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� ~H(q; ~p; t) @ ~W=@t q.m. energy

Ĥ(q; p̂; t) as in (11) q.m. energy operator, obtained
by substitutingq; p̂ for x; p in
H(x; p; t)

L(x; v; t) pv � H classical Lagrangian

� ~L(q; ~v; t) ~p~v � ~H q.m. Lagrangian

m mass

p �@W=@x classical momentum

� ~p �@ ~W=@q q.m. momentum

p̂ �i�h@=@q q.m. momentum operator

v @H=@p classical velocity

� ~v @ ~H=@~p q.m. velocity

V (x; t) classical potential energy

� ~V (q; t) obtained by substitutingq for x in
V (x; t)

W as in (1) classical action integral with
reversed sign

� ~W as in (6) q.m. action integral

� density of physical particles on the
real axis

 exp( ~W=i�h) wave function satisfying
Schrödinger’s equation

stat
v:p

stationary value obtained by
varying the functionsv; p

� stat
~v; ~p

stationary value obtained by
varying the functions~v; ~p

�
v; p

variation of the succeeding
expression with respect tov; p

� �
~v; ~p

variation of the succeeding
expression with respect to~v; ~p.
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Robust Control of Uncertain Markovian Jump
Systems with Time-Delay

Yong-Yan Cao and James Lam

Abstract—This correspondence is concerned with the robust stochastic
stabilizability and robust disturbance attenuation for a class of uncer-
tain linear systems with time delay and randomly jumping parameters. The
transition of the jumping parameters is governed by a finite-state Markov
process. Sufficient conditions on the existence of a robust stochastic stabi-
lizing and -suboptimal state-feedback controller are presented using
the Lyapunov functional approach. It is shown that a robust stochastically
stabilizing state-feedback controller can be constructed through the
numerical solution of a set of coupled linear matrix inequalities.

Index Terms—Jumping parameters, linear matrix inequality (LMI),
linear uncertain systems, robust control, time-delay systems.

I. INTRODUCTION

A great deal of attention has recently been devoted to the Markovian
jump linear systems. This family of systems is modeled by a set of
linear systems with the transitions between the models determined
by a Markov chain taking values in a finite set. It was introduced
by Krasovskii and Lidskii in 1961 [13] and may represent a large
variety of processes, including those in production systems and
economic problems. Developments in control engineering regarding
applications, stability conditions, and optimal control problems for
jump linear systems are reported in [1], [3], [8]–[10], [12], and [17].
On the other hand, time-delay systems have been studied extensively
on the subject of stability and control over the years; see [4], [5],
and [16] for instance. The problem of robustH1 control of linear
uncertain systems with time delay has gathered much attention, and
some sufficient conditions have been presented [6], [7], [11], [15].

In this correspondence, we study the robust stochastic stabilizability
and robustH1 disturbance attenuation for a class of uncertain linear
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time-delay systems with Markovian jumping parameters using the sto-
chastic Lyapunov functional approach first developed by Kushner [14].
Mariton [17] used the stochastic Lyapunov function approach to obtain
a sufficient condition for the mean square stability and the almost sure
stability of the linear jump systems without delay. In [10] and [12], the
stochastic stability, stabilizability, and controllability are studied based
on the same methodology, and in [2], the authors discussed stochastic
stability for a class of uncertain jump linear systems with time delay. In
general, these results are in the form of a set of coupled algebraic Ric-
cati equations that is difficult to solve. To facilitate the solution process,
the linear matrix inequality (LMI) approach will be employed in the
present development.

II. PROBLEM STATEMENT

In the sequel, if not explicitly stated, matrices are assumed to have
compatible dimensions. The notationM > (�, <, �)0 is used to
denote a symmetric positive-definite (positive-semidefinite, negative,
negative-semidefinite) matrix.�min(�), �max(�) denote the minimum
and the maximum eigenvalue of the corresponding matrix, respectively.
k � k denotes the Euclidean norm for vectors or the spectral norm of
matrices.EEE[�] stands for the mathematical expectation.

Consider the class of stochastic, uncertain linear state-delay systems
with Markovian jumping parameters

_x(t) = ~A1(t; r(t))x(t) + ~A2(t; r(t))x(t� �)

+ ~B1(t; r(t))u(t) +B2(r(t))w(t) (1)

z(t) = ~C1(t; r(t))x(t) + ~C2(t; r(t))x(t� �)

+ ~D1(t; r(t))u(t) +D2(r(t))w(t) (2)

x(t) =  (t); t 2 [��; 0]; r(0) = r0 (3)

where
x(t) 2 n system state;
w(t) 2 q exogenous disturbance input;
u(t) 2 m control input;
z(t) 2 p output to be controlled.

~A1(t; r(t)), ~A2(t; r(t)), ~B1(t; r(t)), B2(r(t)), ~C1(t; r(t)),
~C2(t; r(t)), ~D1(t; r(t)), andD2(r(t)) are matrix functions of the
random jumping processfr(t)g. r(t) is a finite-state Markov jump
process representing the system mode; that is,r(t) takes discrete
values in a given finite setS = f1; 2; � � � ; sg. Let� = [�ij ], where
i, j = 1; 2; � � � ; s, denote the transition probability matrix with

Prfr(t+�) = jjr(t) = ig =
�ij�+ o(�); i 6= j

1 + �ii�+ o(�); i = j

(4)

where � > 0, �ij � 0 for i 6= j, �i
�
= �ii � 0 with

s

j=1; j 6=i
�ij = ��ii for each modei, i = 1; 2; � � � ; s, and

o(�)=� ! 0 as� ! 0. � is the constant delay time of the state in
the system. (t) is a vector-valued initial continuous function defined
on the interval[��; 0], andr0 2 S are the initial conditions of the
continuous state and the mode, respectively. To simplify the notation,
M(t; r) will be denoted byMr(t). For instance,~A1(t; r) is denoted
by ~A1r , and so on.

Time-varying uncertainties may appear in these matrices; that is

~A1r(t) =A1r +�A1r(t); ~A2r(t) = A2r +�A2r(t) (5)
~B1r(t) =B1r +�B1r(t); ~C1r(t) = C1r +�C1r(t) (6)
~C2r(t) =C2r +�C2r(t); ~D1r(t) = D1r +�D1r(t) (7)

whereA1r , A2r , B1r, C1r, C2r, andD1r are governed only by the
Markovian jump process and�A1r(t),�A2r(t),�B1r(t),�C1r(t),
�C2r(t), and�D1r(t) are real-valued functions representing time-
varying parameter uncertainties. We assume that the uncertainties are
norm-bounded and can be described as

�A1i(t) �A2i(t) �B1i(t)

�C1i(t) �C2i(t) �D1i(t)

=
E1i

E2i

Fi(t)[H1i H2i H3i ]; whenr(t) = i (8)

whereE1i 2
n�n , E2i 2

p�n , andH1i,H2i 2
n �n,H3i 2

n �m are known constant matrices for eachi 2 S andFi(t) 2
n �n are unknown matrix functions satisfying

F T
i (t)Fi(t) � I; 8 i 2 S:

It is assumed the elements ofFi(t) are Lebesgue measurable. When
Fi(t) � 0, then system (1)–(4) is referred to as anominal jump linear
system. It is said to be afreesystem ifu(t) � 0.

In this correspondence, we will assume that for all� 2 [��; 0], a
scalar" > 0 exists such that

kx(t+ �)k � "kx(t)k: (9)

As was indicated by [16], this assumption does not represent a restric-
tion because" can be chosen arbitrarily.

This correspondence is concerned with the design of a robust state-
feedback controller

u(t) = �Kix(t); whenr(t) = i (10)

whereKi is constant for each valuei 2 S such that the closed-loop
system

_x(t) = (Â1i + E1iFiĤ1i)x(t) + (A2i + E1iFiH2i)x(t� �)

+B2iw(t) (11)

z(t) = (Ĉ1i +E2iFiĤ1i)x(t) + (C2i +E2iFiH2i)x(t� �)

+D2iw(t) (12)

whereÂ1i
�
= A1i � B1iKi, Ĥ1i

�
= H1i �H3iKi, andĈ1i

�
= C1i �

D1iKi is stochastically stable with
-disturbance attenuation. It is as-
sumed that the controller has complete access to the state variables
fx(t)g and the jumping processfr(t)g. In the following, we will de-
note byx(t;  ; r0; u) the solution of system (1)–(4) at timet under
the initial conditions (t) andr0, and the control inputu(t), andx0
representsx(t;  ; r0; u) at t = 0.

Definition 1: The free nominal jump linear system is said to be
stochastically stabilizableif, whenw(t) � 0, for all finite  (t) 2 n

defined on[��; 0] and initial moder0 2 S , a linear feedback control
law (10) exists satisfying

lim
T!1

EEE
T

0

xT (t;  ; r0; u)x(t;  ; r0; u)dt  ; r0 � xT0 ~Mx0

for some ~M > 0. The uncertain system (1)–(4) is said to berobust
stochastically stabilizableif it is stochastically stabilizable for all pos-
sible uncertaintykFi(t)k � 1.

This definition is similar to that of stochastic stabilizability of jump
linear systems without time delay [10], [12]. Under the above defini-
tion, stochastic stabilizability of a system means that a linear state-feed-
back control law exists that drives thex state from any given initial con-
dition ( ; t0) asymptotically to the origin, in the mean square sense,
which implies the asymptotic stability of the closed-loop system.
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Definition 2: For a given control law (10) and a real number
 > 0,
the nominal jump linear system is said to bestochastically stabilizable
with 
-disturbance attenuationif for everyT > 0 and for every piece-
wise continuous functionw: [0; 1) ! q , the closed-loop system
(1)–(4), (11) is asymptotically stable and the responsez: [0; 1)! p

satisfies

T

0

z
T (t)z(t)dt < 


2
T

0

w
T (t)w(t)dt: (13)

The uncertain system (1)–(4) is said to berobust stochastically stabi-
lizable with
-disturbance attenuationif it is stochastically stabilizable
with 
-disturbance attenuation for all possible uncertaintykFi(t)k �
1.

Let

kwk2 =EEE
T

0

w
T (t)w(t)dt

1=2

and

kzk2 =EEE
T

0

z
T (t)z(t)dt

1=2

and letTzw denote the system from the exogenous inputw(t) to the
controlled outputz(t); then, theH1-norm ofTzw is

kTzwk1 = sup
w(t)2L (0;1)

kzk2
kwk2

:

Hence, (13) implieskTzwk1 < 
. In other words,
-disturbance at-
tenuation implies
-suboptimalH1 control. The following matrix in-
equalities are essential for the proofs in the next sections [20].

Lemma 1: For any vectorsx, y 2 n, matricesA, P 2 n�n,
D 2 n�n , E 2 n �n, andF 2 n �n with P > 0, kFk � 1,
and scalar" > 0, we have:

i) 2xT y � xTP�1x + yTPy;
ii) DFE + ETF TDT � "�1DDT + "ETE;

iii) if "I � EPET > 0,

(A+DFE)P (A+DFE)T

� APA
T + APE

T
"I � EPE

T
�1

EPA
T + "DD

T ;

iv) if P � "DDT > 0,

(A+DFE)TP�1(A+DFE)

� A
T

P � "DD
T
�1

A+ "
�1
E

T
E:

III. ROBUST STOCHASTIC STABILIZABILITY

In this section, we present a sufficient condition for the robust sto-
chastic stabilizability of the jump linear system (1)–(4) withw(t) � 0.

Theorem 1: The nominal jump linear system is stochastically sta-
bilizable ifQ > 0, Pi > 0, andKi, i = 1; � � � ; s exist, satisfying the
coupled matrix inequalities

Mi
�
=

ÂT
1iPi + PiÂ1i +

s

j=1

�ijPj +Q PiA2i

AT
2iPi �Q

< 0;

i = 1; � � � ; s: (14)
Proof: Let the mode at timet bei; that is,r(t) = i 2 S . Consider

feedback controlu(t) = �Kix(t), t � 0; then, (1) becomes

_x(t) � Â1ix(t) +A2ix(t� �) (15)

with x(t) =  (t), t 2 [��; 0], r(0) = r0. In the following, we will
simply usex(t) to denote the solutionx(t;  ; r0; u) under the initial
condition (t) andr0 with controlu(t).

Take the stochastic Lyapunov functionalV (�): n� +�S ! +

to be

V (x(t); r(t) = i)

� V (x; i)

�
= x

T (t)Pix(t) +
0

��

x
T (t+ �)Qx(t+ �)d� (16)

where
Q constant
Pi constant for eachi.

The weak infinitesimal operatorA [12], [14] of the stochastic process
fr(t); x(t)g, t � 0, is given by

AV (x(t); r(t))

= lim
�!0

1

�
[EEEfV (x(t+�); r(t+�)jx(t); r(t) = ig

� V (x(t); r(t) = i)]

= x
T (t) Â

T
1iPi + PiÂ1i +

s

j=1

�ijPj x(t)

+ x
T (t� �)AT

2iPix(t) + x
T (t)PiA2ix(t� �)

+ x
T (t)Qx(t)� x

T (t� �)Qx(t� �)

= x
T
e (t)Mixe(t)

wherexe(t)
�
= [xT (t) xT (t � �)]T . With the assumption in (9), we

havekx(t)k � kxe(t)k. Note thatMi < 0 andPi > 0; hence, we
have forx 6= 0

AV (x; i)

V (x; i)
�

xTe (t)Mixe(t)

xT (t)Pix(t) +
0

��
xT (t+�)Qx(t+�)d�

= �
xTe (t)(�Mi)xe(t)

xT (t)Pix(t) +
0

��
xT (t+�)Qx(t+�)d�

� �min
i2S

�min(�Mi)

�max(Pi) + �"2�max(Q)
:

Define

�
�
= min

i2S

�min(�Mi)

�max(Pi) + �"2�max(Q)
:

We have� > 0 andAV (x; i) � ��V (x; i). Then, by Dynkin’s
formula (see [14])

EEEfV (x(t); r(t))g� V (x0; r0)

= EEE
t

0

AV (x(s); r(s))ds

� ��
t

0

EEEfV (x(s); r(s))gds:

The Gronwell–Bellman lemma givesEEEfV (x(t); r(t))g �
exp(��t)V (x0; r0). BecauseQ > 0, then

EEE
0

��

x
T (t+ s)Qx(t+ s)ds > 0:

Thus, for allr0 2 S

EEE x
T (t)Pix(t)j ; r0

= EEEfV (x; i)j ; r0g
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�EEE
0

��

x
T (t+ s)Qix(t+ s)ds  ; r0

� exp(��t)V (x0; i):

Then

EEE
T

0

x
T (t)Pix(t) dt  ; r0

<
T

0

exp(��t) dtV (x0; i)

= � 1

�
[exp(��T )� 1]V (x0; i):

Taking the limit asT ! 1, we have

lim
T!1

EEE
T

0

x
T (t)Pix(t)dt  ; r0

< lim
T!1

� 1

�
[exp(��T )� 1]V (x0; i)

� 1

�
x
T
0 (�max(Pi) + "

2
��max(Q))I)x0:

BecausePi > 0 for eachi 2 S , this means

lim
T!1

EEE
T

0

x
T (t)x(t)dt  ; r0 � x

T
0
~Px0

where

~P = max
i2S

�max(Pi) + "2��max(Q)

��min(Pi)
I

which implies that the closed-loop system under control law (10) is
stochastically stable.

From Schur complement,Mi < 0 if and only if

(A1i �B1iKi)
T
Pi + Pi(A1i �B1iKi)

+

s

j=1

�ijPj +Q+ PiA2iQ
�1
A

T
2iPi < 0: (17)

DefineXi
�
=P�1i ,Yi

�
=KiXi. Pre- and postmultiplying the last matrix

inequality byXi, it is easy to find thatMi < 0, i = 1; � � � ; s if and
only if for i = 1; � � � ; s

XiA
T
1i +A1iXi � Y

T
i B

T
1i �B1iYi

+

s

j=1

�ijXiX
�1
j Xi +XiQXi +A2iQ

�1
A

T
2i < 0 (18)

which are equivalent to the following LMI’s

�i +A2iRA
T
2i �i

�T
i ��i

< 0; i = 1; � � � ; s (19)

where

�i
�
=XiA

T
1i + A1iXi � Y

T
i B

T
1i �B1iYi + �iXi (20)

�i
�
= [

p
�i1Xi � � � p

�i; i�1Xip
�i; i+1Xi � � � p

�isXi Xi ] (21)

�i
�
= diag [X1 � � � Xi�1 Xi+1 � � � Xs R ] (22)

R
�
= Q

�1
: (23)

The foregoing analysis leads to a stochastic stabilizability result in
terms of LMI’s.

Theorem 2: The nominal jump linear system is stochastically sta-
bilizable if R > 0, Xi > 0, andYi, i = 1; � � � ; s exist, satis-
fying the coupled LMI’s (19). A stabilizing controller is constructed
asKi = YiX

�1
i .

Remark 1: The proof of Theorem 1 is similar to the corresponding
result in [12, Theorem 1]]. If the nominal jump linear system has zero
time delay, that is,A2i = 0 for all i 2 S , condition (14) on stochastic
stabilizability becomes

(A1i �B1iKi)
T
Pi + Pi(A1i �B1iKi)

+

s

j=1

�ijPj < 0; i = 1; � � � ; s (24)

which are equivalent to the following LMI’s

�i �i

�T
i ��i

< 0; i = 1; � � � ; s (25)

given in [19]. We can show that it is a necessary and sufficient condition
for the stochastic stabilizability of jump linear systems without time
delay [12, Theorem 1]. Obviously, ifPi > 0 andKi exist, satisfying
the coupled matrix inequality (24), then someNi > 0 exists such that
the following Lyapunov equations are solvable:

(A1i �B1iKi)
T
Pi + Pi(A1i �B1iKi)

+

s

j=1

�ijPj = �Ni; i = 1; � � � ; s (26)

which is the coupled equations for the stochastically stabilizability in
[12]. It is very difficult, however, to solve the above-coupled matrix
equations [1], [18]. Fortunately, the LMI’s (19) and (25) can be nu-
merically solved efficiently.

Remark 2: If we consider free jump linear systems, then the feasi-
bility of LMI’s (19) with B1i = 0 is sufficient for stochastic stability
of this class of time-delay systems. It can also be extended to test the
stochastic stability of free jump linear systems without time delay [10].

Theorem 3: The uncertain jump linear system (1)–(4) is robust
stochastically stabilizable if scalars�i > 0, �i > 0 and matrices
R > 0, Xi > 0, andYi, i = 1; � � � ; s exist, satisfying the coupled
matrix inequalities

�̂i A2iRH
T
2i HT

1i �i

H2iRA
T
2i ��iI +H2iRH

T
2i 0 0

H1i 0 ��iI 0

�T
i 0 0 ��i

< 0;

i = 1; � � � ; s (27)

where�̂i
�
= �i + A2iRA

T
2i + �iE1iE

T
1i + �iE1iE

T
1i.

Proof: From Theorem 1, the uncertain closed-loop system is
stochastically stable, if for each modei 2 S and kFik � 1, the
following coupled matrix inequalities hold fori = 1; � � � ; s:

Xi Â1i + E1iFiĤ1i

T

+ Â1i +E1iFiĤ1i Xi

+

s

j=1

�ijXiX
�1
j Xi +XiQXi + ~A2iR ~AT

2i < 0: (28)

On the other hand, from Lemma 1, LMI’s (28) hold if scalars�i > 0,
�i > 0 exist such that

�i + �iE1iE
T
1i + �

�1
i H

T
1iH1i + A2iRH

T
2i

� �iI �H2iRH
T
2i

�1

H2iRA
T
2i + �iE1iE

T
1i < 0

�iI �H2iRH
T
2i > 0

where�i
�
= �i +

s

j=1; j 6=i
�ijXiX

�1
j Xi + XiQXi + A2iRA

T
2i,

which are equivalent to (27) from the Schur complement.
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IV. ROBUSTH1 DISTURBANCE ATTENUATION

In this section, we consider robustH1 disturbance attenuation for
the uncertain jump linear state-delay systems.

Theorem 4: For the nominal jump linear system, a state feedback
control (10) exists such that the closed-loop system possesses the
-dis-
turbance attenuation property; that is,kzk2 < 
kwk2 for all w 2
L2[0; 1], w 6= 0, if Q > 0 andPi > 0, i = 1; � � � ; s exist, sat-
isfying the following coupled matrix inequalities:

�i
�
=

Âi PiA2i + ĈT
1i+C2i PiB2i+Ĉ

T
1i+D2i

AT
2iPi+C

T
2i+Ĉ1i �Q+CT

2i+C2i CT
2iD2i

BT
2iPi+D

T
2i+Ĉ1i DT

2iC2i �(
2I�DT
2iD2i)

< 0 (29)

as shown in (29) fori = 1; � � � ; s, whereÂi
�
= ÂT

1iPi + PiÂ1i +
s

j=1
�ijPj + Q + ĈT

1iĈ1i.
Proof: Let the mode at timet be i; that is,r(t) = i 2 S . Con-

sider feedback controlu(t) = �Kix(t) for t � 0. Then, the nominal
closed-loop system becomes

_x(t) = Â1ix(t) + A2ix(t� �) +B2iw(t) (30)

z(t) = Ĉ1ix(t) + C2ix(t� �) +D2iw(t): (31)

Choose the stochastic Lyapunov functionalV (�): n� +�S ! +

as in (16). Then

AV (x(t); r(t)) =x
T
e (t)Mixe(t) + w

T (t)BT
2iPix(t)

+ x
T (t)PiB2iw(t):

Notice that, when the disturbance input is zero, that is,w(t) = 0, based
on Theorem 1 and (29), we haveAV (x(t); r(t)) < 0, which ensures
the asymptotic stability of the closed-loop system.

In the following, we assume zero initial condition, that is,x(t) = 0
for t 2 [��; 0], and define

JT
�
=EEE

T

0

z
T (t)z(t)� 


2
w
T (t)w(t) dt :

From Dynkin’s formula [14] and the fact thatx0 = x(0; 0; r0; u) =
0, we have

EEEfV (x(T ); r(T )g = EEE
T

0

AV (x(s); r(s))ds

since,V (x0; r0) = 0. Then, for any nonzerow(t) 2 L2[0; 1]

JT =EEE
T

0

z
T (t)z(t)�
2wT (t)w(t) +AV (x(t); r(t) dt

�EEEfV (x(T ); r(T )g:

So

JT �EEE
T

0

z
T (t)z(t)�
2wT (t)w(t) +AV (x(t); r(t)) dt

=EEE
T

0

�
T (t)�i�(t) dt < 0

where�(t)
�
= [xT (t) xT (t��) wT (t)]T . Therefore, the dissipativity

inequality (13) holds for allT > 0. In other words, we have thatz 2
L2[0; 1), for any nonzerow 2 L2[0; 1), andkzk2 < 
kwk2.

Theorem 4 can be rewritten in the form of LMI’s. From the Schur
complement, it is easy to find that the coupled matrix inequalities in
(29) are equivalent to the following matrix inequalities:

�i
�
=

ÂT
1iPi + PiÂ1i +

s

j=1

�ijPj +Q PiA2i PiB2i ĈT
1i

AT
2iPi �Q 0 CT

2i

BT
2iPi 0 �
2I DT

2i

Ĉ1i C2i D2i �I

< 0 (32)

for i = 1; � � � ; s. Obviously, the matrixMi is a principal submatrix
of �i. So, if �i < 0, thenMi < 0, which proves that Theorem 3
ensures Theorem 1 again. LetXi

�
= P�1i andYi

�
= KiXi, and define

Ti = diag(Xi; I; I; I). Pre- and postmultiplying (32) byTi, we find


i +A2iQ
�1AT

2i (C1iXi �D1iYi)
T +A2iQ

�1CT
2i B2i

C1iXi �D1iYi + C2iQ
�1AT

2i �I + C2iQ
�1CT

2i D2i

BT
2i DT

2i �
2I

< 0 (33)

�i + A2iRA
T
2i (C1iXi �D1iYi)

T +A2iRC
T
2i B2i �i

C1iXi �D1iYi + C2iRA
T
2i �I + C2iRC

T
2i D2i 0

BT
2i DT

2i �
2I 0

�T
i 0 0 ��i

< 0 (34)

�i + �iE1iE
T
1i + A2iRA

T
2i � � � � �

C1iXi �D1iYi + C2iRA
T
2i Z1i � � � 0

H1iXi �H3iYi +H2iRA
T
2i H2iRC

T
2i Z2i � 0 0

H1iXi �H3iYi +H2iRA
T
2i H2iRC

T
2i H2iRH

T
2i Z3i 0 0

BT
2i DT

2i 0 0 �
2I 0

�T
i 0 0 0 0 ��i

< 0: (35)
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that the coupled matrix inequalities (32) are equivalent to the following
matrix inequalities:


i A2i B2i (C1iXi �D1iYi)
T

AT
2i �Q 0 CT

2i

BT
2i 0 �
2I DT

2i

C1iXi �D1iYi C2i D2i �I

< 0; i = 1; � � � ; s

where


i
�
=XiA

T
1i +A1iXi � Y

T
i B

T
1i �B1iYi

+

s

j=1

�ijXiX
�1

j Xi +XiQXi:

From the Schur complement, we find the above matrix inequalities are
equivalent to (33), given at the bottom of the previous page, fori =
1; � � � ; s, which are in turn equivalent to the following LMI’s as shown
in (34), given at the bottom of the previous page, fori = 1; � � � ; s,
where�i, �i, �i, andR are defined in (20)–(23), respectively.

From the above derivations, the
-disturbance attenuation result is
summarized in the following theorem involving LMI’s.

Theorem 5: For the nominal jump linear system, a state feedback
control law (10) exists such that the closed-loop system is stochastically
stable with
-disturbance attenuation; that is,kzk2 < 
kwk2 for all
w 2 L2[0; 1],w 6= 0, if R > 0,Xi > 0, andYi, i = 1; � � � ; s exist,
satisfying the coupled LMI’s shown in (34). A stabilizing controller to
provide
-disturbance attenuation can be constructed asKi = YiX

�1

i .
Theorem 6: For the uncertain jump linear system, a state feedback

control (10) exists such that the closed-loop system is robust stochas-
tically stable with
-disturbance attenuation; that is,kzk2 < 
kwk2
for all w 2 L2[0; 1], w 6= 0, if scalars�i > 0, �i > 0 and matrices
Xi > 0, R > 0, andYi, s = 1; � � � ; s exist, satisfying the coupled
LMI’s as shown in (35), given at the bottom of the previous page, for
i = 1; � � � ; s, where� are entries readily inferred by symmetry and

Z1i
�
= � I + C2iRC

T
2i + �iE2iE

T
2i

Z2i
�
= � �iI +H2iRH

T
2i

Z3i
�
= � �iI +H2iRH

T
2i:

A stabilizing controller to provide
-disturbance attenuation can be
constructed asKi

�
= YiX

�1

i .
Proof: Let the mode at timet bei; that is,r(t) = i 2 S . Consider

the closed-loop system (11) and (12). From Theorem 5, it is stochasti-
cally stable with
-disturbance attenuation if for all possible uncertain-
tieskFi(t)k � 1, Q > 0 andXi > 0, i = 1; � � � ; s exist, satisfying
the following coupled matrix inequalities:


̂i A2i +E1iFiH2i B2i

(A2i +E1iFiH2i)
T �Q 0

BT
2i 0 �
2I

+ C
T
i Ci < 0 (36)

for i = 1; � � � ; s, where


̂i
�
=Xi Â1i +E1iFiĤ1i

T

+ Â1i +E1iFiĤ1i Xi

+

s

j=1

�ijXiX
�1

j Xi +XiQXi

Ci
�
= [ Ĉ1iXi + E2iFiĤ1iXi C2i + E2iFiH2i D2i ]

=G2i + E2iFiL1i

which can be rewritten as

G0 +G1iFiL1i + (G1iFiL1i)
T

+ (G2i + E2iFiL1i)
T (G2i + E2iFiL1i) < 0 (37)

for i = 1; � � � ; s, where

G0=

XiÂ
T
1i+Â1iXi+

s

j=1

�ijXiX
�1

j Xi+XiQXi A2i B2i

AT
2i �Q 0

BT
2i 0 �
2I

G1i= [ET
1i 0 0 ]T ;

G2i= [ Ĉ1iXi C2i D2i ]

L1i= [ Ĥ1iXi H2i 0 ] :

From Lemma 1, the matrix inequalities in (37) hold if scalars�i > 0
and�i > 0 exist such that, fori = 1; � � � ; s

I � �iE2iE
T
2i > 0

G0 + �iG1iG
T
1i + �

�1

i L
T
1iL1i +G

T
2i

� I � �iE2iE
T
2i

�1

G2i + �
�1

i L
T
1iL1i < 0

which are equivalent to the LMI’s in (35).
Remark 3: Theorems 5 and 6 can be easily adapted to
-suboptimal

H1 control of jump linear systems without delay. In [9], the
-subop-
timal H1 control was addressed based on a set of coupled algebraic
Riccati equations for a special class of jump linear systems without
delay. No solution method for these coupled equations is presented,
however.

V. CONCLUSION

In this correspondence, we have studied the robust stochastic sta-
bilizability andH1 disturbance attenuation for a class of uncertain
jump linear systems with time delay. Sufficient conditions on robust
stochastic stabilizability and robust
-disturbance attenuation are pre-
sented based on coupled LMI’s. All of these results established are in-
dependent of size of the delay time and applicable to situations in which
a priori knowledge of delay time is available. The results can also be
extended to the jump linear systems with multiple time delays using
the method of [5]. A possible direction for future work is to obtain
delay-dependent conditions that are expected to be less conservative.
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Exponential Stability of Constrained Receding Horizon
Control with Terminal Ellipsoid Constraints

Jae-Won Lee

Abstract—In this correspondence, state- and output-feedback receding
horizon controllers are proposed for linear discrete time systems with
input and state constraints. The proposed receding horizon controllers
are obtained from the finite horizon optimization problem with the
finite terminal weighting matrix and the artificial invariant ellipsoid
constraint, which is less restrictive than the conventional terminal equality
constraint. Both hard constraints and mixed constraints are considered
in the state-feedback case, and mixed constraints are considered in the
output-feedback case. It is shown that all proposed state- and output-feed-
back receding horizon controllers guarantee the exponential stability
of closed-loop systems for all feasible initial sets using the Lyapunov
approach.

Index Terms—Discrete linear system with input and state constraints,
exponential stability, output-feedback control, receding horizon control.

I. INTRODUCTION

The receding horizon control has emerged as a powerful strategy
for constrained systems with limitations on inputs, states, and outputs
[4]–[6], [8]–[11]. Especially, the stability issue of the receding horizon
control for constrained systems has been focused on in recent literatures
[4], [6], [8], [11].

For the state-feedback case, the terminal equality constraint has been
utilized to guarantee the closed-loop stability of the receding horizon
controller for unconstrained systems [2], [3] and for constrained sys-
tems [8], [11]. This artificial constraint is satisfied by driving the state
(or unstable mode) to the origin at the finite terminal time. This ter-
minal equality constraint, however, is rather restrictive, because it is
generally more difficult to drive a state to a specified point than into
a specified set such as an ellipsoid or a ball. Moreover, this approach
may make the optimization problem infeasible under the hard state con-
straint. Hence, the horizon size may have to be made longer so as to
make the problem feasible. Even though the mixed constraint has been
introduced to relax the hard state constraint [11], issues still need to be
covered regarding feasibility and stability, because a somewhat restric-
tive terminal equality constraint should still be satisfied under the input
constraint, and only “attractivity” rather than “asymptotic” or “expo-
nential” stability has been shown in existing results [8], [11]. Recently,
efforts have been made to overcome restriction of the terminal equality
constraint [4], [7]. In [4], the invariant ellipsoid constraint has been in-
troduced. This artificial constraint is satisfied by putting the state (or
unstable mode) into an invariant ellipsoid. In this result, however, ex-
ponential stability is shown only for initial states inside the invariant el-
lipsoid defined by the terminal weighting matrix. In [7], it is shown that
the receding horizon control with a sufficiently long horizon size can
guarantee attractivity without any artificial constraint. The long horizon
size is, however, needed to make the state sufficiently small at the final
time, which may increase computational burden and may be regarded
as a kind of artificial constraint. Moreover, in this result, only attrac-
tivity is shown.
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