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Periodic solutions for systems of coupled nonlinear Schiinger equations
with five and six components
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Systems of coupled nonlinear Sctinger (CNLS) equations arise in several branches of physics, e.g.,
optics and plasma physics. Systems with two or three components have been studied intensively. Recently
periodic solutions for CNLS systems with four components are derived. The present work extends the search
of periodic solutions for CNLS systems to those with five and six components. The Hirota bilinear method,
theta and elliptic functions are employed in the process. The long wave limit is studied, and known results of
solitary waves are recovered. The validity of these periodic solutions is verified independently by direct
differentiation with computer algebra software.
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[. INTRODUCTION cur when diffraction and light-induced waveguiding effects
are in balance. Recently incoherent spatial solitons were ob-
Systems of coupled nonlinear Sctinger (CNLS) equa-  Served in noninstantaneous nonlinear media like biased pho-
tions occur frequently in theory as well as in applications.torefractive crystals. Two theories.used to describe the phe-
The integrability and solitary waves of such CNLS systemgiomena are the coherent density method and the self-
have been studied intensively. The focus of the present workonsistent multimode method. In the second approach the

is on the periodic waves of these CNLS systems. More pret_otal intensity of the multimode soliton solutions is the su-
cisely, we shall study the CNLS system Mfcomponents perposition of all the relevant modes in the nonlinear induced
' " waveguide. Analytically the governing equation for each

b o M modehconsilstshof a nor(njlinlear Sétimlxger-like opera;cor, Sxt;
. O0Pm m % cept the self-phase modulation nonlinearity is replaced by a
! T“L Ix2 +(r21 b dr )¢m:0' m=123,..M. linear term, with the total intensity as the multiplicative fac-
(11) tor [12]

The Hirota bilinear operator and theta functions will be

An application of intensive recent interest is th femployed |r)th¢ present paper. They havg be_en demonstrated
pplication ot intensive rece Erest s e Use Ol pe effective in treating solitary and periodic waves in the

CN.LS and_ related syst_ems as mod_els for the propaga_tlor) Gteld of nonlinear waves. Indeed closed form solutions can be
optical solitons along fibers. Analytically a class of periodic 5yained when the total intensity profile of these incoherent
waves for CNLS and related systems has been expressed &jitons states is equal to the square of the hyperbolic secant
products of Jacobi elliptic functionsl—6]. These solutions [12]. Here analytical expressions are presented when the pro-
are mainly for the case of two components, but some specidjle is equal to the square of a Jacobi elliptic dn function.
solutions for three or four components have also been found. Self-trapping for these biased photorefractive crystals also

A general algorithm based on an ansatz of Ldometions  admits partially coherent solitons on a finite background
has been developed. Properties of the periodic waves, e.§13]. Mathematically the field is governed by a CNLS sys-
the amplitude and the frequency, are solved as solutions of @m of M components. Stationary solutions with nonzero
system of algebraic equations. Reductions to the Jacobi eboundary conditions can be derived by a direct method, as
liptic functions for the case o =2,3 are documented ex- the inverse scattering technique is not applicable due to the
plicitly [7-9]. nonzero conditions in the far field. Physically at least one

Solitons can propagate along an optical fiber by a balanceéomponent will have a nonzero asymptotic value of the in-
of group velocity dispersion and self-phase modulation. Toex change induced by the partially coherent solitons.
increase the information carrying capacity it will be desirable = The objective of this paper is to study periodic solutions
to propagate two or more fields simultaneously. A system oPf CNLS systems of five and six components. From a careful
CNLS will then be a relevant model. The eigenvalue prob_examlnatlon of the cases of two, three, and four components,

lem and the Beklund transformation can be investigated andPeriodic solutions for CNLS of five and six components are
one-soliton expressions can be derived explididg]. The deduced. The number of local maxima within each period

stability of multicomponent solitary waves can be studied”V!ll In general increase with the number of components for
[11] such CNLS systems. Increasing the number of interacting

Another area where the CNLS model will be applicable isfields t[hus]may facilitate the propagation of coupled periodic
waves|8,9].

the propagation of multimode, incoherent spatial solitons in
noninstantaneous Kerr media. Optical spatial soliton can oc-

II. THE HIROTA BILINEAR METHOD

The goal here is to seek special solutions of the CNLS
*FAX: (852 2858 5415. Email address: kwchow@hkusua.hku.hksystems by first using the bilinear forms:
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Im(x)exp(—iQnt) I1l. FORMS OF THE PERIODIC SOLUTIONS
dm(X,t) = for f real, (2.1
f(x) For CNLS systems of odd order, sayj=2N+1, one
possible reduction of the general theory is that, for each com-
, , M ponentm=1,2,...M,
f[D2gm.f+ QmOmf 1+ Im —DXf-f+r§=:l 9,9* [=0,
22 dm=Adannb3(@X)Tann-107" 2(ax)65(ax)+:
2N H 2N+1
where D is the Hirota operator. The crucial difference be- +amefz (ax)JF(X)exp(—iQnt)/ 057" "(ax),

tween the present situation and the case of solitary waves is
that the bilinear form(2.2 must now be used as a single Bm=Aml Emn-102N " 2(aX) + Emn 2624 (ax) 63(ax)
equation, anchot as two decoupled equations. We shall as-
sumeg,, to be real here as well. oot Enof3N 2 (ax)]101(ax) O, ax) 5 ax)

Second we choose, ) N1

Xexp(—iQnt)/ 07" ~(ax),
f=[0,(ax)]P, (2.3
whereF (x) will be taken from one of three choiceg;(ax),

wherep is a small positive intege(s or 6 in this paper  6,(ax), 3(ax). The coefficienty, y will be determined by
Formulas for the theta functions are found in the literaturea polynomial of degreeN+1. The remaining coefficient,
[14-16 and in the Appendix. amr» F=N—1,N—2,...,0, will be related ta, \ by well-

Finally g, must be chosen such that Bg.2) is satisfied.  defined algebraic relationg,, y_; will be determined by a
The Hirota derivatives of theta functions are handled by thetgolynomial of degreeN and Emr, r=N—2,N-3,...,0, are
identities(the Appendix. The critical step in formulating the related toém -1 algebraically. The amplitude parameters
correct form ofg, is that sufficient powers ofi3(x) mustbe A = m=1,2,...M, must be chosen such that
canceled in Eq(2.2) for the matching to be performed.

By invoking products of two and three theta functions, M
periodic solutions for CNLS equations wit¥l =2,3 involv- 2 b, d* =hg+h ( O5(@x)
ing two and three elliptic or theta functions can be deduced = 0 T By ax)
or recovered. Recently the consideration is extended to
CNLS equations of four components. A little experimenta-
tion shows that the arrangements

2
: (3.9

whereh, andh; are constants. In other words, the vanishing
of [ B5(ax)/ 84(ax)]?", r=2,...M, and a prescribeti; will
define M equations forA2 and hy will determine the fre-
quency paramete,,,. The resulting equations will be a lin-
ear system irArzn. The parameters must be chosen such that
the solutions for eacA? will assume a positive value.

For CNLS systems of even order, s&§=2N, one pos-
sible form of periodic solutions might be

Im=ALCO3(ax) — B5(ax)]01(ax) f2(ax)exp —iQt),
(2.4

Im=A[CH;(ax)— B5(ax)]6:(ax) O3 ax)exp —iQt),
(2.9

gm=AlcH2(ax)— 65(ax)]6,(ax) b ax)exp —iQt), - -
m SO 2.6 bm=Anlbmn 165" 2(@X) + by 265" (@) 65(ax)
2N—b 4
are possible candidates for solving E¢2) [17]. Four lin- b n-30a" T(@X) Og(ax) +
early independent solutions are obtained by suitably choos- +bmvoegN‘z(ax)]G(x)exp(—ith)laﬁN(ax),
ing A andc. A crucial step in the choice daj,, andA is that

the sum of intensity, which is related to the “refractive in- . .
dex” [12,18}, is m=1,2,...M. G(x) will be chosen from the three choices:

03(ax) 01(ax), O3(ax)b(ax), or O;(ax)f,(ax). The co-
S 4t —hoth | e§<ax>)  hudr(r0) aree N. The remaining. coeffsienton, roNo2. N
= —_— | = . m,r s l
&y $rér =hoth 03(ax)] 0 (1-KA)V —3,..,0 can again be expressed in termsbgfy_;. The
constantsA,, need to satisfy the constrai(®.1) too.

wherehy andh; are constants. All the intermediate calculations will be conducted using

The main goal of the present work is to present speciatheta functions, as their Hirota derivatives can be handled by
periodic solutions for CNLS systems with five and six com-the huge variety of theta identities. Final results, however,
ponents. The solutions are deduced from special cases forvill be reported in terms of Jacobi elliptic functions. Elliptic
more elaborate general theory outlined earlier in the literafunctions representations are more compact and more suit-
ture. The case foM =2 is reported by Kostov and Uzunov able for graphical treatment by software packages. Conver-
[3], while the general intega¥l case is documented by Hioe sion formulas among the theta and elliptic functions are
[7]. given in the Appendix.
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IV. CNLS EQUATIONS WITH FIVE COMPONENTS O, + ho= — 1826, I K2~ r2(41— 16k2).

As an illustration consider CNLS of fiveM =5) compo- )
nents. The periodic solutions afleis modulus of the Jacobi Cn. N=5 is a root of

elliptic functions: (219- 2672+ 72k%)c? (31— 30K+ 16k%)c

[ i) 189+ 112 B
$1=Aq|Cy (1-KH™
=0.
ksn(rx)cn(rx)dn(rx)exp( —ifd;t)
X (1-K?)172 - 4D 6, andQ,, n=5 are related by
8,dr2(rx)  dn(rx)] dn(rx)exp(—i€,t) ( 1 )1
=Ay Co— : S,=4| 3V1-Kk>+ —— ,
¢2 2_ 2 (1_k2)1/2 1—k2 | (1_k2)1/4 (4 2) n \/ﬁz Ch
Sodr?(rx)  drf(rx)] dn(rx)exp( —iQat) Qp+ho=—1825,y1-k*—r?(41-25).
$3=Ag| C3— (1-KOHT2 12 (1-KO) B _
. : 4.3 A,, n=1,23,4,5 satisfy
272 2 272
8,dr2(rx)  dnf(rx)] Vkon(rx)exp(—iQ,t) CVIZKTAY L o AL VIZKAS
Ds=Ay C4—(1_k2)1/2 1—K2 (1—K2)T™ ) k2 +A2+A3+T k =0, (4.6
(4.4
2—k%+2c,/1-k?)A2
Ssdr(rx)  drf(rx) _ ( 5 ) 4 25,A2+25,A2
¢5=As| Cs— 1-KH7 1K Vksn(rx)exp(—iQst) k
(4.9 28,~V1-K*| , [1-285J1-K?| ,
+ " Aj+ " Az=0,
C,, h=1 is a root of
4.7
3c2-2| y1-k?+ ! c+1=0.
V1-K? [(1+chHVI-K2+2¢,(2-KD)IA] )
— k2 +(62_2C2)A2
Q,, n=1, is given by[h, to be given later in Eq4.11)]
82-2¢,—268,N1—K?
Qp+ho=182c, V1 - K2~ 16r2(2— K?). (85205 ATt | = — ) 2
C,, h=2, 3 are roots of . 255+(205_5§)W)A2
4 1 4 5
63c3+| 99+ s c?+ 41+ 7=z |c+5=0. k
=0, (4.8
S, andQ,,, n=2, 3 are related by , ,
[c3(2—k?) +2c,\1—k?|AZ
5 _4( T 1 )( 1 )‘1 12 2C,8,A5—2C353A5
n— - Y - )
Vi-k?)\c
! ((2c4— 52)\/1—k?—2c454)A2
+
Qn+hy=—1825,J1—k*>—25r2(2—Kk?). k 4
Ch, N=4is a root of +(5§_205+20555V1_k2)A2_0 (4.9
5_ . .
(219- 171>+ 24k*)c? (31— 23k*+8k*)c k
183+ s + s +
CIVI-KPAT . CaCat28,V1-KP)A]
5, andQ,,, n=4, are related by cs(V1—kZcs+285) A2
" " _ ol S———=302/1-K%. (410

1 -1
Sn=4| 23J1-K*+ (——9) :
" ( \/1—k7> Cn The constant$, andh, are given by
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272 2 272
o= K K ’ h1=30r2\ 1—ke.
(4.17

Intensities of each component are shown in Figa)-41(e)
for typical values ofk. Up to five local maxima per period
are possible.

We verify by the softwar@MATHEMATICA that Eqgs.(4.1)—
(4.5) satisfy Eq(1.1).

Long wave limit The long wave limit k—1) is instruc-

PHYSICAL REVIEW E 65 026613
5,dré(rx)
(1_ k2) 172

Vksn(rx)dn(rx)exp(—i€qt)
X (1_k2)l/4 .

dnf(rx)
1—k?

én=An|Ch—

(5.9

Cn, N=1,2,3 are roots of

(169—201k?+80k*)c
1-k?

11(47— 55>+ 16k*)c?

3
3633+ .

tive as the solutions reduce to forms known in the literature.

This limit thus provides an additional, independent confirma-

tion on the validity of the periodic solutions here. It will be
necessary to solve for,,, n=1,2,3,4,5, where

A2
Yn:m& for n= 2,3,4,

A2

n
M

for n=1,5.

Equations(4.6)—(4.10 can be simplified considerably by
taking the k—1 limit in the expressions forc, and &,
given earlier in this section. The long wave limit of the
Jacobi elliptic functions are (sn(rx),cn(rx),dn(rx))

— (tanhrx,sechrx,sechrx) ask— 1.

After some algebraic manipulations we obtain

V210 S?T(2—3S%) exp 4ir ?t)
1= )
2

~ \/30rS(8—288%+ 215" explir %)
2= 8 ’

15\/7rS° exp(25ir 2t)
3= )
8

~ 3/35rS%(8-9S%) exp(9ir %)

4 8
3\70rS*T exp(16ir 2t)
5= )

2

5
S=sechrx, T=tanhrx, >, ¢m¢:=30r2S%
m=1

+15=0.

6n, O, n=1,23 are related by

)

Qn+hy=—2225,J1—k?>—r2(61—36k?).

5n:4(4 1-k*+

Forn=4,5,6, the remaining components are

- Spdré(rx)  dnf(rx)
én=AnCh— 1-KO? 112

Jken(rx)dn(rx)exp(—iQ,t)
X (1-K))T2 :

(5.2

Cn, N=4,5,6 are roots of

(169— 137>+ 48k*)c
1—k?

11(47— 3%+ 8k*)c?

3
363+ B

+15=0. (5.3

6n, O, N=4,5,6 are related by

.

5n:4(3 1— K%+
Cn

4
N
O, +ho=—22r28,J1-Kk2—r?(61-25k?). (5.5
The constant$y, h, are given by

ho=0, hy;=42r21—k2.
hg is zero due to the special choices in Egsl) and(5.2).

If the combination smx)cn(rx) is included in addition to
Egs. (5.1 and (5.2), hy will be nonzero.A,, n=1,2,...,6

This long wave limit thus generates solutions that agree witfsatisfy

known resultd12].

V. CNLS EQUATIONS WITH SIX COMPONENTS

As an example of CNLS systems of even order, consider

M =6. Forn=1,2,3, the components afleis modulus of the
Jacobi elliptic functions

3 6
> Aﬁ)—( A§)=o,
n=1 n=4

1—k2(

3 6
nzl (1-28,\1— kZ)Aﬁ—nZ4 (V1—k?>-268,)A2=0,
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FIG. 1. (a) Plot of the nondimensional intensity,|? versus the nondimensional coordinate =1, k=0.85,¢,=1.37,A;=10.77.(b)
Plot of the nondimensional intensi]ﬁy&z\2 versus the nondimensional coordinater =1, k=0.85,c,=—1.62,A,=7.90. (c) Plot of the
nondimensional intensitlps|? versus the nondimensional coordinater =1, k=0.85,c3=—0.084,A;=1.41.(d) Plot of the nondimen-
sional intensity ¢,|? versus the nondimensional coordinate =1, k=0.85,c,= —0.17,A,=5.29.(e) Plot of the nondimensional intensity
| #5|2 versus the nondimensional coordinate =1, k=0.85,cs=—0.030,A;=4.54.
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3 6 Forn=4,5,6 the remaining components are still given by
nzl [26,+(2¢c,— 6% \/1—k2]Aﬁ—nz4 [2c,— &2 Egs.(5.2—(5.5). The constanh, is still given by
— 2 _
+26,V1-KZJAZ=0, hy =421k
3 6 but the constanhg is now,
2 2\ A2
— _|_ — —
ngl (82— 2ch+2¢,6,V1—K>)A? n; [2¢,6, 2 2 [TTRA2
ho=— Z — (6.2
+(85—2c,)V1-K?]AZ n=1
=0, The amplitude parametess,, n=1,...,6, are governed by
3 6 2/ 3 6
1-k ) )
S (26,4 cVI—K)AZ= S ¢ (cpt 28, 1—KP)A2 | 2 A | 2 Al =0
n=1 n=4 = =
=0, 3 (2-K2-25,/1-KO)AZ &
> . T- 2 (V1-K2-26,)A3=0,
3 6 n=1 n=4
> c2A2-\1-K2D, c2AZ=42r21- K2,
n=1 n=4 2 8,(2—k?)+(2c,—1- 82)\V1-K?
2 n n n A2
Intensities of the components are illustrated in Figs)-2 n=1 k "
2(f) for typical values ok. Up to six local maxima are pos- 6
sible for each period. _ 2c.— 8242 5 J1—KZA2
We verify by the softwareMATHEMATICA that the system n§=:4 [2¢0= 05 " 1A
Egs.(5.1) and(5.2) satisfy Eq.(1.1). o
VI. CNLS EQUATION FOR SIX COMPONENTS: 3
ANOTHER SOLUTION s [(52n—2Cn)(2— k?)+2 8y(Cp— 1)1~ kz}Az
n=1 k n

A different combination of elliptic functions will generate
another periodic solution for the CNLS system with six com- 6
ponents. The “index of refraction” will attain a form differ- - Z (ch5n+(62n—20n) \/1—k2)Aﬁ=O,
ent from the case in Sec. V. More precisely, for 1,2,3 the n=4
components arék is modulus of the Jacobi elliptic func-

tions) >
>

B S5,drA(rx)  drf(rx) -t
¢n—AnCn_(1_kﬁlm_ 1—K2

A

2¢,6,(2—k?) + (24 82— 2¢,) 11— kZ}
k

6
— > cn(Cat2 5,1 K2)A2
ksn(rx)en(rx)exp(—iQpt) n=4
(1_k2)1/4 . (6.1) :O,

{cn(z—k2)+2 5n\/1—k2} o
k

Ch, h=1,2,3 are roots of

3
> ¢y AZ— > c2\1-K2A2
n=1 n=4

11(37— 37+ 8k*)c?  (45—45k°+16k*)c

3633+ 5 + 5 +1
1=k 1=k = 422112
=0.
Plots for the intensities will be very similar to those from the
5., Q,, n=1,2,3 are related by preceding section, and hence will be omitted.
1 1 -1 VII. CONCLUSIONS
S=12 V1-KP+ == || —11] ,

1-k?/\Cn Periodic solutions for CNLS systems with five and six

components are derived by a combination of the Hirota bi-

Qn+ho=—2225,1—-k*—25r2(2—k?). linear transformation, elliptic and theta functions. Systems of

still higher order require an almost oppressive amount of

It is extremely important to note thdi, in this case is dif- algebra, and systematic use of symbolic manipulation pack-
ferent from that in Sec. VEQq. (6.2) below. age might be needed. The long wave limit is studied and-

026613-6



PERIODIC SOLUTIONS FOR SYSTEMS OF COUPLED. .. PHYSICAL REVIEWGER 026613

2
o) 22 - 102 10

_‘ - , x - -2 ; 4 *
(a) 4 2 2 4 13 (d) 4
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FIG. 2. (a) Plot of the nondimensional intensihi)1|2 versus the nondimensional coordinate =1, k=0.85,c;=—1.19,A;=19.83.(b)
Plot of the nondimensional intensity,|? versus the nondimensional coordinater =1, k=0.85, c,= —0.44,A,=12.30.(c) Plot of the
nondimensional intensitys|? versus the nondimensional coordinate =1, k=0.85,c3= —0.79,A;=5.15.(d) Plot of the nondimensional
intensity| ¢4|? versus the nondimensional coordinate=1, k=0.85,c,= — 2.06,A,=15.74.(e) Plot of the nondimensional intensifys|?
versus the nondimensional coordinater =1, k=0.85, cs=—0.40, A;=7.17. (f) Plot of the nondimensional intensity;56|2 versus the
nondimensional coordinate r =1, k=0.85,cg= —0.050,A5=1.28.

()

solitary waves solutions published in the literature are recovsolitons in media with a slow Kerr-like nonlinearity. In gen-
ered. The precision and validity of the periodic solutions areeral exact solutions will give a precise formulation of spatial
verified independently by direct differentiation with a com- beams. In particular, according to recent works on photore-
puter algebra software. Since results for CNLS systems of afractive crystals, the number of components in such CNLS
arbitrary integer order are still scarce, the present work mighsystems can be large. Work and results for such higher order
provide some preliminary results in that direction. CNLS CNLS systems should prove to be of fundamental as well as
systems are useful in the description of partially coherenpractical interests.
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203(0) 65(x)
6,(0)

APPENDIX

D265(X)- 65(x)= +265(0)65(0) 95(x),

The theta function®,(x) [14,15, n=1,2,3,4 and the pa-

rametersy (the nome, 7 (pure imaginary are defined by

o0

0,00 = > (—1)"q"* Y% sin(2n+1)x
n=0

2

265(0)63(x)

DF64()- 0400 = 263(0) 63(0) 650 + —

Hence formulas foD,6,- 6,, D26, 6, can be developed

for m,nintegerg[16]. Derivatives for products of theta func-

- . . 1 T
= _m;_w ex;{ mrmt | 2| mt o)X+ 5 tions can be obtained by repeated use of identities such as
(AL) D,ab-cd=bdD,a-c+acD,b-d,
0,00=2 g Y2 cog 2n+1)x D2ab-cd=bdD2a-c+acDb-d+2(D,a-c)(Dyb-d).
n=0
- , 1 Typical results for the purpose of the present discussion are
= E exp{q-rir m+§ +2i m+§ X/,
m=—x
D265(ax) - 63( ax)= 5a204(ax)(202(9)0 (0) 63(ax)
(A2)
. . 20,(0) 3(ax)
03(x)=1+221 g cos hx= >, exp(ari rm?+2imx), 0,000 )
& -
(A3)
. D265(ax)- 65( ax)=6a%63% ax)( 263(0) 63(0) 03(ax)
0,0)=1+2> (—1)"q" cos hx
“ 265(0) 63( ax)
” 62(0)
=m=2 ex;{wi m?+2im x+g . (A9

) 7K’
0<g<l, g=exp i T)=exr{ —T).

K andK’ are the complete elliptic integrals. Relationships

between the theta and elliptic functions are

D261(ax) f,(ax) 83(ax) - 63( ax)

= a?0;(ax) 0 ax) O3 ax) 03 ax)
203(0)
6,(0)

463(0)
63(0)

—2063(0) 62(0) 63 ax) +

II( )
ortu) 05(0) 6,(2) ) 04(0)0(2) 04‘20) +120§(0)+1204(0)) 02( ax) 02( ax)
02(0)04(2)" 0,(0)04(2) "
—665(0)62 (0)0 (ax)|,
~04(0)63(2) S
= 002 -
DZ03(ax) 01(ax) - 03(ax)
— u _ 03(0) r_ 0‘2‘(0) 2 12—
w0 “wEo “TEo KT _;@ — &2 6,(axX) 63 X) 63( @) — 2063(0) 02(0) 6(ax)
. . R @,(0) 5640) 405(0)
Theta functions possess a huge variety of product identities, ( 2 8 4 4
eq. 5,00) " 0x0) " aa0) T2

03(x+Y) O3(x—Y) 65(0) = 63(X) 63(y) + 63(X) 65(Y),

(A7)

+ 2003(0)> 63( ax) 65( ax) — 1265(0) 65(0) 65 ax) |,
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D263(ax) 01 (ax) - 65( ax)

= a?6,(ax) 63( ax) 63( ax)| —3065(0) 63( ax)
4 05(0)  665(0) 56,(0)
X(O)GS(“X)+(02<0>+ 6:0) " 04(0)

PHYSICAL REVIEWBE 026613
+2063(0) + 3005(0) 63( ax) 63( ax)
—2063(0) 65(0) O3 ax).
Similar results are obtained for the Hirota derivatives of

other polynomials of theta functions of degree five or six, but
details will be omitted here for brevity.
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