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Positive Real Control for Uncertain the resulting closed-loop system is stable and the closed-loop transfer
Two-Dimensional Systems function is positive real. Now, it is known that a solution to this problem
for a known linear time-invariant system involves solving a pair of Ric-
Shengyuan Xu, James Lam, Zhiping Lin, and Krzysztof Galkowskiati inequalities [17]. When parameter uncertainty appears, the results
in [17] were extended in [14], where observer-based controllers were
designed and an linear matrix inequality (LMI) design method was de-
uncertain two-dimensional (2-D) discrete systems described by the For- velopgd. The corresponding result§ for discrete time systems can be
nasini-Marchesini local state-space model. The parameter uncertainty is foUnd in [8]and [15]. It should be pointed out that all these results were
time-invariant and norm-bounded. The problem we address is the design of derived in the context of 1-D systems. Up to date, however, no results
a state feedback controller that robustly stabilizes the uncertain systemand on positive real control problem for 2-D discrete systems is available
aChtie"es):ng :éﬁinsdsietﬂ:&ifég’ng?ﬁtiitg’seLe\fé?gzi 8; tho‘?sirtilseulggiqng'sossfeo‘:‘z'ogpin the literature, this problem is still open and remains challenging.
Z?lssc?er?e systems is established. Based on this, acopndition for the solvability In this brief, We_ are Cor_]cemed with the pro'?'em of positive regl.
of the positive real control problem is derived in terms of a linear matrix ~control for uncertain 2-D discrete systems described by the Fornasini-
inequality. Furthermore, the solution of a desired state feedback controller Marchesini local state-space (FMLSS) model. The parameter uncer-
is also given. Finally, we provide a numerical example to demonstrate the tainty is assumed to be time-invariant and unknown but norm-bounded.
applicability of the proposed approach. The problem to be addressed is the design of a state feedback controller

Index Terms—Fornasini-Marchesini local state-space (FMLSS) model, such that the resulting closed-loop system is asymptotically stable and
linear matrix inequality (LMI), positive realness, state feedback, two-di-  the closed-loop transfer function from the disturbance to the controlled
mensional (2-D) systems. output isextended strictly positive re4ESPR) for all admissible un-

certainties. To solve this problem, we first establish a version of posi-
|. INTRODUCTION tive realness for 2-D discrete systems in terms of an LMI. It is shown
o ] that this result is an extension of the existing results of positive realness

In the past decades, there has been a growing interest in the Sys{gm p discrete systems. Then, we obtain the results on positive real-
theoretic problems of two-dimensional (2-D) discrete systems duejgss for uncertain 2-D systems via the notion of “strong robust stability
the rapid increase of the applicability of 2-D discrete systems theory\ifih ESPR”. Based on this, a condition for the solvability of the posi-
many areas such as image processing, seismographic data procesgiageal control problem is derived and the explicit formula of a desired
thermal processes, water stream heating, and so on [11]. A dregfe feedback controller is given. Finally, an example is presented to
number of fundamental notions and results based on one-dimensigigd onstrate the validity and applicability of the proposed approach.
(1-D) discrete systems have been extended to 2-D discrete systeM§otation. Throughout this brief, for Hermitian matrice§ andY’,

(3], [9], [11], [16]. the notationX > Y (respectively,X > Y) means that the ma-

On the other hand, the notion of positive realness has played an gz x _ v is positive semi-definite (respectively, positive definite).
portant role in control and system theory (2], [6], [18]. Applications of s the identity matrix with appropriate dimension. The superscripts
positive realness have been found in many areas such as the analypjs“ —T,’and “+” represent the transpose, inverse transpose, and the
of the properties of immittance or hybrid matrices of various C|a35€§mplex conjugate transposg! denotes the set of nonnegative inte-

of networks, the inverse problem of linear optimal control, the stabilirgers. Matrices, if not explicitly stated, are assumed to have compatible
analysis for linear systems, and so on [2], [6], [8], [19]. In [1], it ijYimensions.

also reported that positive realness has played an important role in the
stability analysis for 2-D discrete systems. Recently, increasing atten-
tion has been devoted to the positive real control problem. The study
of this problem is motivated by robust and nonlinear control in which Consider an uncertain 2-D discrete-time systéin ) described by
a well-known fact is that the positive realness of a certain loop transtae following FMLSS model [5], [12]:

function will guarantee the overall stability of a feedback system if un-

certainty or nonlinearity can be characterized by a positive real system (Sa):z(i + 1,5 + 1) =Aiax(i + 1,§) + Asax(i,j+ 1)

[18]. Furthermore, it has been shown that if the system uncertainty can 4 Biaw(i+1,7)

be cast as a positive real transfer function and the system is strictly L

positive real, then the positivity theorem implies robust stability [7]. + Baaw(i,j+1)

The objective of positive real control is to design controllers such that z(i,j) =C=(i,j) + Dw(i, j)

Abstract—This brief deals with the problem of positive real control for

Il. POSITIVE REALNESS ANALYSIS

wherezx(i, j R" is the local state vectou; (7, j R? is the exoge-
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whereF € R?*! is an unknown real matrix satisfying 3) The 2-D discrete-time systefi) is said to be ESPR if itis SPR
andG(oo, o) 4+ G(oc, 00)” > 0.

We present a result on positive realness for 2-D discrete-time system

andM, Nai, N2, Ngi andNg» are known real constant matrices(X) in the following theorem.

with appropriate dimensions. Theorem 1: The 2-D discrete-time systeE) is asymptotically

The nominal 2-D discrete-time system(@fa ) can be written as ~ stable with ESPR if there exist matricgs> 0, @ > 0 andW > 0
such that the LMI shown in (5), at the bottom of the page, holds.

FTr<1I )

(B)ai+1j+1) =Aix(i+ 1))+ A22(i,j + 1) Proof: From (5) it is easy to see that
4+ Biw(i+1,5) 4+ Bow(i, 7 + 1) AYPA 4 Q- P AP A,
z(i,j) =Cx(i, j) + Dw(i, ). AT PA, ATPa, — Q| < 0. (6)
Then, the square transfer function of the 2-D discrete-time syS®m By | emma 1, it follows from (6) that the 2-D discrete-time system
can be written as is asymptotically stable. Thereforé(z1, z») is analytic in|z,| > 1,

G(Z] s /‘,’2) = C(Z’] 2ol — 21 A1 — 22142)_1 (Z] B +Z~2B2)+D. (3) |22| 2 1. Next, we shall show

We first introduce the notion of asymptotic stability of 2-D dis- U™, e) 1= G/, &) + G7 (") > 0
crete-time systems.

Definition 1 [11]: The 2-D linear discrete-time systef®) is said
to be asymptotically stable if

forall 8, 8-> € [0,27). To this end, we note that (5) implies that there
exist a sufficiently small scalar > 0 and a matrixQ: > 0 such that
(7), shown at the bottom of the page, holds. Denote

L [ (R)]le =0 A =[A, 4, -B]
T
under the zero input (7, j) = 0 and||x(0)||z < oo, where Q-P+Qi+el 0 C
o H= 0 —Q+el 0
Ix(F)||ez = sup ||z|, x(k)={z(i,j):i+j=k} C 0 —(D+ D" —w)
zex(k) o)
and||z(-,-)|| is the Euclidean norm of the local state. _
The following lemma gives a sufficient condition for the asymptoti®Y Schur complements [4], it follows from (7) that
stability of 2-D linear discrete-time systef®t) in terms of an LMI. W — Bl PB, >0 ©)

Lemma 1[10]: The 2-D linear discrete-time systegil) is asymp-
totically stable if there exist matricd® > (0 and() > 0 such that the gnd
following LMI holds: e ., . P

ApnsQop  atpa ], “ A'pi, + A'prB, (w — B! PBQ) BYPA, + H <0. (10)

AT pPA; ATPA, - Q ' Let
Motivated by the notion of positive realness for 1-D discrete systems 0 el 0 0
[2], we define the concept of positive realness for 2-D systems in the BT = 0 , W=1|0 eI 0
following. —BT 0 0 W
Definition 2: Q-P+Q: 0 c”
1) The 2-D discrete-time systefR) is said to be positive real (PR) H= 0 -Q 0
if its transfer functioni/(z1, z2 ) is analytic in|z:| > 1, |~>| >1 C 0 —(D+D")

and satisfies7(z1, z2) + G* (21, z2) > 0for |z
2) The 2-D discrete-time syste(X) is said to be strlctly posmve Then, (10) can be rewritten as

real (SPR) if its transfer functiof'(z1, z2) is analytic in|z;| > ) -1 L
eI 09) 4 G (%, %) 5 0 Al PA+APBy (W= BIPB.)  BIPA+W +H <.

for 61, 62 € [0, 27). (11)
ATPA +Q—-P  ATPA, CcT — ATPB, —ATPB,
ATPA, ATPA, - Q —AYPB, —AYPB,
T >y T 1 7 r <0 (®)
C - Bfpa, -B{PA;, - (D+D'-B{PB -W) BiPB,
—-BIpPA, —-BI'pA, BIPB BIPB, - W
ATPAI+Q—-P+ Qi+l AT PA, c” — AT PB, —ATPB,
AT pPa, ATPAy — Q4 eI —-Al'PB —-ATPB, <0 @)
C - Bf P4, -Bi'PA, - (D+D"-BI'PB,-W)  B!PB;

—-BIpa, —-BIPA, BIPB, BIpPB, - W
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Noting B(—=j81,—j6:)TW(—j01, —j62)" T and W (i, j62) 1 B(jb1,562)
respectively, we have that for @l , 6> € [0, 27)

B(—jb1.—j82)" U(=jb1,—jb2)""
and recalling that for any matrice$, Y andZ of appropriate dimen- x [A(—jeh —j02) PA(j8:,502) — P] U(j01,5602)"
sions withX > 0,

W - By PB; >0

X B(jb1,j02) + B(—jb1,—j02) (—jb1, —jb2)" "

* *y * FEk oxy-—1
ViZ+2Y<ZXZ+YV° XY hore ¥ O(j61,j82) T (j81.565) " B(j1.j8) <0 (15)
wnere

we have that for alb,, 8, € [0, 27), o i . . . .
e € 1020 (b1, j82) = Q1 + [C7 = A(=jbr,—j82)T PB(jbr.jbo)]

0200 1 pp, 4 I BEP A, < AT PB,

N xS(j81,382)7" [C = B(=jo1.=j82)" PA(j61.j62)]
X (W — B PBZ) BIPA, + W — BT PB,.

On the other hand, by some algebraic manipulations we can verify that

This together with (11) implies that for &l , 8- € [0, 27) the following equality ?olds for alhy, 6> € [0,2n) )
A(=jb1,—jb2)" PA(j61,jb2) + ¥ (=561, —j62)
AT —3(02—01) pT A 3(02—01) f3, ¥ o ) ) ) ; )
(AF +e BY)P(di+e B.)+H X PU(j61, j62) + U(—jbr,—jbs)  PAj61, j62)
<A'PA, +47PB, (W - BZTPBQ)_1 BIPA, + A(—jb1,—jb2)" P (j6y,jb2) — P = 0. (16)
LW H<O Pre-multiplying and post-multiplying (16) by
: B(—=j81,—j02)TW(—j01, —j62)" T and W (jy, j62) 1 B(jb1,562)
That is respectively, and re-arranging we obtain
Af — B(—j1,—jb2)" U(—jb1,—jb2)""
A3 P x [A(=jbr, —j62)" PA(j61.j62) = P]
_BlT _ (3—,7(92—91)3;/’

X ‘II(Jel./‘gz)ilB(Jel,jeg)

X [;41 Az —Bl — ej(gz_gl)Bz] _ . . 7 . . . . 7
= B(—jb1,—j02)" PB(jb1,jb2)+ B(—jb1,—jb2)

Q-P+Q: 0 c’
+ 0 —Q 0 <0. (12 X PA(j#1,j82)¥(j61,562) " B(jb1,j62)
c 0 —(D+D7) + B(=jb1,—jb2)" W(=jb1, —jb2) "
Pre-multiplying and post-multiplying (12) by X A(=j#,—j#2)" PB(j61,j62)
_ I 0 for all 81, 6> € [0,27). Considering this and (15), we have that for all
{[ e—i02=01) 1 ():| and | 2= ¢ 01,0, € [(), 27)
0 0 U 0 I B(—j1.—j82) W (—jb1,—j2) " D(jb1.jb2)

X W(j#,j62) 7" B(jbr,j82) — B(—jbr,—jbs)"

respectively, we obtain that for &l , 62 € [0, 27) PB(j6. j8s) — B(—j6 ” )TPA( 01, 765)
X J01,902) — —Jbt1,—jb2 A(g01,902

— ; — ; 9 T . . — . . . -
{ fg( 79; ]%))T] P[A(j01.jb2) —B(jb1.j02)] X W(jb1,j82) " B(j61,)62) — B(—jbr, —jb)"
—B(—jb.—jb < o _ o
o g P+ Q CT X ‘Ij(_.]el _]92) ! ‘4(_]917 _]92)1
_ N T
+ { C _(D+Dr)] <0 (13) x PB(j6:.,j62) < 0. (17)

Therefore, it follows from (17) that for a#l,, 8> € [0, 27)

where . T "
U, e’"?) =D + DT + CU(j#1.j02) " B(jb1,j02)

‘_1(]91“]02) :_41 + ﬁj(02761)442
B(jb#1,j62) =By + e 02=0) B,

Using the Schur complement, it follows from (13) that forél) - €
[0,27)

Q1 — P+ A(—jby,—jb2) PA(j61,62)
+[C7 = A(=jb1,=j62) T PB(j61.j62)] S(ib. i)
x [C — B(—jb,.—j8) " PA(j6, 7j92)] <0 (14)
and
S(j#1.j82) = D+ D" — B(—jb1,—j62)" PB(j#1,j62) > 0.
Setting
W(jb1,j62) = %21 — A(j61,j85)

it is easy to show that the asymptotic stability of the system
(X) implies that ¥(j6,,562) is invertible for all 6;, 6, €
[0,27). Now, pre-multiplying and post-multiplying (14) by

+ B(—j1,—j02) 0 (j61,j82) T CT
=5(j01,j602) + CU(j#1,j62) ' B(jb.jb2)

+ B(=j1,—j62) W (j8,,582) " C"

+ B(—j61.—j2)" PB(j#1,j0>)
>5(jb1,702)

+[C = B=jbr.=j82) PA(j61. 62|

X W(jb1,762) " B(j61,764)

+ B(—j1,—j02) U (j61,j82) "

x [CF = A(=jb1, =)  PBjb1. j62)

+ B(—j#i.—j2) U(—jbi,—jo2)""

X ®(jb1.j02)U(j61,762) " B(jb1.j62)

> = € = B(=jb1.~j82) PA(j6. jb)]
X ®(jbh,j2) "
x [CT — A(—jby, —jez)TPB(jHI,jé’z)]
+ S5(j01,702). (18)
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Note that
D(j81.,j82) = [CT = A(=jbr, —j62)" PB(j1.,j62)]

Lemma 2 [13]: Let A, L, E, F and P be real matrices of appro-
priate dimensions witl® > 0 and F satisfyingF” F < I. Then, for
any scalae > 0 such that? — eLL” > 0, we have
(A+ LFE)' P '(A+ LFE)

<A"(P-—eLL")'A+ e 'ETE.

X §(j61.02)7" [C' = B(=jb1.=j82)" PAGib1.jb)]
=@1 > 0.

Therefore, for alby, > € [0, 27) ) .
o ) Cor o Lemma 3 [21]: Let L, E, F and(@ be real matrices of appropriate
S(i81,382) = [C' = B(=jbr, =)  PA(j61,jbo)]

dimensions withy satisfyingQ = Q*', then

X®(j61,j62)7" [ = A(=j61,—j62) " PB(j61,j62)] > 0. Q+LFE+(LFE)" <0

From this and (18), we have th&t(e’"*,¢’"%) > 0 for all §1, 6> € forall F satisfyingF'X F' < I, if and only if there exists a scalar> 0
[0, 27). Thus, the 2-D discrete-time systgB) is ESPR. This com- sych that
pletes the proof. d

Remark 1: Theorem 1 provides an LMI condition for the 2-D dis-
crete-time systeniX) to be asymptotically stable and ESPR. In the
case when systerft) reduces to a 1-D discrete system, it is easy to Proof of Theorem 2:(Sufficiency: Suppose that there exist a
show that Theorem 1 coincides with Lemma 4.2in [8]. Therefore, Theg 151 > 0 and matricest > 0,Y > 0 andi¥’ > 0 such that (20) is
orem 1 can be viewed as an extension of existing results on positi&icfieq. Then, from (20) it is easy to see that
realness to 2-D discrete-time systems.

Q+¢LL"+'ETE <.

The positive realness result for 1-D systems has played an important X —eMM" > 0. (21)
rolein ropust posi_tive realness an_alysis and synthesis for uncer_tain_ JBXDLemma 2. it can be shown that
systems in both discrete and continuous contexts [15], [22]. Taking int - -
account this and Theorem 1, we introduce the concept of strong robust Af N
stability with ESPR for the uncertain 2-D discrete-time syst&n ), Aj n Ni, T | x-
which will be shown to be useful in establishing the property of robust -BT —NZ, ‘ B
stability with ESPR for systerfiCa). -BT —NEs
Definition 3: The uncertain 2-D discrete-time syst¢la ) is said AL NT, r
to be strongly robustly stable with ESPR if there exist matriges 0, AT NZZ S
@ > 0 andW > 0 such that the LMI shown in (19), at the bottom of X —E}'T -~ N;T M
the page, holds for all admissible uncertaintled;, AA4,, AB,; and B'IT ‘V’ff
A Bs satisfying (1). T2 L L
Remark 2: It is worth pointing out that Definition 3 extends the Al A7 7!
notion of strong robust stability for uncertain 1-D discrete systems in < AF (X —eM M'T)_1 A
[15] to the case of uncertain 2-D discrete systems. = | -B7 o -BT
The following theorem presents a necessary and sufficient condition —-BT —RBT
for system(X A ) to be strongly robustly stable with ESPR. N, N T
Theorem 2: Consider the uncertain 2-D discrete-time systein ). NT. NT.
This system is strongly robustly stable with ESPR for all admissible +e '] \Aﬁ . N/:% (22)
uncertainties if and only if there exist a scatar> 0 and matrices A I -4
X >0,Y > 0andW > 0 such that the LMI shown in (20), at the —Na» —Nao
bottom of the page, holds. Let
Before proceeding to prove Theorem 2, we introduce the following
lemmas. Y=X"'YX', J=J" =diag(X.X,I,1).
AL\ PAIA+Q-P AL\ PAsa ct — AL PBiA —AL\PBsA
ASAPA1A Al\PAsA —Q —AJAPBia —AL PBsa 0 19
C — BL PAA —B{APAs;n  —(D+ D" — B]\PBian — W) BI PBsa < (19)
—BI\PAA —BI\PAsa BIAPBia BIAPBoa — W
Y - X 0 xc’ 0 X AT XNT,
0 -Y 0 0 X AT XN,
cxX 0 —(D+D" —-W) 0 —B! —-NE, 20
0 0 0 W —B! _Ng, | <Y (20)
AX AX -B -B; eMM'-X 0
IVAl)( I’VAZX —ANBl —ANBg 0 —el
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Then, by considering (20) and using Schur complements, we Jétat is
the equation at the bottom of the page. This together with (22)

implies that
Af [N
AT Ny T AT 1
2 ‘ FTM™ | x~
—B1T * -4 Tgl
-Bf | Nk
AL NG !
Aj Nis | 1,7
X + A2 N FTM
—Bf —N fg}
L-B: ] —Ni,
Y -X"t 0 ct 0
N 0 -y 0 0| _,
C 0 —(D+D"-W) o0 ’
L 0 0 0 -W

Q-P 0 cT 0
0 -Q 0 0
C 0 —(D+DT-W) 0
0 0 0 -W
‘41 ‘42 —B1 —Bz
r NI,

Ny
+ | =NE|F"[0 0 0 0 M"]
—Np»
L 0
ro
0
4+ | 0| F[Nar Nao —Npi —Npo
0
LM

1663

AT
Al
—BlT
—BzT
—_p1

0]<0

This leads to the second equation at the bottom of the page. By Defifar all F satisfying (2). Therefore, using Lemma 3, we have that there

tion 3, it follows that the uncertain 2-D discrete-time systen ) is

strongly robustly stable with ESPR for all admissible uncertainties.

(Necessity Suppose the uncertain 2-D discrete-time system) is

exists a scalar > 0 such that

- : _ Q-P 0 c’ 0 AT 1
strongly robustly stable with ESPR, that is, there exist matdtes 0, 0 —0 0 0 A7
@ > 0 andW > 0 such that the LMI (19) holds. By Schur comple- ' g , 2
ments, it follows from (19) that ¢ 0 —(D+D -W) 0  -B
' 0 0 0 -W -BJ
Al Ag —B1 —B2 —P71 N
Q-P 0 c’ 0 ATo 0 07" NI Ni 9T
0 -Q 0 0 Al A 0 0 NI, NT,
C 0 —-(Db+D'-w) o0 -Bi.|<o. +e| 0 0| +e'| =Nk | |=NE| <o0. (23)
0 0 0 -w  —BI, 0 0 —NZ, | | -NE,
Aia Aoa —Bia —Boa —-p! M M 0 0
AT AT Y N%, Ni 1t Y-X"' 0 cr 0
' AT NT. NT. 0 - 0 0
J 2 X —eMMTY™! 2 —1 A2 A2 JgT . g7
_pr | X MM g e N N + c 0 —(D+DT—W) 0
—-BT —BT —NL, ] L=-N%, 0 0 0 -W
XA xXArq?t XNL T TXNE T Y-X 0 xct 0
XAl | ro_y | XAT 1 | XNL | | XNT, 0 -Y 0 0
= (X —eMM 2 a2
_pr | X Vol T N evE | Tl ex 0 —mepT—wy o | <0
-BT —BT —NZL, —NL, 0 0 0 -W
ALX " +Y -X 0 Al X 44 CT — ATA\X'Bia —AT X 1Bya
AT X" A4 AT X" A9 - Y —AlNX""Bia — Al X""Baoa <0
C—BI.X""Aa ~B{xX7"43a  —(D+D" —BIAX7'Bia —W) BT X""Bsa
—BILLX7'AA —BIL X' 45a BIL.X"'Bia BILX"'Boa - W
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Pre-multiplying and post-multiplying (23) byiag(P~*, P~1,1,I), Then, the resulting closed-loop system from the systEm,, ) and the
and settingX = P!, Y = P~'QP ', the desired result follows controller(X.) can be written as

immediately. 0 (Se):dli+ 1+ 1) =426 + 1,§) + Asd(i,j + 1)

+ Biw(i+1,5)+ Bzw(i,j +1)

[ll. RoBUST POSITIVE REAL CONTROL , . N
2(i,§) =C&(i, j) + Dw(i, j)

In this section, we consider the problem of positive real control for
uncertain 2-D discrete-time systems. An LMI design approach will bghere

developed. The uncertain 2-D discrete-time syst&. ) to be con- i - Aia + BiauD Bia.C
sidered in this section is described by the following 2-D LSS model: = B A,
EA@)Z:E(i—I—Lj—i—l) :Alﬁx(i'i'laj) i, = Aoa + BoauD  BoauC (25)
+ Aoax(i,j+ 1) T B> A,
+ Biaw(i+1,§) BIZ{BIA}’ B, = {Bza}
+ Boaw(i,j+ 1) . 0 R 0
+ Biawu(i+1,j) ¢=[C 0] D=D. (26)
+ Boayu(i,j+ 1) From Definition 3, we have that the strong robust stability with ESPR
2(i.j) =Cz(i,j) + Dw(i,j) of the closed-loop systefx. ) implies that there exist matricés > 0,
Co ’ @ > 0 andW > 0 such that the LMI shown in (27), at the bottom of
y(i.j) = (i, j) the page, holds. By Schur complement, it is easy to show that (27) holds

wherez(i, j) € R" isthe local state vectou(i, j) € R™ isthe control i and only if there exist matrice® > 0, O > 0 andW > 0 such that
input,w(¢, j) € R? is the exogenous inpuj(i, j) is the measurement,

z(i, j) € R? is the controlled output, j € Z* Q-r 0 pct 0 1?4;
Biaw=Bru+ABi, Boay = B+ ABy, S 00 P

B,. and B, are known real constant matrices with appropriate di- cr 0 —(D+D7 -W) 0~ _]? ‘1 <0. (28)
mensionsA By, andA B, are assumed to be of the following form: L f) . ON _W _BL—’
[ABlu ABs, ] =MF [ Npiu NBpau ] (24) A1P AZP —B - B> —-P

whereF € R?%! is an unknown real matrix satisfying (2), ands,,,  Set
and N3, are known real constant matrices with appropriate dimen- . P Py N Ou O
sions. The remaining matrices are the same as in sy§ten. It is = {[ﬂ. P } . Q= |:©T O»: ]
assumed that all the state variables are available for feedback. o ' 2
The objective of the robust positive real control is the desigghere the partition of? and() is compatible with (25) and (26). Then,
of feedback controllers for systefEa.) such that the resulting py a lengthy but routine calculation, (30), shown at the bottom of the
closed-loop system is strongly robustly stable with ESPR for alext page, can be deduced from (28) where
admissible uncertainties. . L
The following lemma shows that if there exists a dynamic state Aia =4A1a + Biau (D + Cpgpﬁl)
feedback controller that achieves strong robust stability with ESPR - _ i~
for system(Za.. ), then there exists a static feedback controller that Aza =doa + Boau (D +CPL Py ) :
achieves the same property. Defining
Lemma 4: Consider the uncertain 2-D discrete-time syst&n.. ). [ I
If there exists a proper dynamic state feedback controller for system K =D+ CPyP;, P=PFPy,
(¥a.) such that the resulting closed-loop system is strongly robustly Q=P,'QuP,", W=W
stable with ESPR for all admissible uncertainties, then there exists .
a static state feedback controller that achieves the same propertyafla?| applying Schur complement to (30), we have (31), shown at the
. bottom of the next page where
system(Xa.).
Proof: Suppose the following proper dynamic state feedback Aiae = Aia + Biau K, Asa. = Asa + Banau K.

controller for system(¥ A, ) achieves the property of strong robus .
stability with ESPR tNow, applying the state feedback controller

(29)

(Z):z(i+1,j+ 1) =420+ 1,5) 4+ Ae2(6,j + 1) u(i,j) = Ka(i,j)
+ Biz(i +1,5) + Boa(i,j + 1) to the systeni<a.,), we obtain the closed-loop system as
u(i,j) =Cx(i, j) + Dali, ). (S)ali+ 1+ 1) =Arace(i +1,7) + Asnc(isj + 1)
Let + Biaw(i+1,j) + Boaw(iyj + 1)
(i) =[x, )Y 265", 2(i,§) =Cx(3,5) + Dw(i, j).
ATPA+Q-P  ATPA, CT - ATPB, —ATPB,
AT pA, AYpA, — @ —AlTPB, —A'PB,
5 AT p i AT A 5 AT _ AT pA v AT b7 <0 27)
¢ - BYPA, _Bfpi, - (D + DT —BYPB, —W ) BT PB,

—BTPA, —-BI'PA, BIPB, BIPB, - W
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By Definition 3, it follows from (31) that the syste(’rﬁc) is strongly discrete-time system and achieves the ESPRness property of the

robustly stable with ESPR. This completes the proof. O closed-loop system. It is worth pointing out that the LMI (32) in
Remark 3: Lemma 4 shows that no advantage can be obtained froFheorem 3 can be solved efficiently, and no tuning of parameters is

the use of a proper dynamic state feedback compared with the useegfuired [4].

a static state feedback in the context of positive real control. Similar

results for 1-D continuous systems can be found in [22]. It is worth

pointing out here that some 2-D system can be stabilized by a dynamic

state feedback controller, but not by a static one [3]. However, in this|n this section, we give an example to illustrate the effectiveness of
brief, we deal with not just the stabilization problem, but the relategie proposed method.

problem of asymptotically robust stability with ESPR. Since this latter consider the 2-D discrete-time systéR ) with parameters given
problem is more difficult, more strict conditions are required. It is i
fact interesting to see from Lemma 4 that under such more strict condi-

IV. NUMERICAL EXAMPLE

tions, static and dynamic state feedback controllers play the same role (0.5 0.1 0.3 0.2 0.1 05
for the asymptotically robust stability with ESPR problem. A1 =[03 =05 0.1 Ay=|-04 01 0.2
In view of Lemma 4, in what follows, attention will be focused on 10.2 0 03 0 0.2 0.5
the design of static state feedback controllers to solve the positive real 0.5 0.3 0.1 —0.2 0 0.1
control problem for uncertain 2-D systefEA.. ). The main result of Bi=|0 02 05|, B:=|03 01 =05
this section is given in the following th(_aorem. _ _ -1 0.1 04 0.6 —0.1 0.3
Theorem 3:Consider the uncertain 2-D discrete-time system —1 0 05 1
(¥aw). There exists a static state feedback controller for system
! ; Biu=|1 —-1|, Boy=|1 0
(X a.) such that the resulting closed-loop system is strongly robustly
stable with ESPR for all admissible uncertainties if and only if there L 0.5 1 -06
exist a scalar > 0 and matricest > 0,Y > 0, W > 0 andZ, such (0.1 0.3 0.5 L5 05 0
that the following LMI holds: C=1(01 0 03 D= {01 08 0.2
H ar ar 102 0.2 0 0.3 01 1.6
H eMMT-X 0 |[<o0 (32) [0.1
H, 0 el M=1[02| Ni=[01 0.2 0.1]
whereH , H,, andH are given at the bottom of the page. Furthermore, 10.1
in this case, a suitable state feedback controller can be chosen as Naz=[0.1 0.1 02] N =[0 01 0.2]
u(i,j) = ZX "w(i, ). (33) Npz=[03 0.1 0] Ngi,=[01 0.2]
Proof: The proof can be carried out by using a similar argument 7., —10.1 0.3].
as in the proof of Theorem 2. O

Remark 4: Theorem 3 provides an LMI condition for designinglt is required to construct a static state feedback controller that stabi-
a static state feedback controller which stabilizes the uncertain 2liBes the given 2-D discrete system while ensuring that the resulting

Q11 - 1511 (~) PHCT 0 P;nx{liTA
0 —Qn 0 i 0 P AT,
CP 0 —(D+ D" —-W) 0 -Bl, | <0 (30)
0 0 0 -Ww  —Bi,
AiaPii Aa Py —DBia —DBoan  —Piy
AlTACﬁAlAAC +Q-P A'ITAACPAZAC A ct - A.41TAACPB1A —AfAcl—j’BzA
Aja PAja. Aja PAsa. - Q —Aja.PBia —Ajx.PBoa
C' — BI\PAa. Bl PAsr. - (D + DT — B, PBia — W) B\ PBsa <0 (31)
—BI\PAiac —BI\PAjac BIAPBia BIAPB:x =W
Y-X 0 xc’ 0
o 0 -Y 0 0
| cx 0 —(D+DT-w) o0
0 0 0 -W

H =[AX+Bi.Z A X+ B2wZ —-Bi —B:]
Hy, =[Na1iX + NpiuZ Na2X + Np2uZ —Npi —Np2].
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closed-loop system is ESPR. Now using Matlab LMI Control Toolbox [9] T. Hinamoto, “2-D Lyapunov equation and filter design based on the
and solving the LMI (32), we obtain Fornasini-Marchesini second modelEFEE Trans. Circuits Syst, vol.

40, pp. 102-110, Jan. 1993.

[ 4.6705 3.6760 —2.93127 [10] , “Stability of 2-D discrete systems described by the Fornasini-
X =1 3.6760 71592 —3.9770 gﬂsﬁfggim&ﬂicggg?modelIEEE Trans. Circuits Syst, hol. 44, pp.
[—2.9312 =3.9770  5.6329 | [11] T. Kaczo’rek, 'i'wo-Di.mensionaI Linear SystemsBerlin, Germany:
[ 1.6713 —0.0105 —0.88907 Springer-Verlag, 1985.
Y = | —0.0105 0.4083 0.1350 [12] 3._ E ITurek, “Tt}e general state-space modelfloratwo—dimensional linear
| Z0.8800  0.1350 0.8602 | 1|§?BHS. system,1IEEE Trans. Automat. Contwol. AC-30, pp. 600-602,
[ 1.0065 0.0081 —0.11927 [13] X.Liand C. E. De Souza, “Criteria for robust stability and stabilization
w =1 0.0081 0.0558 —0.1015 ti)ggggigglzn Iligze;r systems with state-delafyitomatica vol. 33, pp.
L =0.1192 —0.1015  0.8039 | [14] M. S. Mahnlﬁoud, Y C. Soh, and L. Xie, “Observer-based positive real
7= 0.5721  1.4912 —1.9891] ¢ — 3.4374. igggol of uncertain linear systemsAutomaticavol. 35, pp. 749-754,
| —0.1030 0.9699 —1.9244 :

[15] M. S. Mahmoud and L. Xie, “Positive real analysis and synthesis of

Therefore, from Theorem 3, there exists a solution to the positive real ~ uncertain discrete time system$ZEE Trans. Circuits Syst, vol. 47,

control problem. Furthermore, a desired state feedback controller ca[r116]

pp. 403-406, Apr. 2000.
R. P. Roesser, “A discrete state-space model for linear image pro-

be chosen as cessing,"[EEE Trans. Automat. Contvol. 20, pp. 1-10, 1975.
—0.1940 0.0916 —0.3894 [17] W. Sun, P. P. Khargonekar, and D. Shim, “Solution to the positive real
u(i,j) = 0.3765  0.0407 0 ’()Zr] x(4, 7). control problem for linear time-invariant systemsEEE Trans. Au-
—U.0rbo UUsd 0 —0.0U20 tomat. Control vol. 39, pp. 2034—2046, Nov. 1994.

[18] M. Vidyasagar,Nonlinear Systems AnalysisEnglewood Cliffs, NJ:
Prentice-Hall, 1993.
V. CONCLUSIONS [19] J. T. Wen, “Time domain and frequency domain conditions for strict
positive realnessJEEE Trans. Automat. Contrplol. 33, pp. 988-992,

This brief has addressed the problem of positive real control for un-  Oct. 1988. ) _ o
certain 2-D discrete systems described by the FMLSS model. A ve?0] L. Xie and C. E. D. Souza, “Robusi.. control for linear time-in-

variant systems with norm-bounded uncertainty in the input matrix,”

sio_n of positive realness for 2-D discrete_systems ha_ls been established, Syst. Contr. Letf.vol. 14, pp. 389-396, 1990.

which has been shown to be an extension of positive realness of 1-P1] L. Xie, M. Fu, and C. E. De SouzaH.. control and quadratic stabiliza-
discrete systems. A condition of the solvability of the above problem tion of systems with parameter uncertainty via output feedbdEBEE
has been presented in terms of an LMI and the explicit formula of a___ Trans. Automat. Contrvol. 37, pp. 12531256, Aug. 1992.

desired state feedback controller has been given. The proposed conthf!

L. Xie and Y. C. Soh, “Positive real control for uncertain linear time-
invariant systems,Systems Control Lettvol. 24, pp. 265-271, 1995.

law guarantees both robust stability and extended positive realness of
the closed-loop system with admissible parameter uncertainties.
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