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It is now clear that, to maké)(s,t) proper,F(s) must be of relative

degree2. So, let us choos&'(s) = (1/(0.15s + 1)*), which results  Apstract—in this paper, we further develop the generalized Lyapunov
in ng = 2. We now choose\,(s) = s2 4+ 2s+ 2, and implement equations for discrete-time descriptor systems given by Bender. We asso-
the control law (3.9). Choosing(t) = 1.0 andr(¢) = 0.8 sin(0.2t), ciate a stable discrete-time descriptor system with a Lyapunov equation

; P ich has a unique solution. Furthermore, under the assumptions of
we obtained the plots shown in Fig. 3. From these plots, we see t'rl]\é%chability and observability, the solutions are guaranteed to be positive

the robust adaptivél.. optimal controller does produce reasonablyefinite. Ail results are valid for causal and noncausal descriptor systems.

good tracking. This provides a unification of Lyapunov equations and theories estab-
lished for both normal and descriptor systems. Based on the developed
Lyapunov equation, a Riccati equation is also obtained for solving the
state-feedback stabilization problem.
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for normal systems are easily extended to descriptor systems, saghare invertible matrice§’ and V' such that@,é,f,g) is
as the expression of the solution [9], [12], the Cayley—Hamiltomansformed to the Weierstrass canonical fofi, A, B, ')
theorem [7], [8], reachability and observability [7], [9], the semistatg/ "' EV ', U~tAV 1, U~'B, CV 1) with

transition matrix, and the Tschirnhausen polynomials [12]. The pre- N
o : : = = |zI=J 0
requisite of this approach is that the Laurent parameters have to be 2B — A= 0 AN — T
computed.
It is well known that Lyapunov equations have been widely applied B = {31 } ,
to normal systems in controller design [5] and system analysis [13], - B,
[20]. Lewis [8] applied the Lyapunov theory to solve optimal control C=[C €9 ?3)

problems for descriptor systems. Zhaeigal. [19] used generalized

Lyapunov methods to analyze structural stability, and solved t ES

. . - . o,

linear quadratic control problems. The applications of generalize .

Lyapunov methods to discuss asymptotic stability can be found in {J 0}. E>0

[15] and [16]. For these reasons, the significance of developing - 0 0) -

. ; : . o = VorU =

Lyapunov equations for descriptor systems is evident. On the other {0 0 } k<0

, k<O

where.J and N are in Jordan canonical forms ard is nilpotent.

4)
hand, discrete-time descriptor systems may possess anticipation or 0 —NFk1

noncausal behavior which, in the continuous-time case, correspon%s \uti ¢ a di to-ti 1 b d directly i
to the impulsive behavior. These properties distinguish descript-g € solution of a discrete-ime System can be expressed directly in

systems from normal systems. However, the aforementioned res&?t@ns of the Laurent parameters [1] as
related to generalized Lyapunov theories were developed only for the . —
causal or impulse-free case. For the noncausal or impulsive situation?: = (poA) w0 + Z (PoA)' ¢oBug
Benderet al. [1] defined reachability and observability Grammians k=0 :
based on the Laurent parameters, and the associated Lyapunov- m — , &
like equations are analyzed in terms of reachability, observability, N <<_(’°“E) Tigm + Z (=01 E) qﬁ—‘B“’i“‘)' ®)
and stability. Zhanget al. [18] gave generalized Lyapunov and _ _ =0 _ o
Riccati equations to examine asymptotic stability and stabilizability 8f descriptor system iasymptotically stablé and only if its causal
descriptor systems without the impulse-free restriction. Unfortunate§iosystentz, JJ, Bi, C1) is asymptotically stableThe reachability
from a computational point of view, it is difficult to obtain the observability of a descriptor system is equivalent to both its causal
solutions of the already established generalized Lyapunov equatiSi#§system and noncausal subsystéf I, B,, C») beingreachable
due to the nonunigueness or the associated constraints for th@Rservabl [4].
solutions. This presents a major difficulty in applying the solutions of Definition 1—Reachability/Observability Grammian [1For the
these equations to develop synthesis and analysis techniques sinfiig¢rete-time descriptor systei, 4, B, C'), the causal reachability
to the case of normal systems. (resp. observability) Grammian is

The present paper proposes a kind of Lyapunov equations for = o o
discrete-time descriptor systems based on those given in [1]. All DPr = Z ¢x BB ¢;, <resp.Pf = Z orC* Cék)
results to be established are valid for causal and noncausal descriptor k=0 k=0
systems. The Lyapunov equations are very similar to those of nornpabvided that the series converges; the noncausal reachability (resp.
systems in either appearance or theories. The positive definitenesslervability) Grammian is
the solutions implies asymptotic stability of the descriptor systems. i .
Moreover, it is numerically easy to compute the solutions. The pr — Z ér BB o1 <feSp-P§c = Z ¢fC7TC¢k>.
corresponding Riccati equation is also developed for stabilization ey
problems.

i—1

k=—p
The reachability (resp. observability) Grammian is

Il. PRELIMINARIES P"=P +P,. (resp.P°=P; +Py.).

Throughout the paper, if not explicitly stated, all matrices are In Weierstrass canonical form (3), the corresponding Grammians
assumed to have compatible dimensions. We ise> 0 (resp. of P!, P,., P?, and P;. are denoted byP.. P;,., PZ, and P;,.,
M > 0) to denote a symmetric positive-definite (resp. semidefinitégspectively. From (3) and (4), it can be easily shown that

matrix M. Theith eigenvalue of\ is denoted by\; (M). P =vpve’ P o—vp vt
Consider a linear time-invariant discrete-time descriptor system of N
the form Pc = [ Pc U-ﬂ Pnc = LT I)ncU' (6)
Expy1 = Axy + Buy, yr = Cuayp, Q) Lemma 1 [1], [9]:
, .ok, k20
whereE, A e R™*", Be R™*™, C e R"™*", and(:E— A) is a Po Bk = { 0, k<0 @)
regular pencil. The above system is also identified by the realization 0 >0
quadruplg E, 4, B, C). The Laurent parametets. —u < k < oo, G_1Ad = { —7(,/) k<0 (8)
specify the unique series expansion of the resolvent matrix about o '
z = oo Proposition 1:
oo i)
Ayl 1 — § ) ,
GE-4=:" 3, ol w20 @) GEPIE'6] =Pl ol E"PlEo=Fl. (9
=—u
which is valid in the set0 < |z] < 6 for someé > 0. i)

The positive integery is the nilpotent index. There exist two ¢ 1 APT AT, =pPr., L, ATP° Ao 4 =P°. (10)
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Proof:
i) From (7), we have

G0EPIE" 65 = ) 00EoeBB ¢/ B ¢5

k=0

=Y BB o[ =Pl
k=0

Z ST ET LT CT Cdr Edo
k=0

T ~T .
=> 61 CTCoi =P
k=0

oo E' P{E¢y =

i) From (8), we have

-1

Z 6_1A¢,. BB 6 A' oL,
k=—n

-1

= > BB i =P,

k=—p

b1 AP AL, =

and
—1

> 6L AT6LCT CorAd—

k=—p

ol AT P Ay =

—1
> 6k C"Cor = P .

k——p

IIl. L YAPUNOV EQUATIONS AND ASYMPTOTIC STABILITY

In relation to the Grammians defined in Definition 1 for (1), the
corresponding Lyapunov equations will be stated. The following
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follow from (8). Similarly, from (7), we have
-1
> ¢0AsBB L AT65 =0

k=—p

G0 AP, AT o)

-1
> 60ABBTO[ BT, =0

k=—p

, - T T
Qo AP, B ¢-, =

—1
> 01EoBB o A oq =0

k=—p

/ AT T
@71EP,:‘CA (,b()

Hence, we can rewrite (11) and (12) as follows:
Pl — (oA —¢_1E)P/(A" 6 — E'¢1,) =6oBB' ¢
Pre—(¢0A =01 E)P (AT ¢g — ET¢l1) =¢_1BB 6",
This proves the validity of (13).
iv) From (3) and (4),
G0 A =VooUU AV = VoAV
Hence,¢, A and$oA have the same eigenvalues. We know that
——= [T 0][J o0 J 0
=1 o)l 7)=1o o]
and (1) is asymptotically stable, that i\;(.J)| < 1 for all i.
Consequently|\;(¢0A)| < 1 for all ¢, and this guarantees (11) to
have a unique solution. The uniqueness of the solution of (12) follows

from the fact thatp_ £ is nilpotent.
Notice that, in Weierstrass canonical form, we have

G0A—6_E=Voo AV~ —Vo_,EV™'

=0 o]0 1o )

b ]

theorem gives properties of the Lyapunov equations in terms of = L) Nk

asymptotic stability and reachability.
Theorem 1:

i) P. satisfies

P — 6o AP ATl = 6o BBT 4L (11)
i) Py, satisfies
Pl.—¢_1EPL.E'¢L, =6 1BB'¢L,. (12
iy P" = P! + P, satisfies
P’ — (oA — 61 E)P"(¢oA - 61 E)"
=6oBBof +¢_1BB"¢",. (13)

iv) If (1) is asymptotically stable, the®. > 0, P,;. > 0, and

As |\;(J)| < 1 forall i and NV is nilpotent, sd\; (¢, A —o6_, E)| =
[Ai(6gA — &_, E)| < 1 for all i. This implies that the solution of
(13) is also unique.

v) When (1) is in Weierstrass canonical form (3), (11), and (12)

reduce to
0 0 0 0 0 0
0 07 o 0 o 0
0 P, 0 NPLNT| 7|0 ByBJ

or, equivalently,

{P{l 0} B {JP{IJT 0} _{B1B1T 0}

P > 0 are the unique solutions of (11)—(13), respectively. On the other hand,

v) If (1) is asymptotically stable, then (1) is reachable if and only

if P” > 0 is the unique solution of (13).

Proof: i) and ii) can be easily established from [1] with (9).
iii) Notice that

01 EPIE'¢L =) ¢ 1EouBB ¢, E' 61, =0
k=0

60 APIEToL, =" 60Aex BB o ET6L, =0
k=0

6\ EF[A" ¢ =) 6_1E¢xBB ¢ A" 65 =0
k=0

P, —JPLJ" =B, BY (14)
Py, - NP;,N" =B,B. (15)
= T
P.=) &BB m—{o 0}
k=0
— 0 0
Dr -~ J|mnl T _
Pu= ¥ aBBl= ) p]
=.
then
Dr _ pr D _ Plrl 0
P _PC—|—PM_{0 P;J. (16)

As noted in [4], (1) is reachable if and only (#, B,) and (N, B>)
are reachable. Hencd, is asymptotically stable [as (1) is asymptot-
ically stable] if and only if (14) has a unique solutidtf; > 0 (see
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[6]). Equation (15) always has the unigue solutiBfi, > 0 since N Proof: If (1) is stabilizable, then there exists a feedbagk

is nilpotent. Then from (16)P" > 0 is unique if and only if (1) such thatJ — B, I, is asymptotically stable [4, Theorem 3-1.2].
is asymptotically stable under the assumption of the reachability ©his is equivalent to having

(1). Notice that J-B/K, 0

asymptotically stable. Now, we consider the closed-loop system of
(I, oA, ¢oB) with the feedback’ = [K, 0]V:

P =P, +P,.=V(P +P )V =vVPV".

Then the proof is completed. [ ] R
The results for the dual case concerning the observability Gram- Tht1 = (oA — o BK ). (22)
mian are summarized in the next theorem with the proof omitted. From
Theorem 2 V(doA — doBK)W ' =6, A —¢,B[K: 0
i) P° satisfies (God — GoBK =0oAd = GBIy 0]
_ |:J — Bllfl 0:|
P? =65 A" P Age = 65 C" Co. (17) 0 0F
it can be seen that (22) is asymptotically stable, and hence
i) Py, satisfies (I, g0 A, ¢oB) is stabilizable.
o _ On the other hand, if1, ¢o A, ¢oB) is stabilizable, then there
Pl— ¢ \E"P.Ed_ =", CTCo_y. (18) existsK such thatpo4 — oo BK is stable. If we denote
- KV™' =[K, K,
iy P° = P!+ Py, satisfies
then
o T 47T T T Or AL ; _ -
7o bl S = o Viond - aupry= = [/~ B 0]
=¢g C" Coo+ o, C" Co_;. (19)
is asymptotically stable. That is, (1) is stabilizable. [ ]

iv) If (1) is asymptotically stable, the®? > 0, P?. > 0, and Lemma 3: Suppose (1) is stabilizable. For any givén > 0, let
P° > 0 are the unique solutions of (17)—(19), respectively. P be the unique solution of (21). I’ is the unique solution of the
v) If (1) is asymptotically stable, then (1) is observable if andRiccati equation of (1) in Weierstrass canonical form (3),
only if P° > 0 is the unique solution of (19). ZT%T@]K _P_ ZI'O_’S"P—@()?(R-F §IEUT%0§)_1
Remark 1: If E is nonsingular, themo = I and¢_, = 0 (see BT Pe A= (v lwy ! 23
[1]). In this case, the reachability and observability Grammi&¥is . ,,% oA =—-(1"") (23)
and P° become thenP = (V/)='pv—".
Proof: By substituting

Pr _ Z f‘kBBT(Ak)T, Po _ Z(flk)ICCIAk @OA — "7_1502"77 é(]B — 1;—10_,0§
k=0 k=0 into (21), we have
It can be seen from (13) and (19) thAt and P° satisfy At owvhytpv g, Aa— (vhHtpyt AT (vt
) - , . -PVT'9,B(R+ BT (VY ' PV 15, B) !
P —aAP"A" = BB, P -A"PA=C"C. _l,fj,g)oj,(fl o v Y fb)
“Blos (V) TIPV 19,A = —(V) "WV (24)
Thus, normal systems and descriptor systems have a unified Gr@8imce (I, ¢o A, ¢oB) is stabilizable andV > 0, (21) and (23) have
mian form and Lyapunov equations. unique solutions” and P. From (23) and (24), the result followsm

Theorem 3: For any giveniW’ > 0, if (1) is stabilizable, then the
closed-loop system (20) wit given by

IV. RICCATI EQUATION AND STABILIZABILITY o o
K =(R+B"¢;PooB)"'B"¢f PooA (25)

Consider a generalized state-feedback control
is asymptotically stable wher® > 0 is the unique solution of the

up = —Kay Riccati equation (21).
Proof: When (1) is in the Weierstrass canonical form (B),
applied to (1) such that the closed-loop system is given by can be represented as
K =¢,B(R+B ¢l Pp,B) 'B ¢l Po,A=[K, 0.
Euryy = (A — BK)xy. (20) b= 0B+ B 00 PooB) B 00 Pood = Ky (0]
With
If K is such that (20) is asymptotically stable, then (1) is said to = P P (V—’l“)flle-vfl _ E&l Wi
be stabilizable Based on Lyapunov equation (11), a corresponding Pl P | T Wi War |
Riccati equation for descriptor system (1) is defined as the Riccati equation (21) becomes
o,
AT 6T PooA — P — AT 6T PooB(R+ BT 61 PooB)~! J 0 PlTl P ||J 0 PlTl Py
. ) 0 0||PL Pul||0 0 PL Py
BTl PopA = -W (21)

ool mll ol [s)m o
_ X |
whereR > 0 and W > 0. 0 0JlP> Pz ][0 O][B:

Lemma 2: Equation (1) is stabilizable if and only if normal system - _ PITI E’im } .
(I. ¢oA. ¢oB) is stabilizable. Wis Wae
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That is, capital is formed from only a few sectors. Thus, (26) is a practical
JIPLT 0 P D J' P B K, 0 discrete-time descriptor system sinGeis often singular. Here, we
{ 0 0} - [Plrz PQJ - { 0 0 consider a Leontief model described by
Wi Wis 125 0.5 15 1 05 075
=W, sz}' F=1075 05 L1|, G=1{025 0 05
e e 025 0 1.5 0 0 0
Obviously, Pio = Wig, Poy = Wy, > 0, and P;; > 0 is the 1
unique solution of the Riccati equation =11
JEPLT - Py —J"PLUBIK, = -Wi1 <0 1

and(J — B, K1) is asymptotically stable (see [14]), which impliesThen (26) can be rewritten as

that (E, A, B) is stabilizable by the feedback”. Now, we prove 1 05 0.75
the stability of (20) withA" given by (25). Consider an equivalent 025 0 0.5 |2p1
system of (20): 0 0 0
U 'EV 'apy =U Y(A= BK)V 'uy = 0.75 0 =075 1
_ o =|-05 05 =06 |2c— |1]u 27
Eapyr =(A - BEV ™ ). oos o0 —os | " 1)

Since (1) is stabilizable ant¥ > 0, then from Lemmas 2 and 3

' which is a reachable, noncausal descriptor system. lts finite pole is
we have

located at: = 1.3636, which implies that (27) is an unstable system.
KV™'=(R+ B"¢) P6yB)"'B"¢g Py AV ™' = K. The Laurent parameters, and ¢_; are

It follows that (1) is equivalent to 1.2121 16529 —8.5349

— _ oo = 0.4848 0.6612 —3.4140

Ezgyr = (A— BR)xy —0.6061 —0.8264  4.2675
which is asymptotically stable. The uniqueness and positive definite- ’ 0 12121 -4.9256
ness ofP follow from Lemma 3 and¥ > 0. n o—1 =10 —1.5152  0.4298
Remark 2: It is observed thal’ given by (25) is the optimal state 0 -0.6061  4.4628

feedback matrix for(Z, oA, ¢oB) under the linear-quadratic costThe reachability Grammia®” is then obtained from (13) as

function [6]
_ —922.1437 —12.7671 3.6448
S T W+ uf Bug Pr= |—12.7671 —2.5107 4.2128
B S 3.6448 42128 5.8911

k=0
If the system is causal, which meatis; E = 0, then the solution Which is an indefinite matrix. Since the system is reachable, this result
of (1) is given by [see (5)] implies the instability of the system.
S To consider the stabilization of (27) based on Theorem Flet 1
;= (@014)%0 + Z(%A)i—k_l%Buk andW = I in (21), thenP is obtained as

' par 1.1496  0.0558 0.1598
which corresponds to the solution for the systéf ¢oA, ¢oB). P =10.0558 1.0208 0.0596
Consequently, in the causal cagé given by (25) is also the optimal 0.1598  0.0596  1.1706
state feedback matrix of (1). and the feedback matrik™ following from (25) is

K =10.382 1427  0.4087].
V. NUMERICAL EXAMPLE v =1[0-3828 0 7 0.4087]

From the given Lyapunov and Riccati equations, it is easy to obtalf€ resulting closed-loop system is

their solutions after computing, and ¢_;. In [12], numerically 1 0.5 0.75 1.1328 0.1427 —0.3413
reliable and stable recursive algorithms were provided for calculating0.25 0 0.5 |apy = |—0.1172 0.6427 —0.1913 | a4
¢o and ¢_;. 0 0 0 0.1328 0.1427 —0.0913

Example 1: Consider the dynamic Leontief model which describes . " .
the time pattern of production sectors [4], [10] given by which has one stable finite pole at 0.02832. Thus, the system is

stabilized.
zr = Fap + G(opgr — an) + die. (26)
The elements ofr, € R™*' are the levels of production in the VI. CONCLUSION
sectors at timé:. F' € IR"*" is the input—output matrix, andzy In this paper, Lyapunov equations have been obtained for discrete-

is the amount required as direct input for the current productiotime descriptor systems. The Lyapunov equations are applicable to
G € R"*"™ is the capital coefficient matrix, an@(x,4+1 — =) is causal and noncausal descriptor systems. Since they have the same
the amount required for capacity expansion to be able to produoem as those for the normal systems, and the solutions are unique if
xr+1 In the next periodd; is the amount of production going to the systems are asymptotically stable, it is easy to obtain numerical
current demand. It is assumed that the amount of produdiids, in  solutions. These features make the proposed Lyapunov equations
turn, controlled byu;, such thail, = Hu;, whereu,, € IRP*! where suitable for asymptotic stability analysis as well as control synthesis.

1 < p < n. In multisector economic systems, bakthand G have A Riccati equation is also considered, from which a static state
nonnegative elements. Typically, the capital coefficient maftiRas feedback can be obtained to stabilize the systems. Finally, numerical
nonzero elements in only a few rows, corresponding to the fact thatamples are used to illustrate the results established.
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