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o ) B sions of those for state—space systems. It is worth pointing out that the
Abstract—This brief investigates the problem of robust D-stability anal-

. 2 X . robust D-stability problem for singular systems is much more compli-
ysis for uncertain discrete singular systems with state delay and structured . . .
uncertainties. Sufficient conditions are developed to ensure that, when the Cated than that for state—space systems because it requires to consider
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state delay, structured uncertainties. the literature, this problem is still open and remains challenging.

In this brief, we consider the problem of robust D-stability analysis
for uncertain discrete singular systems with state delay. Structured un-
certainties are discussed. The purpose of this paper is to develop con-

It is well known that satisfactory transient behavior of a linear timegditions such that, when the nominal discrete singular delay system is
invariant control system can be achieved by using the pole assignmkggular, causal and all its finite poles are located within a specified disk,
technique. When there is no uncertainty in the system, it is possilie uncertain system still preserves all these properties when structured
to exactly place the poles at specified locations. However, in practigsicertainties are present in the nominal system. We first propose a
applications, one cannot place all the poles in precise locations dw@nputationally simple approach, which can be viewed as an exten-
to parametric uncertainties originating from various sources, suchsign of that in [3], to present a robust stability result for uncertain dis-
identification errors, aging of elements, and so on. Therefore, it is reziete singular delay systems. Then, based on this, sufficient conditions
sonable in practice to assign all the poles of the closed-loop systenidnD-stability robustness are obtained. Finally, a numerical example is
a desired region rather than exact assignment. This has brought algixgn to demonstrate the results.

Notation: Throughout this paper, for matricés, Y € R"*", the
notationX > Y means that\;; > Yi;,é,j = 1, 2, ... n, where
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Il. PRELIMINARIES AND PROBLEM FORMULATION Remark 1: In the case when singular system (3) is regular, causal
ﬁpd stable, from Definition 3, it can be shown that for any admissible

Consider the following uncertain linear discrete singular system with. - X .
9 9 y Initial condition, the following singular system:

state delay:

Ba(k+1) = (A+ AA)a(k) + (As + Ada(k—d) (1) Ba(k+1) = Aw(k) + Aaw(k = ) + u(k) ©)

has a unique solution, and its solution can be determined by the initial
condition and past inputs, no future inputs is required. That (i)
(% > 0) can be completely determined at any titnby =(0) and past

wherex(k) € R™ is the state and the matri® € R"*" may be sin-
gular, we shall assume that raBk= r < n. A andA, are known real
constant matrices with appropriate dimensiahs: 0 is a known pos- ; ] A : N
itive integer time delay of the system A andA A, are highly struc- |npu_t3u(()), u(l), ..., ”(}T)' F_urtherm_ore, Wh_en the |_np_u(k) =0,

. Lo : .. thatis, (6) reducesto (3), in this case, its solutigh) satisfiesz(k) —
tured matrices representing time-invariant parameter uncertainties, gna 0

are assumed to have the following properties [7], [12] The robust D-stability problem to be dealt with in this paper can

be formulated as follows. Suppose the nominal discrete singular delay

system (3) is regular, causal and its finite eigenvalues are located within

. disk Dini (¢, ), thatis,c(E, A) C Diu(q, r), we shall develop suffi-

whereM 4 and}M; are constant matrices whose elements are all NOgent conditions guaranteeing that the uncertain discrete singular delay

negativeAA andA A, are said to be admissible if (2) holds. system (1) remains regular, causal and its finite eigenvalues are located
The nominal discrete singular delay system of (1) is given as followgjthin disk D, (¢, r), thatis,o(E, A + AA) C Diw(q, r), where

|AA|, < Ma

Adg|m < My )

Ex(k+1) = Ax(k) + Aqu(k — d). 3) R AA Opxn(a—1) ‘ AAy

AA=

Throughout this paper, we use the following definitions. Ondxnd ‘ Ondxn
Definition 1 [5], [18]:

) The pair(E, A) is said to be regular iflet(zE — A) is not

identically zero. Ill. MAIN RESULTS

1)) The pair(E, A) is said to be causal iffeg(det(zE— A)) = In this section, we first present a computationally simple sufficient
rank E. condition ensuring robust stability for uncertain discrete singular delay

)  The singular systenEx(k + 1) = Ax(k) or simply the pair systems, which will play a key role in the derivation of robust D-sta-
(E, A) is said to be stable f (£, A) C Din (0, 1). bility results.

Definition 2 [1]: For aregular pai(E, A4),0(E, A) are saidtobe  From Definition 3, the regularity, causality and stability of the un-
finite spectrum (or finite modes) of the p&if, A). Suppose a nonzero certain singular delay system (1) can be determined by testing whether
vectory; € R™, v, # 0 satisfyingEv, = 0. Then, the infinite eigen- the pair(£, A + AA) is regular, causal as well as stable or not, for
values associated with the generalized principal veatprsatisfying which many testing conditions exist in the literature [5], [13]. How-

vp 20,Evy = Avy, 1,k =2, 3, 4, ..., are said to be the noncausalever, it should be noted that for/ad increase in the time delaythe
modes. sizes of matrixt and A + AA will increase bynAd. Therefore, for
Proposition 1 [1]: The following statements are equivalent. large delays the sizes of matrikand A + A A become large and the
)  The pair(E, A) is causal: testing conditions for the pait&, A + A A) will become difficult to
1) The pair(E, A) has no noncausal modes; apply. It is then desirable to develop simple conditions to test the regu-
1) (zE — A)~' is proper. larity, causality and stability of discrete singular delay system (1).
For the discrete singular delay system (3), if we set The following lemma shows that testing the regularity, causality and

stability of system (3) can be converted into testing the regularity and
causality of the paifE, A) togetherwithr(E, A, A4) C Dine(0, 1).

Lemma 1: The discrete singular delay system (3) is regular, causal
and stable if and only if the pa{tE, A) is regular, causal and

X (k) = [x(k)l', ek =1)7", . ek — d)T]T

then system (3) can be rewritten as

R X a(E, A, Ay) C Dint(0, 1). @)

EX(k+1)=AX(k) ()]
Proof: (Sufficiency)Suppose the paifE, A) is regular, causal

where ando(E, A, As) C Diu(0. 1), then it follows from [5] that there
exist two invertible matriced/ and N such that

. E Onxnd }
E= I o (4, 0
Ondxn In,dxnd MEN = |:0 0:| [\1‘4‘7\7 = I O T . (8)
N A Oan(d—l) ‘ A .
A= (5) Writing
Ind)(nrl ‘ Onrlxn .
MAGN = {Adl Aaz

Therefore, we introduce the following definition for discrete singular Ags Ada

delay system (3). . ) )
Definition 3: The discrete singular delay system (3) is said to b(éompatlble with (8) and noting
regular if system (4) is regular. System (3) is said to be causal if system o
(4) is causal. System (3) is said to be stable if system (4) is stable. det (ZE - A) =z"det(zE - A— 2 "Ay) )
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we have This is also a contradiction because the pjaﬁr AA_) is causal. There-
o fore, the paif E, A) is causal.
det (:E—A) =:"Tdet(M'NT") Finally, o(E, A, A;) C Din(0, 1) can be established by noting
A iy —dy the stability of the paif £, A) and the equality (9). This completes the
—Ar—z 1 —Z d2
-det [ o i . (10) proof. _ - _ o
—z “Au —I—z""Ay Before stating the robust stability results, we introduce the following
o lemmas which will be used in the proof of our main results.
It is easy to show that for sufficiently large det(zE — A) # 0. Lemma 2 [2]: Let M (=) be a square rational matrix and be decom-

Therefore, there exists a scala€ C such thatlet(zE — A) # 0, this posed uniquely a3/ (z) = M, (z)+ M., (z), whereM, (z) is a poly-
implies that the paifE' — A) is regular. Furthermore, from (10), it cannomial matrix andM,(z) is a strictly proper rational matrix. Then,

be seen that M~"(z) is proper if and only ifd,"' (=) exists and is proper.
o . Lemma 3: Suppose the nominal discrete singular delay system (3)
deg (dof (ZE - A)) = nd 4 rank F = rank F. is regular, causal and stable, and defiig ~) as
Hence, it follows from Definition 1 that the paii, A) is causal. The Gp(z) = (zE—A— Agz" ! (14)

stability of the paif £ — A) can be shown from (7) and (9). Thus, from
Definition 3, the discrete singular delay system (3) is regular, caugBen
and stable.

(Necessitypuppose the discrete singular delay system (3) is regular, |Gy ()] < H, |2l =1
causal and stable. Then from Definition 3, we have that the ﬁam{) where
is regular, causal and stable. Next we shall show that the pairt ) is
regular, causal and(E, A, As) C Din (0, 1). Suppose, by contra- i
diction, the pair E, 1(4) is not rt)agular, th(en fr)om [5, Theorem 1-2.1], H= Z |G(E) o, |2l 21 (15)
there exist an integet > 1 and a vectot” = [¢]. €], ..., &1, k=0
E#0,& €ER",i=1,2,..., k, such that andG (k) is the pulse response sequence matrigpfz).
Proof: Since G(k) is the pulse response sequence matrix of
L(k)E=0 (11) G,(z), we can write
where Gp(2)=(:E—A—A,2")7 =" G(h)="" (16)
E k=0
A F _ . .
I(h) = s e Ri+FDmxnk Thsn, by [7, Lemma 3], t_h_e desired result follows |mmeo_l|_ately.D
ow, we are in a position to present the robust stability result for
E uncertain discrete singular delay systems.
A Theorem 1: Suppose the nominal discrete singular delay system (3)

) ) ) is regular, causal and stable. Then, for all admissible uncertainties, the

YX'TOUI loss of generality, suppoge # 0, then it follows from (11) \ncertain discrete singular delay system (1) remains regular, causal and
a .
stable if

Ea=0. Aa=-I6. (12) p(H (M + M) < 1 (17)
Let whereH is defined in (15).
Proof: From Lemma 1, the regularity, causality, and stability

ol —1eT T _ (_¢T (T
v =161.0.0..... 0] ve =[=&2. &1, 0. 0, of system (3) imply that the paifE, A) is regular and causal and

v1, vy € RV o(E, A, Ag) C Dini(0, 1). Therefore, fofz| > 1, we have
thenu, # 0, v2 # 0. From (12), it is easy to see det(zE — A— Ag="") #0.
Ev, =0, Euvy, = Avy. (13) Using [7, Lemma 3] and noting (17), it follows that

From Proposition 1, we have that (13) is a contradiction because #é=E — A — A,2~")T'AA) < p(HM4) < p(H(Ma+ My)) < 1
pair (E, A) is causal. Therefore, the paiE, A) is regular.
Now, we show the paifE, A) is causal. Suppose, by contradictionfor |z| > 1. Thus, for|z| > 1
the pair(E, A) is not causal. Then, it follows from Proposition 1 that
there exist at least two nonzero vectoeysy. € R" satisfyingEv; = 0 det(I — (zE— A — Az TIAA) £ 0. (18)
andEv, = Av,. Set
Considering the regularity and causality of the pit (4) and noting

m=[v,0,0---0"  npa=[va,vl,0,...0", (18), we can show that there exists a sufficiently large scalag C
such that
0, o c R(d+1)71'
det[I — (21E — A — Agz7 D)7 (AA = Ag27 )] #0 (19)

It is easy to show that
and

Eni=0,  En = An. det(z21E — A — Ayz7 ") #£0. (20)
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Then, it follows from (19) and (20) that where

(A — qE). (25)

N =

det[z1E — (A 4+ AA)] A, =

J— - — — .7d‘ — A — ufd‘

= det(:1E— A= daz ) — (A = Aaz )] Proof: From Lemma 1 and (9), it follows that (3) is reg-

=det(z1F— A — Agz; %) ular, causal and all its finite eigenvalues are located within disk
cdetf[l — (1 E—A—Agz )1 (AA— Ay 0 (21 Dint(q, 7) if and only if the pair(E, A) is regular, causal and
detll = (= 1) A IF0 @Y R4 40 C Dila. ), or

which implies that the paitE, A + AA) is regular for all admissible

—d z—q
uncertainties. Next, we show that, for all admissible uncertainties, the det(:E — A —2""44) #0, . ‘ > 1. (26)
pair(E, A+ AA) is causal. To this end, we note that the matrix —
A — Ay~ can be expressed as Let
- - 1 1 v = = q

(:E— A=Az~ = G(0) + Gop(2) v=—. @7)
whereG (0) is a constant matrix an@., (=) is a strictly proper rational 1hen, we have that the pai¥, A) is regular, causal and (26) holds if
matrix. From [7, Lemma 3] and (17), it is easy to see that and only if the pair £, A,) is regular, causal and (24) holds. [

Now, we present the robust D-stability result for uncertain singular
p(GO)AA) < p(|G(0)|m Ma) < p(HM4) delay system (1) in the following theorem.

Theorem 2: Suppose the nominal discrete singular delay system (3)
is regular, causal and all its finite eigenvalues are located within the
disk Din¢(q, 7). Then, for all admissible uncertainties, the uncertain
discrete singular delay system (1) remains regular, causal and all its
finite eigenvalues are located within the diBk.. (g, r) if

<p(H(Ma+ Ma)) < 1.
This inequality implies thal — G(0)A A is invertible. We write

[:E — (A+A4) "

_ E‘E ; (I:JH fA); {rgjifﬁ_d]_l p(r™ Ho(Ma+67"Ma)) < 1 (28)
=[I—-(::E—-A—- Az A £
F(:E—A- Adz—rl)—1 Adz_d]_] where
. (;E—A—Adz_d)_1 ) , 6 =min(lg+ 7|, |¢ —r|)
pa— / - A ~ 71 P
a [([__ fp((oz))i?]i((zi : i : jj;d;ﬂfld/' 22) andH, is defined as
Noting (:E — A— Ayz~4) "' A4z~ — G.p(2)AA s a strictly proper H, = i |G (E) | (29)
k=0

rational matrix and recalling — G(0)A A is invertible, it then follows
from Lemma 2 thal(7 — G(0)AA) + (:E— A— A2~ 7 4,27
Gsp(2)AA] ! is proper and so i§:E — (A + AA))~*. Hence, by
Proposition 1, we have that the pait, 4 + A A) is causal.

Now, using [7, Lemma 3] again, we obtain

whereG, (k) is the pulse response sequence matrig'pf(v) defined
by

—1
Gpr(v) = <1;E — A, - 1 (rv+ q)_dAd)
"
pl(zB — A= Agz" )" AA+ AAY)] < p(H(Ma + My)) < 1
in which A, is given in (25).

for |z| > 1. Therefore, it can be shown that Proof: Under the condition of the theorem, we can deduce that
the uncertain discrete singular delay system (1) is regular, causal by

det(zE — (A+ AA) — (Ag+ AAy)="") using Lemma 4 and following a similar line as in the proof of Theorem

—det(2E— A — A2 1. Next, we will establish that all the finite eigenvalues of system (1)

are located within the disk:;.: (¢, 7). To this end, we note
det(I — (2B — A — Agz ) H(AA+ AAY) £ 0 (4. 7)

1. _
for |z| > 1. Thatis, det <vE — A=~ (vt dAd) #0,  Jofz1  (30)
p(E, A+ AA Aq+ AAy) C Dine(0, 1). 23) and
Finally, by rc_acalling the paifE', A+AA)isregular ant_JI ca_usal, not_ing Gpr(v) = i G, (ko .
(23) and using Lemma 1, we have that the uncertain discrete singular —

delay system (1) is regular, causal and stable for all admissible uncer-
tainties. This completes the proof. O [Itfollows that
The following result is needed in the proof of the main results. 1
Lemma 4: The discrete singular delay system (3) is regular, causal /J{ - Gpr(V)[AA+ (rv+ q)_dAAd]}
and all its finite eigenvalues are located within the di3k. (g, r) if
and only if the pai E, A,.) is regular, causal and < p{,1 |Gor (V)| [|AA]n + ro 4 ¢] "

AAd|m]}

det <1:E —A, - 1(“) + q)_dAd) £0,  |o|>1 (29 < p<1 H, (Ma+ ﬁ_de)) <1
,,. ,,.
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for |v| > 1. Therefore, we have
det(T — r ™" Gpr(V)(AA 4 (rv + q) " AAdy)) #0, |v] > 1.
This together with (30) implies that
1 1 . ,
det |:UE —Ar— AA-=(rv+q) “(Aa+ Afld):|
r r
1 —d
= det <’UE — A, —=(rv+gq) Ad>
r

- det <I - % Gpr(V)(AA+ (ro+ q)_dAAr/)> #0, |v| > 1

By Lemma 4, it follows from this inequality that

p(r™"

555

Then, we have

H, (M + 5 "My))

0.5454
0.1318
0.0389

0.1519 1.8567
0.1469 1.4367
0.0778 0.1944

= =0.8264 < 1.

Therefore, by Theorem 2, we have that the uncertain discrete singular
delay system is still regular, causal and all its finite eigenvalues are
located within diskD;i.: (0.1, 0.6) for all admissible uncertainties.

V. CONCLUSIONS

In this brief, we have developed a computationally simple approach

to analyze the D-stability robustness for uncertain discrete singular sys-

P(E, A+ AA, Ay + AAy) C Dinlg, 7).

tems with state delay. Sufficient conditions have been obtained to guar-
antee not only robust pole location within a specified disk but also regu-

larity, causality of the uncertain singular system. Structured uncertain-

This completes the proof. O

ties have been discussed. The proposed method can be easily extended

Remark 2: The criteria developed in Theorems 1 and 2 are comptb analyze the D-stability robustness for discrete singular systems with
tationally simple, and can be tested easily. Moreover, it can be seen thaitiple time delays.

all advantages stated in [3] and [17] are still preserved in our method

to deal with uncertain discrete singular delay systems with structured

uncertainties. It is also worth pointing out that the results in both The-

orems 1 and 2 can be extended to the case of multiple time delays. ]
IV. NUMERICAL EXAMPLE

. . . . . 2
In this section, we give an example to illustrate the effectiveness of[ ]
3]

the proposed method.
Consider the linear uncertain discrete singular delay system (1) with

parameters as follows: [4]
[5]
1 0 0 01 0 0
E=100 0| A=|0 0 -04 (6]
0 1 0 0 03 05
012 02 0 0.1 001 0.1 7]
4,=]1 0 0 01| Masa=]001 o0 001
L 0 01 -0.1 0 001 0.1 (8]
r0.03 0 0.1 [9]
M;=| 0 001 0.02 110]
1001 0 0.1

andd = 1. It can be verified that the nominal singular delay system[11]
is regular, causal, and the eigenvalues of the nominal system can be
calculated as [12]

o(E, A, Ag) = {—0.3, =0.2, 0.25, 0.4, 0.5}. [13]

In this example, we setDi.:(q, r) Dint (0.1, 0.6). Thus, (4]
o(E, A, A7) C Din(0.1,0.6). The purpose of this example is [15]
to check whether the uncertain system is still regular, causal and
the eigenvalues of the perturbed system are located within dishG]
D, (0.1, 0.6).

From (29), the matrix?, is computed as

[17]
1.6667 2.9461 1.5556
= 0 3.2407 2.3334
0 2.3333 0

18
" (18]

REFERENCES

D. J. Bender and A. J. Laub, “The linear—quadratic optimal regulator
for descriptor systems,l[EEE Trans. Automat. Contrplol. 32, pp.
672-688, Aug. 1987.

C.-T. ChenLinear System Theory and DesignNew York: Holt Rine-

hart and Winston, 1984.

J.-H. Chou, “Pole-assignment robustness in a specified diSkst.
Contr. Lett, vol. 16, no. 1, pp. 41-44, 1991.

D. Cobb, “Feedback and pole placement in descriptor variable systems,”
Int. J. Control vol. 33, no. 6, pp. 1135-1146, 1981.

L. Dai, Singular Control Systems Berlin, Germany: Springer-Verlag,
1989.

C.-H. Fang and L. Lee, “Robustness of regional pole placement for un-
certain continuous-time implicit systems$EEE Trans. Automat. Con-
trol, vol. 39, pp. 2303-2307, Nov. 1994.

C.-H. Fang, L. Lee, and F.-R. Chang, “Robust control analysis and de-
sign for discrete-time singular systemafitomaticavol. 30, no. 11, pp.
1741-1750, 1994.

L. R. Fletcher, “Pole assignment and controllability subspaces in de-
scriptor systems,Int. J. Control vol. 66, no. 5, pp. 677-709, 1997.

K. Furutaand S. Kim, “Pole assignment in a specified ditkFE Trans.
Automat. Contrglvol. 32, pp. 423-427, May 1987.

G. Garcia and J. Bernussou, “Pole assignment for uncertain systems in
a specified disk by state feedbackZEE Trans. Automat. Contrpvol.

40, pp. 184-190, Jan. 1995.

A. Kumar and P. Daoutidis, “Feedback control of nonlinear differen-
tial-algebraic equation system#IChE J, vol. 41, no. 3, pp. 619-636,
1995.

C. H. Lee, T. H. S. Li, and F. C. Kung, “D-stability analysis for dis-
crete systems with a time delaysyst. Control Lett.vol. 19, no. 3, pp.
213-219, 1992.

F. L. Lewis, “A survey of linear singular systemgircuits, Syst. Signal
Processingvol. 5, no. 1, pp. 3-36, 1986.

R. W. Newcomb, “The semistate description of nonlinear time-variable
circuits,” IEEE Trans. Circuits Systvol. 28, pp. 62-71, Jan. 1981.

L. Pandolfi, “Generalized control systems, boundary control systems
and delayed control systemdflaths. Contr. Sig. Systvol. 3, no. 2, pp.
165-181, 1990.

T.-J. Suand W.-J. Shyr, “Robust D-stability for linear uncertain discrete-
delay systems,TEEE Trans. Automat. Contrplol. 39, pp. 425-428,
Feb. 1994.

H. Trinh and M. Aldeen, “D-stability analysis of discrete-delay per-
turbed systemsht. J. Contro| vol. 61, no. 2, pp. 493-505, 1995.

S. Xu and C. Yang, “Stabilization of discrete-time singular systems:
A matrix inequalities approach,Automatica vol. 35, no. 9, pp.
1613-1617, 1999.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


