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IV. CONCLUSION approaches have been developed and a great number of results for con-
inuous systems as well as discrete systems have been reported in the

In this note, an algorithm is provided for testing the diagnosabili - . .
of discrete-event systems. Compared to the existing testing metho tl%ratu(rje, :ge, for [[nsltancgl, [4]’]‘[1%]' lVery r(etcentlyl,_lrgelre?t has been
[4], our algorithm does not require the construction of a diagnoser fOyCUSEC 0Nt~ CONLIOT problem for defay systems. 1e al.[7] gen-

. . . . ralized theH .. results for continuous systems to systems with state
the system. The complexity of our algorithm is of fourth order in thg . . .
Y piexity 9 elay, which was further extended to systems with both state and input

number of states of the system and linear in the number of failure typ s| . ) .

. . . elays in [3] and [9], respectively. In the context of discrete systems
of the system, whereas the complexity of the testing method in [4] Nith state delay, similar results can be found in [12] and references
exponential in the number of states of the system and doubly expon%:rlu- '

L . therein.
tial in the number of failure types of the system.
P 4 On the other hand, since the introduction of the notion of positive

realness, many researchers have considered the positive-real control
' _ _ _ ' problem for linear time-invariant systems [1], [15]. The objective is to
(1] Y. L. Chen and G. Provan, “Modeling and diagnosis of timed discretg4esijgn controllers such that the resulting closed-loop system is stable

event systems—A factory automation example,Pimoc. Amer. Control Lo o
Conf, Albuquerque, NM, June 1997, pp. 31-36. and the closed-loop transfer function is positive real. It has been shown

[2] L.HollowayandS.Chand, “Time templates for discrete event fault morin [13] that a solution to this problem involves solving a pair of Riccati
iltggzg in rr;%riuf?géuring systems,” iAroc. 1994 Amer. Control Conf. inequalities. These results have been extended to uncertain linear sys-

[3] F Liny, rjIg'iagnosabil'ity of discrete-event systems and its applications,tems Wlth_tlme_mva”am unc_ertamty in[11] and [16], respectively. Itis
J. Discrete Event Dyn. Syst.: Theory Appbl. 4, no. 2, pp. 197—212, Worth noting that some positive realness results have also been gener-
May 1994. alized to time-delay systems [8].

[4] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.Recently, much attention has been focused on the study of the theory

Teneketzis, “Diagnosability of discrete-event systemiEEE Trans. . - .
Automat. Contr.vol. 40, pp. 1555-1575, Sept. 1995. of neutral delay systems and some issues, such as stability and stabi-

[5] S.H.Zad, R. H. Kwong, and W. M. Wonham, “Fault diagnosis in timedization, related to such systems have been studied [5], [10], [14]. To
discrete-event systems,” iroc. 38th IEEE Conf. Decision Conttol date, however, very little attention has been drawn to the problem of

Phoenix, AZ, Dec. 1999, pp. 1756-1761. A ;
[6] G.Westerman, R. Kumar. C. Stroud, and J. R. Heath, “Discrete-evelr[{FQ control, as well as positive-real control, for linear neutral delay

systems approach for delay fault analysis in digital circuits,Pioc. Systems, these are more.complex and still open. N
1998 Amer. Control ConfPhiladelphia, PA, 1998. In this note, we deal with thé/. control and positive-real control

problems for linear neutral delay systems. The size of the delays ap-
pearing in the state and derivative of the state may not be identical. The
H.. control problem we address is to design a memoryless state feed-
.. ) back controller such that the resulting closed-loop system is asymp-
Ho and Positive-Real Control for Linear totically stable while the closed-loop transfer function from the dis-
Neutral Delay Systems turbance to the controlled output meets a prescriied-norm bound
constraint. In terms of a linear matrix inequality, a sufficient condition
for the existence off .. state feedback controllers is presented. Then,
based on the relationship between bounded realness and positive real-
Abstract—This note is concerned with theH ., and positive-real control  ness and the results dih.., control, we obtain a sufficient condition
problems for linear neutral delay systems. The purpose of, controlis 5 extended strictly positive realne¢&SPR) for neutral delay sys-

the design of a memoryless state feedback controller which stabilizes the " - -
neutral delay system and reduces th&Z. norm of the closed-loop transfer tems. The condition for the solvability of positive-real control problem

function from the disturbance to the controlled output to a prescribed level, is also given in terms of a linear matrix inequality.
while the purpose of positive-real control is to design a memoryless state  Notation: Throughout this note, for symmetric matric&sandY’,

feedback controller such that_the_ resulting close_d-loop system is stable_ and the notationX > Y (respectively,X > Y) means that the ma-
the closed-loop transfer function is extended strictly positive real. Sufficient =~~~ JA . . L . i, L.
conditions for the existence of the desired controllers are given in terms of X X — Y is positive semi-definite (respectively, positive definite).

a linear matrix inequality (LMI). When this LMI is feasible, the expected I is the identity matrix with appropriate dimension. The superscript
memoryless state feedback controllers can be easily constructed via convex«p» gd “«” represent the transpose and the complex conjugate trans-
optimization. . . .
pose.||x|| is the Euclidean norm of the vecter For a given stable
Index Terms—I1,,, control, linear matrix inequality, memoryless state  {ransfer function matrixi(s), its Ho, norm is given by||G(s)||oe =
feedback, neutral delay systems, positive-real control. C ’ . .
SUP_,cg Cmax|G(jw)], Whereoma., represents the maximum singular
value of a matrixp(A) denotes spectral radius of a matdx L, [0, co)
I. INTRODUCTION stands for the space of square integrable functiori8,osc). Matrices,
if not explicitly stated, are assumed to have compatible dimensions.
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where
z(t) € R” state;
u(t) € R™ control input;
w(t) € R? disturbance input which belongs
to LQ[O, QC),
z(t) € R controlled output;

A, Ap, Ad, B, E, C'andD
with appropriate dimensions;
d>0,h>0
be equal to;
I = max{h, d} ande(#)
tial function on[—{, 0].

Now consider the following memoryless linear state feedback con-

troller:

u(t) = Fa(t), FcR™". (4)

known real constant matrices
constant time-delays, may not

continuously differentiable ini-
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wherexz: = x(t + 6), 8 € [, 0]. It can be shown that there exist
scalars:y > 0 andeo > 0 such that the following holds:

alD)|I° < V() < ¢ ]||<f><e>||2. (15)

sup

DifferentiatingV (x+) along the solution of (9) and (10) results in
V() =2(x(t) — Aqa(t — d))" P(Ax(t) + Apx(t — h))

+ 2 (Q+ S)a(t) — x(t — d) Qu(t — d)
—a(t—h)" Sa(t —h)
=(x(t)— Agz(t —d)) (PA+ A"P+Q+5)

(2(t) — Aga(t — d)) — 2(t — )T Wa(t — d)

+2(x(t) — Age(t —d)T(Q+ S + PA) Agu(t — d)

+ 2(a(t) — Aqe(t — d)) PA,x(t — h)

—a(t — h)" St — h).

Noting the definition of the operatd®, this equality can be rewritten

The resulting closed-loop system from (1)—(4) can then be written agg

#(t) = Acx(t) + Apx(t — h) + Agz(t —d)+ Ew(t) (5)
2(t) = Cz(t) + Dw(t) (6)
whereA.

G..(s) fromthe disturbance (¢) to the controlled output(t) is given

by
G.u(s)=C [3 (I - Ade—“l) - (4 + Ahe—~‘*"l)]_1 E+D.

@)

We first consider thel ., control problem. The purpose is to deter-
mine the state feedback controller (4) such that the following require-

ments are met:
R2) the closed-loop system is asymptotically stable when =
0;
R3) theH., norm of the closed-loop transfer functiéh.. (s) sat-
isfies the constraint
G0 (s)lloe < (®)

wherey > 0 is a prescribed scalar.

= A + BF, and the closed-loop transfer function matrix

=D(x)) (PA+ A"P4+Q+ 5)D(x)) — 2(t —d)"
Wa(t —d) + 2D(x)" (Q + S+ PA)Age(t — d)
+2D(a) " PApa(t — h) — 2(t — h)" Sa(t — h).

By considering (12), it follows that:

V(z) =D(x) (PA+ A"P+Q+ S+ (Q+ S+ PA)

CAWTTAL(Q+ S+ PA)
+ PA,S™' AL P)D(xy)
—[x(t —d)" = D) (Q+ S+ PA) AW W
et —d) = WTTAT(Q+ S+ PA) D(a))
—[x(t=h)" —D(a:)" PALST"S
(= h) — STLAL PD(a¢)].

This equality, together with (11), implies that there exists a seatad
such that

Vi)

V() < —cl| D).

To solve theH ., control problem formulated above, we first give aFinally, noting the stability of the operatér and the above inequality
sufficient condition for the asymptotic stability of linear neutral delagnd (15), the desired result follows immediately from [6, Th. 7.1].

systems.
Lemma 1: Consider the neutral delay system (1) witft) = 0 and
w(t) = 0, that is

#(t) = Ax(t) + Apa(t — h) + Agi(t — d) )

zi, =x(to+60) =¢(8) VO €[~ 0] (10)
If there exist matrice® > 0, > 0, and.S > 0 such that
PA+A"P+Q+S5S+(Q+S+PAHA,w !
AN Q4+ S+ PA) + PALSTIALP <0 (11)
W=0Q-A5(Q+S5)A4s >0 (12)
then the system (9) and (10) is asymptotically stable.
Proof: Define a difference operat@ as
D(¢) = 6(0) — Aad(—d). 13)
From (12), it is easy to show that
AlQA.-Q<o.

Thus, the operatdp is stable.

Remark 1: Lemma 1 provides a delay-independent stability condi-
tion for the neutral delay system (9) and (10), it is worth noting that,
foranyd > 0 andh > 0, Lemma 1 is always applicable. However, [5,
Th. 1, p. 93] is only applicable to the case whée- .. In this sense,
our stability result extends that of [5] and is more general.

The following result will play an important role in solving tHé..
control problem in this section.

Theorem 1: Consider the neutral delay system (1)—(3) witl) =
0, that is

#(t) =Ax(t) + Apa(t — h) + Aqi(t — d) + Ew(t) (16)

with
Now, we introduce the following Lyapunov functional candidate for

the system (9) and (10):
Viw) = (x(t) — Aga(t — d)T P(a(t) — Aga(t — d))

—I—/‘t ,r(,T)TQ,r(T)(]T—I—/‘t m(q-)TSm(T)dT (14)
t—d t—h

2(t) = Cx(t) + Duw(t) (17)
x(to+60)=06(8) VO €e[-L0)]. (18)

If there exist matrice$®> > 0, @ > 0, andS > 0 such that

PA+A"P+C"C+Q+ S+ (PE+C"D)

VY PE+CTD) + PA, ST AL P

+ MAW T ATMT <0 (19)
V=+*I-D'D>0 (20)
W=Q-AJ[C"I+DV'D")C+Q+5]4;s>0 (21)

M=C"I+DV'D"YC+Q+S+P(A+EV™'D"C)
(22)
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then the system (16)—(18) is asymptotically stable, and

HC’[S(I — Age™™) = (A4 Ape T E 4 DH <.

For the proof of Theorem 1, the following two lemmas will be used.

Lemma 2: If there exist matrice® > 0, @ > 0, andS > 0 such
that

PA+ATP+CTC+Q+ S+~ 2PEETP+ PA,S TATP
+(C'CH+Q+S+PayAW!
CATCTC+Q+ S5+ PA) <0

W=Q-AN(C"C+Q+5)4,>0

(23)
(24)

then system (9) is asymptotically stable, and

HC[s(I — gy (A ¥ Ahe*’“)]*lE(

- < 7.
Proof: Let
Si=85+c'C.
From (23), it can be deduced that

PA+A"P+Q+ 5 +(Q+ 5.+ PA)
CAWTTAN(Q A4 S0+ PA)T + PALSTIAL P < 0.

By Lemma 1, this inequality, together with (24), implies the asymptotic
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Therefore

Y(jw)+Y(jw)
<(CTCH+Q+S+PAAW AL
(CTCHQ+ S+ PA) +T(ju) W)t (27)
and
Z(jw) + Z(jw)* < PA,ST AL P+ U(jw) " SU(jw)”". (28)
From (26)—(28), it follows that for alb € R:

PA4+A"P4+~y?PEE'P + X(jw)+ X(ju) + Y (jw)
+Y(Gw) + Z(jw)+ Z(w) + T (ju) T CTCr(jw)T! <.
(29)
Observing that
P(A+ Ape M (uw)™!

— PA+4c7%p (AAd + c—f“(h—‘“Ah) T(jw)™

= PA+X(jw)+Y(jw)+ Z(jw).
Substituting this equality into (29) yields

P(A+ Ape M) T(Gw) ™ + T(jw) (AT + AL iy p
++ *PEE'P+ ¥(ju) *C'CT(jw) ' <O0.

stability of the neutral delay system (9). Next, we will show that the

H..-norm bound constraint is satisfied. To this end, we set
V(jw) =1 — Age 74,
From (24), we have
ATQ4,-q<o.

Therefore,p(A4) < 1. This implies that for allv € R, ¥(jw) is
invertible.
Now, through some routine algebraic manipulations, we obtain

c'C+Q+S
= U(jw) [T () (CTC+ Q + 8)T(jw)] ¥ (jw) ™
= U(jw) (S+CTC+W)V(jw) " + X (jw)+ X (jw)*
(25)
for all w € R, where
X(jw)=—e“UCTC+Q+ 9 AT (jw) ™"
Then, (23) can be rewritten as
PA+A"P 4+~ ?PEE" P+ PA,ST'A[ P+ X (jw)
+ X(ju) +U(jw) " (S+CTC+W)T(jw)™
+(CTC+Q+S+PrA)AW
CAJ(CTCHQ+ S+ PA)T <. (26)
Define
Y(jw)=e*NCTC+Q+ S+ PAAT(jw) ",
Z(jw)=e " PALT(w) .

Recalling that for any matrices;, K> and K3 of appropriate dimen-
sions withK; > 0

KiKs + KiK, < K{ KoKy + KiK' K.

That is

Pljwl — (A4 Ape ™M) (ju)™']
+ [l — (A+ Ape M W(jw)™']"P

—y ?PEETP -9 (ju)y *CcTC¥(jw) ™ > 0. (30)

LetT'(jw) = jwl — (A + Ape™ ") ¥(jw)~", then for allw € R,
T'(jw) is invertible since the neutral delay system (9) is stable.
Premultiplying (30) byE"I'(jw)™* and postmultiplying (30) by
T(jw)™'E give
E'T(jw) *PE+ E'PT(ju)™'E
— v *E'T(jw) *PEE"PI(ju)™'E
—E'T(ju) "0 (jw) " CTCU(jw) 'T(Gw) " E > 0.
In completing the squares in this inequality, it follows that, for.ak
R,
VI =y [E"T(jw) " PE — ¥’ I)[ET PU(jw) 'E = 4°1]
— BT (jw) " ¥ (jw) " cTCU(ju) T (jw) tE > 0.
Thus, for allw € R
E'T(jw) " 0(jw) T CU(jw) ' T(jw) ' E< ~*T.  (31)
Finally, by noting that
V(i) 'D(w) ™t = [jwll — Age 79 — (A4 Ape =Mt
and using (31), we conclude th#iC[s(I — Age™™) — (A +
Ape ™) E||» < v holds. O
Lemma3:Let H > 0, ¥(s) =1 — Age %

®(s) =[ET(—s¥(=5)" = (A+ dpe™)T)" 1]
P S][(s%(s) = (A+ Aye ") 'E
'{ST ‘H}{ T
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and then the system (33)—(35) is asymptotically stable whén = 0, and

i ) i -1 the H.. norm of the transfer function satisfies
@(6) = |:ET (—S\P(_S)T _ (A + AhCSh)T) [:|

v 7] [(sm(.s) (i) B cwr-a- e o] <o

0 I I Remark 2: Itis easy to see that Corollary 1 is the same as [7, Th. 1]
whenD = 0, thus Theorem 1 here can be viewed as an extension of
where the existing results ol ., disturbance attenuation for delay systems
to neutral delay systems.

Now we are in a position to give a solution to tie. control
problem specified above.

Theorem 2: Suppose that there exist matricEs> 0,Y, @ > 0,

_Proof: Th? proof follows the same idea as in [17, Lemma 13'186} > () satisfying the LMI, as shown in (37) at the bottom of the page,
and is thus omitted. where

Proof of Theorem 1: The asymptotic stability of the neutral delay
system (9) can be inferred from (19) and Lemma 1. To showhe L=[EJ+D"V'D)E"+Q+ S5+ XC"V~'DE"
norm bound constraint is satisfied, we rewrite (19) as -\ T ST o T1 4T
+XxA" +Y"B"A]

A=A-FEH'S", E=EH YY), P=pP-SH'S".

Then,®(jw) > 0 if and only if ®(jw) > 0.

P(A+EV'D'C)+ A+ EV'D'O)'P H=[XAl Xxc"+ED"]
+Cc"I+DV 'D"YC+Q+S+PEVE'P J =diag(5, V)
+ PALST AL P+ MA,WT AT MT <. V=+T-DD¥ >0
Applying Lemma 2 to this inequality yields then the memoryless state feedback controller

(CUAT = a4 = (At e =1 E) ) =YXt )

A(Clw(I = Age ) = (A+ Ape 7" 'E)y <1 (32) Stabilizes system (1)=(3) and guarantees thatithenorm bound of
' the closed-loop transfer function constraint has a prescribedevel

where 0.

X Proof: Applying the controller (38) to the neutral delay system
A=A+EVT'D"C, (1)—(3), we obtain the resulting closed-loop system in the form of (5)
¢ = (I+DV™! phy'2c, and (6) with
E=fFgy /D, A= A+ BY X~

By Lemma 3, it is easy to show that (32) is equivalent to By Schur complement, (37) implies
. . T - 4T - T - ~T T
(C[jw([ _ Adc—]wd)_(A i Ahc_,]wh)]_1 B4 D) XA, +AX+EE +Q+S+(XC' +ED")
, iy - , VTHXCT + EDY) 4 XALST ALY
: (wa(f = Age™N) — (A Ape™ )T E+ D) <L M AT W A MT <0 (39)
This completes the proof. O ere
In the case whent; = 0, from Theorem 1, we have the following N B /
result. My =E(I+D'V'D)E' +Q+ S+ XAl +C"V 'DE")
Corollary 1: Consider the following delay system: Wi =Q — AJEI + DTV‘lD)ET +0Q+ 5]‘45 > 0.
#(t) = Aw(t) + Anx(t — h) + Ew(t) (33) ' Using Theorem 1, we have that the following neutral delay system:
2(t) =Cx(t) + Dw(t) (34) ] r r - T
alto+60) =6(8) V8 €[—h,0]. (@s) D) =Acer® A ol = h)F Ark(t =)+ Cen(t) (40)

21(t) = E (1) + DT wy (1) (41)

If there exist matrice$®> > 0 andS > 0 such that ) . )
is asymptotically stable when, (¢t) = 0, and

PA+ATP+CcTC+(PE4+CTD)WV HPE+CcTD)T

Cro(T — AY e — (AL 4 AL om0t T -

4+ PAS AL P+ S <0 (36) | B = e — (al w At et 4 DY <
(42)

with ,
y where the state; (t) € R", the disturbance input;(t) € R”, and
V=~+*T-D"D>0 the controlled output(¢) € RZ. It is easy to see that the system
XAT +AX +Y'BT" + BY + EET +Q+ S L H

L’ A [E(I+D'VI'D)E" +Q+ S| 45 -Q 0| <0 @37)

T 0 —J
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XAT 4+ AX +Y"B"+BY +Q+S L H

L* Ai[Q+S+EUTET|AT -Q 0 | <0 (46)
H" 0 —J

(40) and (41) is asymptotically stable and (42) holds, if and only if Theorem 4: Consider the linear neutral delay system (1)—(3). If

the closed-loop system (5) and (6) is asymptotically stable and

there exist matriceX” > 0, @ > 0,5 > 0 and a matrix”, satisfying

the LMI shown in (46) at the top of the page, where

Cls(I = Age™*%) = (Ae + Ape ") 'E + D” <~

U=D+D">0

L=[XA"+Y"B"+Q+S—(XC" - E)UT'E"|A}

holds. This completes the proof. O

H

=[X4A] XCT - FE]

By considering the connections between bounded realness and pos- J = diag(S, U)

itive realness, next we shall consider the positive-real control problem

for the linear neutral delay system (1)—(3). we first introduce the foften the memoryless state feedback controller

lowing concepts of bounded realness and positive realness.
Definition 1 [1]: A transfer functionG(s) is bounded real if all
elements of7(s) are analytic foRRe(s) > 0 and||G(s)]|c < 1.

uw(t) =YX 'a(t) (47)

will be such that the resulting closed-loop system is asymptotically

Definition 2 [13]: A system [or its transfer functiofi(s)] is saidt0  gtaple and ESPR.

be extended strictly positive real (ESPR{fs) is analytic inRe(s) >
0 and satisfies#(jw) + G(jw)" > 0 forw € [0, oc].

Proof: Following a similar line as in the proof of Theorem 2 and
using Theorem 4, the desired result follows immediately.

O

The problem to be addressed is to determine the state feedback cofzemark 4: Theorems 2 and 4 provide sufficient conditions for solv-
troller (4) such that the resulting closed-loop system (S) and (6) is stalljjity of the problems ofH.. and positive-real control for neutral
and the transfer functio-..(s) is ESPR. To solve this problem, we gejay systems, respectively. It is worth pointing out that the LMI (37)
first give the relationship between bounded realness and positive rggheorem 2 and the LMI (46) in Theorem 4 can be solved efficiently,

ness stated in the following lemma.

Lemma 4: Let G(s) be a square transfer function witlat(G(s) +
I) # 0 for Re(s) > 0, andG(jx) + G(—joo)’ > 0. Then the
bounded realness d (s) = (G(s) — I)(G(s) + I)~" implies that
G(s) is ESPR.

and no tuning of parameters is required [2].

[1l. CONCLUSION

In this note, we have studied thE.. and positive-real control

Proof: By the definitions of bounded realness and ESPR, the detoblem for linear-neutral delay systems. Based on the LMI approach,

sired result follows immediately. O

sufficient conditions for the solvability of these two problems have

The following result will play an important role in solving the posi-Peen presented. Our results &h. control and positive-real control

tive-real control problem.
Theorem 3: Consider the neutral delay system (16)—(18). If there
exist matricesP? > 0, @ > 0 andS > 0 such that the following

matrix inequalities hold: 1]
PA+A"P+Q+S+(PE-cyu " (PE-C")" 2]
+ PALST'AI P+ [PA+Q+S—(PE-CTHU™'(C
CAWTTATIPA+Q+ S—(PE-CTHYUT'C)" [3]
<0 (43)
U=D+D">0 44 ©
W=Q-Al(Q+S+CTUC)4u>0 (45)
[5]
then, system (16)—(18) is asymptotically stable and ESPR. [6]
Proof: The proof can be carried out by using Theorem 1 and 71

Lemma 4. O
Remark 3: In the case whemd; = 0, that is, the neutral delay
system (16)—(18) reduces to a usual delay system. It is easy to see thig]
Theorem 3 coincides with [8, Th. 1]. Moreover, if batty = 0 and
Aj, = 0, the neutral delay system (16)—(18) becomes a system without”!
any delays, then we can see that Theorem 3 corresponds to the result
of positive realness for usual state-space systems with delay-free (sgeg)
e.g., [13]). In view of this, Theorem 3 can be regarded as an extension
of the existing results on positive realness for systems with or without!]
delays. 12]
Now we are in a position to present our result on positive-real contro‘
problem for neutral delay systems.

for neutral delay systems encompass earlier ones for delay systems.
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be the solutions to

PL =AP + PLAtT + Qi — PW,P. R = P[)T >0

Oy =—0Ai — AL O+ Wi 0o =0 (1)

A Note on Uniform Observability D, ==DiA, — AI'D, + 0,0,0, Do =0 @)
Bernard Delyon then

P <Ot +07'D,0 ! ©)

Abstract—We prove in this note that the classical inequality
P, < (9;1 + C, relating the variance of the Kalman filter estimate,

as soon a@fl exists. Furthermore, one has

the observability matrix, and the controllability matrix is not true. This . " aalt—s) i }
inequality is the cornerstone of the asymptotic stability theory of the O: < € Wellds = sup [A]
Kalman filter for time-varying systems. We provide another inequality of 0 0sest
the same type. o () )

Index Terms—Kalman filter, time-varying, uniform observability. D. < /0 ¢ Os [P 1Qa ]l ds.

Some classical comments, which are shared by both lemmas, are in
order.
2) The important point here is that the bound is independeR of
This allows indeed to get bounds &, ¢ > 0, by considering

|. INTRODUCTION

We consider the following system:

e = Arrr + vs the system on a finite-time intervel — o, ¢):
) P, remains bounded if for all the solutions to (1) and (2)
9o =Cree +wy over(t — a, t) with initial condition0;_, = D;_, = 0 satisfy
vool  vowl QR IO, + 07 DO < €. _
E . s = . 5(t — s). 3) A bound onD; is easily obtained assuming boundednesd of
Wsp Wiy e S and integrability of|W; || + ||Q:|| over finite intervals. The main
with an initial value with Gaussian distributian, ~ A" (#o, Py). The condition is the invertibility ofO; .
corresponding Kalman filter is 4) The caseR, # 0 is actually covered via simple changes4n
. : andQ;.
e = Ast + (PfCtT + R,,) Sr' (e — Chibe) 5) SinceP, ! satisfies

Prl=—P7ta, - AP Y+ W, - PTRQ. P

. - another application of this theorem leads to a lower boun&.on

- (PLCtl + Rz) St (CLPL + R/ ) . based on the invertibility of the controllability matri.

6) The solution to the equation fét~' with initial value P;' = 0
is smaller thar®;; this implies that in the limit?y, — oo, one
hasP, > O;'. This is why the term0; ! cannot be avoided.

Pt :44tPt+Pt44;F+Qt

The matrix P, is the variance of the estimation errér — x.
Bounding P; is, for obvious reasons, an important issue. In [2, p.
359], R. E. Kalman considers the case wh&re= 0 and states the
following lemma (we setV, = C¥ S, 1C)).

Lemma 1 (Cas®: = 0): Let P, O, C; be the solutions to

Po= AP, + PAT +Q, - PW,P, Py=Pl >0 This example is made with; = 0. Consider

. 1 0 11
Or=-0A —A{ O+ W, 0o =0 P=(, 1 Q= L

Il. COUNTEREXAMPLE

. 7 t+1
Ci =ACe + Ct-"lt + Qt Co=0
1 t+1
1171 = < 2 )
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