if for some
k€ {1,2,...,2¢}, itholds

p(WiWi1 o Wi Wa g Wag—y - Wis1) < 1 (21)

where, forl = 1,2,...,¢

A" (Al 4 bug)e
cAral(Axt, + bug)
AP (A + bua)e
cA"B(Axty + bug)

VVzlfl = <I

Wa = (I

Here,hgo = hgq.
Proof: The proof follows a similar line to that of Theorem 3.1
and, thus, is omitted here. O

) AT thpu—1))

) e AT thar) (22)

Finally, we give a numerical example to illustrate the use of our rey ;¢ easy to obtain from (20) that

sults.

Example 4.1: Consider systerx with
1 0 0
A=]-1 -2 1
1 0 -1
1
b=11
1
¢c=[1 0 0]
7 =0.1
a=-0.1
8 =0.2
Ue =2
ug =—1

We check thatd is not Hurwitz, but the system has a limit cycle as
shown in Fig. 2. The limit cycle meets Form 2 with= 2. The period
and the four traversing points are computed to be

ha1 =0.25
hoo =0.25
hz1 =0.65
hge =1.05
[ —0.1
Tra1 = | —0.5
| —0.43
[ —0.1
Too = | —0.39
| —0.3
0.2
2 = | 0.23
L 0.3
0.2
rge — 03
10.44

al = Na2z = ngy = ngz = 0.
We further compute from (22) that\(W,W;W.,W;)
{0,0.0055,0.0743}, giving p(W,W5W,2W;) < 1. Hence, we
conclude from Theorem 4.1 that the limit cycle is locally stable.

V. CONCLUSION

This brief studies the local stability of limit cycles for time-delay
relay-feedback systems. The considered limit cycle is not confined to
be symmetric, and its trajectory is not required to be nontangent with
the switching planes at the traversing instants. Sufficient conditions
are established based on the state-space method. It is noted that the
stability analysis in this brief is based on a small starting redien
How to verify the stability within a large starting region (or even the
whole space) deserves a study. The extensions of our results to MIMO
systems is also very important for future research work.
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APPENDIX froma?, + A € S, , »z) Will traverseS;. Moreover, the traversing
instantr 44,y satisfiedtiray —ho| < 61, and thus|teay —hol| < 0.
Proof of Lemma 3.1 Next, consider traversing points if;. Similarly, for the given
We take the proof of (12) for example. For (11), the proof is S|m|Iaf50 > 0, there existses,o such that any trajectory evolving from
Let the instant = ¢; correspond ta* (t3) = «5. For a sufficiently ~S(es,2.») Will traverse Sq, and the traversing instant + #iray
smallé > 0, we have the following expansion @f( yint € [fﬂ - SatleIeS|‘l'rrm — h/3| < 6o0. The result follows immediately by letting
Sotg 4 6] €5, = min{es 1, €sy2}. O

Proof of Lemma 3.3

=" (tg) + 4t + bun f—t)l+l . . ) .
g Z (i+1 ’ A If [|A+]| is small, the trajectory of(¢) evolving fromz(t1) = Ay +
FO(t — t5)"5+2 x5 € S, will traverseS;, and the time duratiom + > can be made
* approaching + h... Thus, there exists, satisfying0 < e2 < e; such

whereng > 0 is an integer such that that the trajectory of(¢) starting fromR ., will make the time duration
T . T + to satisfy|ts — ho| < rmin. SiNCeca); = ca(ty + 7+ t2) = 5,
cA" xh + cA'bu, =0, i=0,1,...,n5—1 where

cAmAT! 2y + cA"Pbug #0. T \
rh =eAlTtha) ¥ +/ 6A(T+h“_b)b'u,3ds
0

From the Cayley—Hamilton Theorem, it is easy to get thate .

. * * * . ha
Sincecxy = 3, cx™(t) > ffort € (tp,tg + 6] andex™(t) < g for + / eAha=a)p, s
t € [tg — 6,tz), we have Jo
1 n n x(t1 + 7+ t2) :e‘A(T+t2)w(t1) + M=y i
A" (A bua )(t —tg)" ot ! ?
(s + 1)1 (dzp + bua)(t ~ 1) tg o
+cO(t—t)"" T >0,  tE (g 15+ 6] +/ M2y ds (23)
]- AT ng+1 0
(g £100 mred S(Axh + bua)(t —tg)"? after some manipulations, we have
+cO(t—t5)"" "2 <0,  tE€[ts =5 ts). e (p(t)) = 25) + Fa(ta — ha) = 0.
Lettingt — t5 from both sides, we see thag must be even and the Noting that(t, —h, )"#** f‘ (t2—he ) iswell-defined follt, —ho | <
following holds: Pmin, WE arrive at
ngt+l n ] o — ng+l A(T+ta)
cA"P Y 4 A bug > 0, (ts = o) aT! :_(fz h‘,) ce (2(t) - 27). (24)
o el fa(tz = ha)
This proves the lemma. Using (23), we obtain
Proof of Lemma 3.2 ot + T+ t) —afy =TT (a(ty) — k)
Firstly, consider the trajectory of(t) evolving from traversing + (eM2mhe) _ 1y
points inS... The trajectory of:*(¢) is governed by to—ha
. +/ bunds
2 (1) =eMat +/ eA(tfs)buhds Vtell,T TO . .
0 g [0.7] = +t2)(w(t1) —x5)
— At * T A(t—s),, ) Fy(ty — ha) natl
™ (t) =e™tul, —l—/o e bugds + W(tz — ha)8
t—T
+ / 61/1(t7778)b’ltud5 Vte [7-’ T+ hu]_ — <I _ M)
0 fa(ta = ha)
For some’; , satisfying0 < &, < min{h,,, &}, it holds that x T (a(ty) — 27).
ex™(t) < Ve, T+ Do) This completes the proof. O
cax*(t) >p Vit € (T+ha T+ ha + 1] Proof of Theorem 3.1

e’ (7 + ha) =5. Supposep(W,W,) < 1. By virtue of Lemma 3.4, there exists a

The trajectory of:(t) evolving fromz?, + A € S, with small||A[[is ~Sc@larfo > 0 such that for alB;; € """ (i = 1,2;j = 1,2,...)

governed by satisfying||©,; — Wi|| < 6o, it holds || [[5_, (©1;62;)]| — 0 as
B k — oo. In other words, there is a positive integgs such that for all
w(t) =e™ (el + A) + / M pugds Vi€ 0,7] ©:; € R"*" satisfying||©;; — Wi[| < 6o, it holds that
g Notk
o(t) =eM (2% +A)+/ AU by s I] ©ve:|l<1  vi=0.12.... (25)
0 j=1
t—r1
+/ ATy ds Vit E[nT + 6] Forj = 1,2,..., let
9]

ce(t) <B  Vte[0,7+ 8], W(bi,,a28) = AT Hhetony)
whereé, > 0 is a sufficiently small scalar. By continuity, it can be

shown that there exists,:1 such that the trajectory of(¢) evolving W(baj,25) =

Af\
~
T~
Q
o
=
~

_ F,:'—)(tﬁzj)c) (AT +ha+62;) (26)
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where 61;,62; € R. It is seen thatW(6,;,2)) — W; and Taking into account (25), it is easy to see that
W (62;,2%) — Wa asé;; — Ofori = 1,2,andj = 1,2,.... Thus,

. N
for the abovel, > 0, there exist$o > 0 such that ﬁ . .
VV(t2]’+1 — hg, .’I?a,)I"V(tgj — h(,, .I‘d) <1
W (615, 20) = Wil <o, j=1
Y [615] <ébo, j=12,... which leads to
||‘I/v((szj, TE) - V‘;” SHO . N N
Vbos] <boy =12, (27) [[e2ng 2 = 5| <[ Wtangre = R wh)[| lan = w3

S(:w + HO)Emin S €min -
Letéimin = min{bo, 7min } Wherer,,, is asin (14). For thisi,i, > 0,
and by Lemma 3.2, there exists a fixed scalar, > 0 such that any This indicates that th€ N, + 3)th traversing will occur af,,. Contin-
trajectory evolving from traversing pointsdfy. .. ) (orS(emiml,Z)) uing the process and noting (25) conclude that for any integerl,
will traverseS; (or S.) by spending time duration + ¢.av, Where the (2N, + 2k)th and the(2Ny + 2k + 1)th traversing will occur at

terav Satisfiedtiray — Po| < Omin (OF [terav — 2| < Omin)- Sz andS,, respectively. This shows that the relay will switch consec-
Now, let utively.
To the end of the proof, since
w =max{||W1]|, ||[W2]|}
_ . €min k
€min = Min {Fmim m} . (28) Topgr— 2l = H W (tayq1—hp, 25 )W (ta; —havah) | (21 —2%)

Then, there exists a scalaE (0, 1] such that any trajectory starting =

fromzy € R. will traverseS,, and moreover, the first traversing point

xy satisfies||z1 — 24 || € Emin < €min. We show next that with this W (ta; — ha,a’y) — W
e > 0, R¢ is a locally stable region. This is two folded, i.e., any tra- ’ .
jectory starting fronfz. will make the relay switch consecutively, and
(':onv'erge‘ asympto_tlcally to the limit cycle'. In what fOI|OW§’ i th_e using Lemma 3.4 again and from the statement in the very beginning
ith (¢ > 2) traversing occurs, we then denote the traversing point %\fthe roof, we havéiz: — 2% = 0 ask — oc. This completes
x; and the time duration for the trajectory to move frem.; to z; by proot, 2kl T e o P

<o

(W (tej41 — hg,x5) = Wil <bo

4t the proof of the theorem. O
Since||z1 — 24| € &min < emin, the second traversing will occur
atS;. By virtue of Lemma 3.3 and the above analysisandr + t, REFERENCES
satisfy the following: [see (17)] [1] K. J. Astrom, “Oscillations in systems with relay feedbachyfA Vol.
Math. Appl. Adapt.Control, Filter., Signal Processjngl. 74, pp. 1-25,
[t2 — ho| <8min (29) 1995.
Fs(ts — ha)c ) [2] K. J. Astrom and T. Hagglund?ID Controllers: Theory, Design and
To — :LZ} = <I — ’]27") e»““-"“?)(;c1 — lz) Tuning 2nd ed. Research Triangle Park, NC: Instrument Soc. Amer.,
fa(ta = ha) 1995.
=W (t, — ha,.r,E)(h — ;,,»Z), (30) [3] D. P. Atherton, “Analysis and design of relay control systemsC#D
for Control Systems New York: Marcel Dekker, 1993, ch. 15, pp.
From (29), we see that (27) holds, yieldifig’ (t2 — ha, 25)|| < w+ 367-394. _ _ _
8. Thus, (30) gives : [4] P.A.Cook,Non-Linear Dynamical SystemsNew York: Prentice-Hall,
’ ’ 1986.
|2 — UBH < (W + 00)min < €mi (31) [5] J. M. Goncalves, A. Megretski, and M. A. Dahleh, “Semi-global anal-

ysis of relay-feedback systems,”Rroc. 37th IEEE Conf. Decision and

which implies that the third traversing will occur &t . Continue the Control, vol. 2, 1998, pp. 1967-1972.

process. At thé2 Ny + 1)th traversing point, there holds [6] tomat. g?ﬁ?bﬁ}ﬁg‘%g ff:)? fsi;%d_bgf‘scz'f %%tlelngEE Trans. Au
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