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Abstract—This correspondence is concerned with the robust stochastic
stabilizability and robust H .. disturbance attenuation for a class of uncer-
tain linear systems with time delay and randomly jumping parameters. The
transition of the jumping parameters is governed by a finite-state Markov
process. Sufficient conditions on the existence of a robust stochastic stabi-
lizing and ~-suboptimal H , state-feedback controller are presented using
the Lyapunov functional approach. It is shown that a robust stochastically
stabilizing H .. state-feedback controller can be constructed through the
numerical solution of a set of coupled linear matrix inequalities.

Index Terms—Jumping parameters, linear matrix inequality (LMI),
linear uncertain systems, robust control, time-delay systems.

|. INTRODUCTION

A great deal of attention has recently been devoted to the Markovian
jump linear systems. This family of systems is modeled by a set of
linear systems with the transitions between the models determined
by a Markov chain taking values in a finite set. It was introduced
by Krasovskii and Lidskii in 1961 [13] and may represent a large
variety of processes, including those in production systems and
economic problems. Developments in control engineering regarding
applications, stability conditions, and optimal control problems for
jump linear systems are reported in [1], [3], [8]-[10], [12], and [17].
On the other hand, time-delay systems have been studied extensively
on the subject of stability and control over the years; see [4], [5],
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time-delay systems with Markovian jumping parameters using the stehere A, A2, Bir, Cir, Ca2r, andD,, are governed only by the
chastic Lyapunov functional approach first developed by Kushner [14larkovian jump process anA . (t), AAq,(¢), AB1,-(t), AC (1),
Mariton [17] used the stochastic Lyapunov function approach to obtalxC-,.(¢), and AD,,.(¢) are real-valued functions representing time-
a sufficient condition for the mean square stability and the almost swa&rying parameter uncertainties. We assume that the uncertainties are
stability of the linear jump systems without delay. In [10] and [12], theorm-bounded and can be described as
stochastic stability, stablllzablllty_, and controllability are studied based_ AAr(t) AAdsi(t) ABy(H)
on the same methodology, and in [2], the authors discussed stochasti ,

. L . L AOh'(t) ACQ,('I’) AD”(t)
stability for a class of uncertain jump linear systems with time delay. In
general, these results are in the form of a set of coupled algebraic Ric- — {Eh} F;()[Hy; He Hsl, whenr(t) =i (8)
cati equations that is difficult to solve. To facilitate the solution process, V2

the linear matrix inequality (LMI) approach will be employed in thewhereE1,; € R/, By € R/, andHy:, Hay € R %" Hy; €
present development.

R™"s*™ are known constant matrices for eacte S and F(¢) €

R™7*"™ s are unknown matrix functions satisfying
Il. PROBLEM STATEMENT

In the sequel, if not explicitly stated, matrices are assumed to have F! O F:(t) < I, Vies.
compatible dimensions. The notatidd > (>, <, <)0 is used to
denote a symmetric positive-definite (positive-semidefinite, negati
negative-semidefinite) matridmin (-), Amax(-) denote the minimum
and the maximum eigenvalue of the corresponding matrix, respective%
|| - || denotes the Euclidean norm for vectors or the spectral norm o
matrices.E[-] stands for the mathematical expectation.

Consider the class of stochastic, uncertain linear state-delay systems l(t + 8)|) < ell«(t)]- (9)
with Markovian jumping parameters

It is assumed the elements Bf(¢) are Lebesgue measurable. When
VEr (t) = 0, then system (1)—(4) is referred to am@minal jump linear
stemlt is said to be dree system ifu(t) = 0.

In this correspondence, we will assume that forsalt [, 0], a
alars > () exists such that

As was indicated by [16], this assumption does not represent a restric-

B(t) = Ay (t, r(£)a(t) + Au(t, r(t))a(t — 7) tion because can be chosen arbitrarily.
+ Bi(t, v(#))u(t) + Bo(r(t))w(t) (1) This correspondence is concerned with the design of a robust state-
feedback controller
2(t) = Ci(t, r(t)a(t) + Colt, r(t))a(t — 7) u(t) = —K;z(t), whenr(t) =i (10)
+ Dy (v (8)yu(t) + Da(r(t))uw(t) 2)

where l{’; is constant for each valuee S such that the closed-loop
system
wB) =9, el 0 r(0)=ro B i) = (Aui + EvFlu)e(t) + (s + EvFHa et — 7)
where + Bo;w(t) (12)
x(t) € R*  system state;
q i i . N A
Z)((:)) EE ﬂ"im iéﬂﬁﬁ??n“psug'swrbame Input; 2(t) = (Chi + Eoi FyHiy)a(t) + (Cai + Eoi FyHoa(t — 1)
_z(t) €R?  output to be controlled. i + Dsiw(t) 12)
At r(1), At (1), Bi(t.r(t), Ba(r(t), Ci(t,r(1)), NN P . N
Co(t, (1)), Di(t, (t)), and Do(r(t)) are matrix functions of the Wheredi = Ay — By, I, Hy é Hy; — Hyi I, andCy, ,é Ci —
random jumping procesér(#)}. r(#) is a finite-state Markov jump D1; K; is stochastically stable with-disturbance attenuation. Itis as-
process representing the system mode; that (i) takes discrete sumed that the_ conFroIIer has complete access t_o the sta?e variables
values in a given finite se&§ = {1, 2, ---. s}. LetIl = [r,,], where {z(¢)} and the jumping proces{@(t)}. In the following, we will de-
i,j=1,2,---, s, denote the transition probability matrix with note by:(t, ¥, 7o, u) the solution of system (1)—(4) at tinteunder
the initial conditionsy(¢) andrg, and the control input(¢), andxo
Ti; A+ o(A), T represents:(¢, ¢, ro, u) att = 0.
14+ 7A+0(A), i=j Definition 1: The free nominal jump linear system is said to be
(4) stochastically stabilizablé, whenw(t) = 0, for all finite v:(¢) € R"
defined on—7, 0] and initial moder, € S, a linear feedback control

whereA > 0, m; > 0fori # j, m = m < 0 with law (10) exists satisfying
Z;’.:L#i m,; = —m; for each mode,, i = 1,2,---, s, and o
o(A)/A — 0 asA — 0.7 is the constant delay time of the state in lim E{/ 2T (#, 4, ro, w)a(t, ¥, ro, u)dt
the systemy(¢) is a vector-valued initial continuous function defined” > 0
on the interval—7, 0], andr, € S are the initial conditions of the

Pum+AﬁwWﬂ=u={

Y, ro} < ,r(?MmU

_for someM > 0. The uncertain system (1)—(4) is said to robust
%QOChastically stabilizabl# it is stochastically stabilizable for all pos-
sible uncertainty| F; ()| < 1.
. ; - . . . This definition is similar to that of stochastic stabilizability of jump
Time-varying uncertainties may appear in these matrices; that is linear systems without time delay [10], [12]. Under the above defini-
AL () = Ay 4 AAL(8), Aor () = Aoy + Ads, (1) ) :)ion,stochastic stak_)ilizability(_)fasystem meansthat_aIingqr_state-feed-
. - ack control law exists that drives thestate from any given initial con-
Bir(t) = Bir + ABi. (1), Cir(t) = Cir + ACIH(D) (6)  dition (¢, to) asymptotically to the origin, in the mean square sense,
Car(t) = Car + ACs, (1), Di.(t) = D1, + ADy(t) (7) which implies the asymptotic stability of the closed-loop system.

M(g r) will be denoted byM,(¢). For instanceAN_l(t, r) is denoted
by 4., and so on.
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Definition 2: For a given control law (10) and a real number 0,
the nominal jump linear system is said todiechastically stabilizable
with v-disturbance attenuatioififor everyT > 0 and for every piece-

79

with x(t) = ¢(¢t),t € [—7, 0], »(0) = rg. In the following, we will
simply user(t) to denote the solution(t, 1/, 7o, v) under the initial
condition<(t) andry with controlw(t).

wise continuous functiom: [0, o) — R?, the closed-loop system Take the stochastic Lyapunov functiodd(-): R" x Ry xS — Ry

(1)—(4), (11) is asymptotically stable and the respange, oc) — R?
satisfies

T T
/ () z(t)dt < ~? / w’ (t)w(t)dt. (13)
0 0
The uncertain system (1)—(4) is said torbbust stochastically stabi-
lizable with~-disturbance attenuatiaifiit is stochastically stabilizable
with ~v-disturbance attenuation for all possible uncerta|fy(t)|| <
1.
Let

o 1/2
|w]ls =E {/ wT(f)w(t) dt}
0

9

1/2
| :E{/l zT(f):(f)df}
0

and letT,, denote the system from the exogenous inp(t) to the
controlled output(t); then, theH ..-norm of T., is

and

|z

[EIE

[Towlloe = T
w(t)EL(0, o0) llew|l2

Hence, (13) implie§|7. .||~ < 7. In other words;-disturbance at-
tenuation impliesy-suboptimalH .. control. The following matrix in-
equalities are essential for the proofs in the next sections [20].

Lemma 1: For any vectorse, y € R", matricesd4, P € R"*",
D e RV EeR"*" andF € R*/*"/ with P > 0, ||F|| < 1,
and scalae > 0, we have:

) 22Ty < 2P 'a 4y Py;

iy DFE+ EYF'DY < «~'DDY 4+ cETE;

iii) if eI — EPET >0,

(A+ DFE)P(A+ DFE)"
7 T 7! 7 T
< APA" + APE (51 — EPE ) EPA" 4+ eDD",

iv) if P—eDDT >0,

(A+ DFEY'P ™' (A+ DFE)
. N —1 P
< AT (P—EDD[> A+="'E"E.

Ill. ROBUST STOCHASTIC STABILIZABILITY

In this section, we present a sufficient condition for the robust sto-

chastic stabilizability of the jump linear system (1)—(4) witk¢) = 0.

Theorem 1: The nominal jump linear system is stochastically sta-

bilizable if @ > 0, P, > 0,andK;,i =1, -- -, s exist, satisfying the
coupled matrix inequalities

A{ipz + P AL+ Zﬂijpj +Q P
J=1
.4%1’Pi

i=1,---, s

M; =

<0,
-Q
(14)
Proof: Letthe mode attimebe:; thatis,r(¢) = ¢ € S. Consider
feedback controk(t) = —K,;x(t),t > 0; then, (1) becomes

i(t) = Aya(t) + Asin(t — 7) (15)

to be

Vx(t), r(t) = i)

=V(a, 1)
-0
22" () Pa(t) +/ 2 (t+ 0)Qu(t +6)df (16)
where
Q constant
P; constant for each.

The weak infinitesimal operatod [12], [14] of the stochastic process
{r(t), «(t)}, ¢t > 0, is given by

AV (z(t), r(t))
. 1 , : . _
= Jim BV (a(t+ A). rlt+ A)fa(0). 7(0) = )
—V(x(), r(t) =i)]

= ,T,'T(f) A;’;Pi + Pif/ih‘ + Z mi; Py 7‘(1’)
j=1
+ a2l (t — )AL Pia(t) + T (1) P Ags(t — 7)
+ 2t () Qu(t) — 2" (t = T)Qu(t — 7)
=zl () Mix. ()
wherez.(#) 2 [T (+) 27 (t — 7)]T. With the assumption in (9), we
havel||z(t)|| < ||z-(¢)||. Note thatd; < 0 andP; > 0; hence, we
have forz # 0

AV (2, 0) < 2T (1) Mo (t)
Ve, i) = 2T () Pa(t)+ [0 2T (t+0)Q.(t + ©)dO
al ()(=M;)x. (1)
() Pa(t) + [0 2T (t+0)Q.(t + ©)dO

< — min Alnin(_z\li)
= €S | dmax(P) + 782 Amax (Q)
Define
A .
= min

{ Arnin (= M;) }
Amax (Pi) + 722 Amax (Q) J 7

We havea > 0 and AV (x, i) < —aV(x, ). Then, by Dynkin's
formula (see [14])

i€S

E{V(x(t), r(t))} = V(xo, 10)
=F {/ AV (x(s), r(s))ds}

< —ou/o‘ E{V(x(s), r(s))}ds.

The Gronwell-Bellman lemma givesE{V (x(t), r(t))}
exp(—at)V(zo, ro). Because) > 0, then

=,

Thus, forallrg € S

<
2 (t+ 5)Qu(t + ) cls} > 0.

E {;vT (&) Pz ()|, ro}
= E{V(x, )|y, 70}
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- E {/0 2P (4 $)Qix(t + 5) ds| 1, ,‘0}

—T

< exp(—at)V(xq, ©).

T
E{/ o () Px(t) dt| o, 7'0}
0

o
</ exp(—at) dtV(xo, i)
0

Then

‘/T(J,‘o, 7)

}

< 1151; {—% [exp(—aT) — 1]V (xo, 7)}

1 5 :
< — Ié (>\1uax (R) + 527/\111ax (Q))I)IO

= —é [exp(—aT) — 1]

Taking the limit asl” — oc, we have

T
lim E{/ oV () Pix(t) dt| ¥, ro
0

— 00

]

BecauseP; > 0 for eachi € S, this means

P
Tlim E {/ at (t)x(t) dt‘ Y, 7’0} < ag Pag
— 00 0
where

j—’) = max Ama‘((-P) + u‘TAmaX(Q)

I
€S nnn (P)
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Theorem 2: The nominal jump linear system is stochastically sta-
bilizable if R > 0, X; > 0, andY;,i = 1,..., s exist, satis-
fying the coupled LMI's (19). A stabilizing controller is constructed
ask; = ;X"

Remark 1: The proof of Theorem 1 is similar to the corresponding
resultin [12, Theorem 1]]. If the nominal jump linear system has zero
time delay, that isd,; = 0 for alli € S, condition (14) on stochastic
stabilizability becomes

(A; — Bi;K;) P, + P,(Ay; — Bi,K;)

+Z¢r,1P <0, di=1,--,s (24)
which are equwalent to the following LMI's
{Ai =i } 0. i=1 (25)
< 0, 1=1,---, 5
=T -, d g

givenin[19]. We can show thatitis a necessary and sufficient condition
for the stochastic stabilizability of jump linear systems without time
delay [12, Theorem 1]. Obviously, ; > 0 andK; exist, satisfying

the coupled matrix inequality (24), then sodve > 0 exists such that
the following Lyapunov equations are solvable:

(Ari — BuiK:) P + Pi(Avi — BiiK;)

ZTUP = -

which is the coupled equations for the stochastically stabilizability in
[12]. It is very difficult, however, to solve the above-coupled matrix
equations [1], [18]. Fortunately, the LMI's (19) and (25) can be nu-

i=1,-, 5 (26)

which implies that the closed- Ioop system under control law (10) fgerically solved efficiently.

stochastically stable.
From Schur complemend/; < 0 if and only if

(A1; — B K ) P + P;(Ai; — B K,)

+ Z TPy 4+ Q + PiA»Q AL P, <0.

=1

DefineX; £ P LY, 2 K. X,.Pre-and postmultiplying the last matrix
, s ifand

inequality by X, it is easy to find thafl/; < 0,i =1, ---
onlyiffori =1,---, s
XAl 4+ AL X, - Y, B, - B,
+ Z T XXX+ XiQXi + A4,Q AL <0

j=1
which are equivalent to the following LMI’s

A, + AxRAS, = ,
=T <0, t=1-,s
= _Ti
where
A; 2 XA + AuX, - Y BY, - B..Y, + m X,
= 2 [T X: T i—1 X
NP6 Vs Xi X
T, 2 diag [ X4 Xi-1 Xiq1 -+ Xs R]
REQ.

The foregoing analysis leads to a stochastic stabilizability resultwhereA; 2A 4 >

terms of LMI's.

(€¥))

(18)

(19)

(20)

(1)

(22)

(23)

Remark 2: If we consider free jump linear systems, then the feasi-
bility of LMI's (19) with By; = 0 is sufficient for stochastic stability
of this class of time-delay systems. It can also be extended to test the
stochastic stability of free jump linear systems without time delay [10].
Theorem 3: The uncertain jump linear system (1)—(4) is robust
stochastically stabilizable if scalarts > 0, 3; > 0 and matrices

R > 0,X; > 0,andY;,i = 1, ---, s exist, satisfying the coupled
matrix inequalities
A, Az RHS, Hi; =8
HyRAL, -8, I+ HyRHY;, 0 0 <0
Hy,; 0 —a;I 0
=z 0 0o -7
i =1, (27)

whered, £ A, +A>,RA + ;BB + :Er B

Proof: From Theorem 1, the uncertain closed-loop system is
stochastically stable, if for each modee S and||F|| < 1, the
following coupled matrix inequalities hold for= 1, - - -, s:

N N T N N
X; (1411: +E1iFi,H1i) + (Au +E1;,F7:H1,:) X;

+ 3 XXX + XiQX + ApRAZ < 0. (28)

=1
On the other hand, from Lemma 1, LMI's (28) hold if scalars> 0,
3; > 0 exist such that

A, + ck'iEliEiTi + aflﬂﬂﬂh + AQZ'RHQTi
(81 = HuREL) T HaiRAL + 5B Bl < 0
Bl — Hy RHS; > 0
T T XX "X, + XiQX, + Az RAL,,
which are equivalent to (27) from the Schur complement. ]
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IV. ROBUST H., DISTURBANCE ATTENUATION From Dynkin’s formula [14] and the fact that = «(0, 0, 7o, u) =

In this section, we consider robuBt., disturbance attenuation for 0, we have

the uncertain jump linear state-delay systems. -1

Theorem 4: For the nominal jump linear system, a state feedback E{V(«(T), r(T)} =E {/ AV (x(s), 7‘(5))d5}
control (10) exists such that the closed-loop system possessgeslthe 0
turbance attenuation property; that filg;|l> < ~|lwl» for all w €  since,V (o, 7o) = 0. Then, for any nonzere(t) € Ls[0, o]
L2]0, o], w # 0,if Q@ > 0andP; > 0,i = 1, ---, s exist, sat-
isfying the following coupled matrix inequalities:

Jr = E{ /0 ! [ZT (t)2(t) =7 w” (H)w(t) + AV (2(t), 'r(t)] dz‘}

A, PAsi + CL4+Cy; PBoi+CL+ Doy ,
N 2 CLit C A CLt D — E{V(«(T). n(T)}.
@i,: AZiPi+C2i+C1’I: —Q+Ozi+02i C’z,’,DZi
Bl P+ DI +C; DJ;Cai —(*I-D3;D2)]  so
<0 (29)

T
A e . Jr <E / @)z =T (Hw i) + AV (2(t), r(t) dz‘}
asshownin(29)f0t':1,~--,s,whereAiéA{iPLv+RA“+ r= {0 [ ®)=() ®w(®) ( )]
s - p. AL A T
S5 mii P+ Q4 CHiCh. —E {/ [J'T(t)@,;a(t)] dt} <0
0

Proof: Let the mode at time bei; that is,r(t) = i € S. Con-
sider feedback contral(t) = — K;z(¢t) for ¢ > 0. Then, the nominal

closed-loop system becomes wheres (1) 2 [27(t) 27 (t—7) w” (#)]”. Therefore, the dissipativity
. , inequality (13) holds for all” > 0. In other words, we have thate
@(t) =Avia(t) + Azix(t — 7) + Basw(?) (30)  £,[0, ), for any nonzerav € £»[0, ), and||z|l> < v||w|.. ™
2(t) = Crix(t) + Coia(t — 7) + Dayw(t). (31) Theorem 4 can be rewritten in the form of LMI's. From the Schur

complement, it is easy to find that the coupled matrix inequalities in

Choose the stochastic Lyapunov functiohal): R” x Ry xS — R4 (29) are equivalent to the following matrix inequalities:
as in (16). Then

, AT P+ PA; 4+ 7i;P;+Q PAy PBy CF,
AV (x(t), r(1) =27 () Mize(t) + w” (1) BL Px(t) ! it i+ Q P wo

j=1
+ 27 (t) Pi Baiw(t). A2 AL P, -0 o cf
T p. _~2 .T_
Notice that, when the disturbance inputis zero, that{$) = 0, based B%’P’ 0 I Ds
on Theorem 1 and (29), we hav® (z(t), r(¢)) < 0, which ensures Cui Coi Doy —1
the asymptotic stability of the closed-loop system. <0 (32)
In the following, we assume zero initial condition, thati$t) = 0 ] ] ] o .
fort € [, 0], and define fori =1, s Obviously, the matrm}[i is a principal submatrix
of A;. So, ifA; < 0, thenM; < 0, which proves that Theorem 3
e H o A —1 - A g 2
A T o T ensures Theorem 1 again. L¥t = P, andY; = I;X;, and define
Jr=E {/ 2 (0)z(t) =y w' (H)w(t) df}. e v : o ‘ )
o [ ] T, = diag(X;, I, I, I). Pre- and postmultiplying (32) b, we find
Qi+ As; QAL (C1iXi —D,Y)T + 42:Q7'CY,  Ba
C1iXi — D1,Y: + Co, Q™" AJ —T+ C2,Q™'CY; Dy | <0 (33)
BL DI, —~2I
A+ Ay RAL (CLiX; — DiY)" + Ay RCE, By =
C1iXi — D1;Y; + Co; RAL, —I+ CyRCY; Dy 0
" " 5 <0 (34)
BQ,; Dg,; - I 0
=f 0 0 -7
rA; + ;B E], + As; RAT, * * * * * 7
C1iXi — D1,Y; + C2; RAS, Zyi * *
HyiXi— HyiYi 4+ HoRAL, HyRCY,  Zs * 0 (35)
, , < 0.
H.: X, — HyY; + HyRAL, HoyRCY HoyRHY  Zs; 0 0
B3, D3, 0 0 -1 0
L = 0 0 0 0 =T
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that the coupled matrix inequalities (32) are equivalent to the followinghich can be rewritten as

matrix inequalities: .
Go+ G, FiLi; + (G F; Lv;)

Q; As; By (CuX:— DuY)T (G EwiFoL) (Gt 4 EaiFLLys) < 0 7
Az -Q 0 cl |
Bs; 0 —4%I DL fori =1,---, s, where
CuXi - I?MYZ' Cai Do, -1 X AT +A1iXi+ZT"UXL'XJ'_1X{+X{QX1' Ay B,
<0’ 7':1""78 j=1
h GO = P
where " o

; T 2
Q2 xAT 4 AL - VEBY — BLY; - B By 0 =1
s . Gu=[El 0 0]".
+Z T XX+ QX G2=[Ci;X: Cs Da]
J=1 .
From the Schur complement, we find the above matrix inequalities afai=[H1Xi Ho O]

equivalent to (33), given at the bottom of the previous page; fer . ' 1, the matrix inequalities in (37) hold if scalars> 0

1, ---, s, which are in turn equivalent to the following LMI's as Shownandé‘- > 0 exist such that fof — 1. .-
in (34), given at the bottom of the previous page,foe 1, ---, s, ‘ ! =TS
whereA;, =;, T;, andR are defined in (20)—(23), respectively. I —§ExEL >0

From the above derivations, thedisturbance attenuation result is

aiy 'l'v /fl '1" . 4'1"
summarized in the following theorem involving LMI’s. Go + aiGriGri +a; LiiLii + G,

Theorem 5: For the nominal jump linear system, a state feedback . (I _ 6,:E2,:E§;>_1 Goi+ 67 LY L1 <0
control law (10) exists such that the closed-loop system is stochastically
stable with-disturbance attenuation; that i5;||2 < ~||w||= for all ~ which are equivalent to the LMI’s in (35). [ |
w € L2]0, oo],w # 0,if R>0,X; >0,andY;,i =1, ---, s exist, Remark 3: Theorems 5 and 6 can be easily adapteg-saboptimal

satisfying the coupled LMI's shown in (34). A stabilizing controller toH ., control of jump linear systems without delay. In [9], thesubop-

providey-disturbance attenuation can be constructelfas Y; X, '.  timal H,, control was addressed based on a set of coupled algebraic
Theorem 6: For the uncertain jump linear system, a state feedbag¥ccati equations for a special class of jump linear systems without

control (10) exists such that the closed-loop system is robust stochdetay. No solution method for these coupled equations is presented,

tically stable withv-disturbance attenuation; that |- < ~v||w||2  however.

forall w € £2]0, o], w # 0, if scalarsw; > 0, 6; > 0 and matrices

X; > 0,R > 0,andY;, s = 1, ---, s exist, satisfying the coupled V. CONCLUSION

LMI's as shown in (35), given at the bottom of the previous page, for

i=1,---, s, wherex are entries readily inferred by symmetry and In this correspondence, we have studied the robust stochastic sta-
T > ) 1

bilizability and H., disturbance attenuation for a class of uncertain

Zvs A _ g + CoiRCE + 8 Esi BL jump Ilne_ar sys_t_ems_ Wlth time delay_. Sufficient condltlo_ns on robust
A - stochastic stabilizability and robustdisturbance attenuation are pre-

Z2i = — il + Hzi RHy; sented based on coupled LMI's. All of these results established are in-

Zs3i 2 §;I+ H.;RHE.. dependent of size of the delay time and applicable to situations in which

a priori knowledge of delay time is available. The results can also be

A stabilizing controller to providey-disturbance attenuation can beextended to the jump linear systems with multiple time delays using
constructed a¥; £ };lel_ the method of [5]. A possible direction for future work is to obtain

Proof: Letthe mode attimebei; thatis,»(t) = i € S. Consider delay-dependent conditions that are expected to be less conservative.
the closed-loop system (11) and (12). From Theorem 5, it is stochasti-
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Abstract—In this correspondence, state- and output-feedback receding
horizon controllers are proposed for linear discrete time systems with
input and state constraints. The proposed receding horizon controllers
are obtained from the finite horizon optimization problem with the
finite terminal weighting matrix and the artificial invariant ellipsoid
constraint, which is less restrictive than the conventional terminal equality
constraint. Both hard constraints and mixed constraints are considered
in the state-feedback case, and mixed constraints are considered in the
output-feedback case. It is shown that all proposed state- and output-feed-
back receding horizon controllers guarantee the exponential stability
of closed-loop systems for all feasible initial sets using the Lyapunov
approach.

Index Terms—Discrete linear system with input and state constraints,
exponential stability, output-feedback control, receding horizon control.

. INTRODUCTION

The receding horizon control has emerged as a powerful strategy
for constrained systems with limitations on inputs, states, and outputs

[19] M. A. Rami and L. E. Ghaoui, “LMI optimization for nonstandard [4]-[6], [8]-[11]. Especially, the stability issue of the receding horizon
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[20] g For the state-feedback case, the terminal equality constraint has been

uncertain nonlinear systemsSyst. Contr. Lett.vol. 19, pp. 139-149,
1992.

utilized to guarantee the closed-loop stability of the receding horizon
controller for unconstrained systems [2], [3] and for constrained sys-
tems [8], [11]. This artificial constraint is satisfied by driving the state
(or unstable mode) to the origin at the finite terminal time. This ter-
minal equality constraint, however, is rather restrictive, because it is
generally more difficult to drive a state to a specified point than into
a specified set such as an ellipsoid or a ball. Moreover, this approach
may make the optimization problem infeasible under the hard state con-
straint. Hence, the horizon size may have to be made longer so as to
make the problem feasible. Even though the mixed constraint has been
introduced to relax the hard state constraint [11], issues still need to be
covered regarding feasibility and stability, because a somewhat restric-
tive terminal equality constraint should still be satisfied under the input
constraint, and only “attractivity” rather than “asymptotic” or “expo-
nential” stability has been shown in existing results [8], [11]. Recently,
efforts have been made to overcome restriction of the terminal equality
constraint [4], [7]. In [4], the invariant ellipsoid constraint has been in-
troduced. This artificial constraint is satisfied by putting the state (or
unstable mode) into an invariant ellipsoid. In this result, however, ex-
ponential stability is shown only for initial states inside the invariant el-
lipsoid defined by the terminal weighting matrix. In [7], it is shown that
the receding horizon control with a sufficiently long horizon size can
guarantee attractivity without any artificial constraint. The long horizon
size is, however, needed to make the state sufficiently small at the final
time, which may increase computational burden and may be regarded
as a kind of artificial constraint. Moreover, in this result, only attrac-
tivity is shown.
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