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Il. PROBLEM FORMULATION identical actuators) are used to improve the reliability of the closed-
Consider the linear time-invariant plant with identical control 100P system. This is motivated by the common practice in (e.g.,
channels described by aircraft) industry to use identical sensors, actuators, subsystems

and/or channels to prove high reliability [9, Sec. 5.4]. Second, the

A L . redundant channels are introduced in a ppassiveway [9, Sec.

2 =Az+ ;Bu‘ +Guwo (¢>1) (@) 3.4]. Namely, there is no control system reconfiguration involved

yi = Cr + w, i=1,--.q @ when any of the aIIOV\_/abIe outages occurs. The resulting controllgr
7 o 1T provides guaranteed internal stability and system performance (in

p=lot Ho our ooy () the sense ofi .. disturbance attenuation) not only when all control

.¢) are the measured chanr!els are operating correctly, but e_tlso when some control channels
experience breakdowns/outages. This formulation is related to the
multimodel approach (simultaneous stabilization) of [7] and [8] but is
different from theactiveapproaches of redundancy of fault detection,
fault location, and fault recovery [9]-[12]. In the active approaches,
system malfunction has to be allowed for a finite amount of time to
facilitate fault detection, location, isolation, and recovery. But such a
) malfunction does not exist in the passive approach proposed here in

& =AL + Ly; (4) this paper, making our method suitable for applications where even

u;, = K&, i=1,---.q (5) @ temporary malfunction is not allowed.

The next section will present a design procedure for the reliable

where K is the feedback gainL is the observer gaini\,, is the controller design problem by using the algebraic Riccati equation
disturbance estimate gain, and approach.

where x € R" is the statey; (i = 1,---
outputs,z is an output to be regulated;; (i = 0,1,---,q) are the
square-integrable disturbances, and: = 1,-- -, ¢) are the control
inputs.

The problem is to desigpidentical controllers for the plant, where
theith controller uses the measuremegnto generate the contral; .
The ¢ controllers are described by

A=A+ BE+GE, - LC. ©) ll. MAIN RESULTS

Applying the¢ controllers of (4) and (5) to the plant of (1)=(3), the et E = {1,2,---,¢} denote the set of the controllers of (4)
resulting closed-loop system is as follows: and (5) subject to failures. The problem is to compute a control
law which guarantees closed-loop stability andZg -norm bound

Iy = Ag Gy 7 . X R 4
‘e vta + oty ) in spite of controller failures corresponding to any proper subset
2= Hquq ® ¢.cE By the symmetry of the matrixd,, we may assume that
Wherei' = (’T T ... TT‘,, = |1 r '1T oo T 6:{7'+1,7'+2‘---7q}:GUUeanhTZ1,Whel’e(£0:{jlyj:
vg = [¢° & &1 wg =[wy wi wy ] 0.j=r+1,---,q},ande. = {j:u; =0.j =r+1,---.q}. Let
A BK BK --- BK s . "
LC A 0‘ 0 Weo = [uzé wi o w! t,._H'u',erl e tq'wé]T (12)
Lc 0 Ac -+ 0 Zeo = [mT H" uil oo ul pepuggg oo Pq”Z]T
A, = - . . . . 9) (13)
S where
. 0, j€eo 0, j€ee
LC 0 0 - A =47 =0
f {1, jFes U {1, j # e ()
G,=diag|G LL - L (10) When the controller failures corresponding to the subsete, U e.
ﬁ’—’ occur, the closed-loop system matrices then take the form
A BK --- BK ¢4 BK --- t,BK
H,=diag|lH K K --- K|. (11) e A. - 0 0 e 0
q
The failure of a controller is modeled as the measurement outageq,, = LC 0 --- A, 0 0
(y; = 0) or the control input outagéu; = 0). The design objective prnLC 0 o0 A, 0
is to select the feedback gaiR’, the observer gain, and the .
disturbance estimate gaif,, so that for anyp controller failures . . . . .
(0 < p < g —1), the resulting closed-loop system is_ internal_ly | pLC 0o --- 0 0 e AL
stable and theéd.,-norm of the closed-loop transfer function matrix (15)
is bounded by some prescribed constant 0.
Remark 2._1: It shouI.d _be noted that the closed-loop syste_m oquw —diag|G L -+ L toiL -+ t,L (16)
(7) and (8) is very similar to the state model of symmetrically —

interconnected systems discussed in [5] and [6]. By the results in [5],
A, is Hurwitz if and only if both[ 5. “7"] and A, are Hurwitz. - ) )
So, all controllers of (4) and (5) must be guaranteed to be open-looﬁ{‘fﬁ“ =diag|H K --- K prpaK oo poK an
stable in the design procedure in order to ensure closed-loop internal r
stability and system performance. In other words, the system mustileere A. = A + BK + GK,, — LC.
strongly stabilizable. This necessary condition for the above reliableThe result given in the following theorem presents a procedure for
control problem is due to the symmetry in the closed-loop systemoutput feedback controller design to guarantee that is Hurwitz

The problem formulation given above in (1)—(6) has the followingnd thatl. (s) = H,..(s]—A4.) ™' G,e., the transfer function matrix

characteristics. First, identical channels (with identical sensors aindm w., to z.., satisfies||T.||« < «.
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Theorem 3.1:Let (A, H) be a detectable pair andbe a positive
constant. Suppose

1

K =-B"X,, K.,=-—5G"Xo
o

(18)

where X > 0 is symmetric and satisfies the state-feedback design

algebraic Riccati equation

, 1
AT X + XoA + (FXOGGTXO — XoBBTX,

+H'H+ (¢-1)*ctfc=0 (19)
with A + BK + GK,, Hurwitz. Suppose also
L=qgqI-YX,/a?) 'vCh (20)
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3.3-1) T_] FT = dia‘g[ﬁ ) f]], v, f11], where

whereY > 0 is symmetric and satisfies the observer design algebraicLemma 3.4: Let

Riccati equation
, 1
AY +YAl + SYH'HY —YCTCY + GG
[}

+ Z—gYKTKY + @q - 1)&33’ =0 (21)
«

and whered, = A — ¢BB"X,, and p{Y X0} < o?. Then,

for controller failures corresponding to any proper subset FE,

the closed-loop system is asymptotically stable #dd||.. < «.

Furthermore, all controllers are open-loop stable Hurwitz).

The following preliminaries will be used in the proof of Theo-

rem 3.1.

Lemma 3.2 [3]: Let T(s) = Ho(sI — F)~'Go, with (F, Hy) a
detectable pair. If there exists a real matix > 0 and a positive
scalara such that

T < 1 . -
F'X+XF+ S XGGo X + Hy Hy <0 (22)
(a3
then F is Hurwitz andT (s) satisfies||T||« < a.
Consider the matrixT(n,s) € ROETU»xG+Dn given by
T(n,1) = diag[l, I.]

rl, 0 0 0 0 7
0 In, _In _In _In
0 In In 0 0
T(n,s)= 0 In 0 I." 0 (s>1)
Lo I, O 0 I,

where I, is an n x n identity matrix. Let the matrixT €
Rlathnx(a+Dn pha defined as follows:

T=T(0) T(1) T(q—1) (23)
where
T(G)=diag|ln -+ I, T(n,qg—1i)f, i=0,1,...,q9—1.
—_———

%

Lemma 3.3:Let F € Rl+)nx(@+n ha given by

fOO fDl fOl fOl
fio fu 0 -+ 0
flO 0 fll O
fio 0 0 f11

where foo, fi1 € R"*". Then the following equalities hold.

f — fOO qfOl
YT e ]
3.3-2) TTFT = diag[fs, q(q — 1) fi1,---,6f11,2f11], where
f‘ — fOO qu
T afo afu ]
3.3-3) T 'F(T™ Y = diag[fs, ;o3 f11e - s J11s ;yg F11ls
where
fDO lf()l
fz= |:1 { .
af]() Efﬂ
G =[G +/q-1laB], H,=[H" Jq—1aC"]". (24)
Then, under the assumptions of Theorem 3.1
APX +xa,+ %XGHG%,;X +HL H, <0 (25
where 4, is given by (9)
q
Hyy =diag|Hy K K --- K 27)
N e
q
[Xo + X1 —%X1 _é}(l —%X1 ]
—1x, Ly, 0
q q
- X, 0 X 0
X = . . . . (28)
| —1X, 0 0 e x|

with X; = (oY ~" — X,)™', where X, andY are as given in
Theorem 3.1.
Proof: By Lemma 3.3, (9), and (26)—(28), we have

T <A§ X+ XA, + EXGCHG;Jr + H(f+Hq+>T
=T AT T XT + T" XTT™' 4, T
1 I o ,
+ L?TTATT "G Gl (Y T"XT+ T H], Hy T

= diag[A1  q(g— 1A, 60 2A.] (29)
where
A=A X+ XA+ FXfGth X,+ H'H, (30)
with
A — A ¢BK X = Xo+ Xy X,
ST LC Al e -Xi X
. 1 . -
G¢ = diag |:G+ ﬁL:| , H; = diag[H, /qK]
Do =AlX) 4+ XA, + %X1LLTX1 +¢K"K.  (31)
a‘q

In the following, we shall show that\; < 0 and A, < 0. Let
I 0
I Il

Then, from (18), (19), and (24)
v, 0
0 U

M t =

MTA M, = (32)
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where
U, = AT Xo + XoA + iXOG+G£XU
—¢XoBB'Xo+ HIH, =0 (33)
T
U, = <A + —2G+GIX0 - LC) X
+ X <4 + G GLXo - Lc) + %XlLLTX1
asq
+ —2X1 G.GiXi +¢K"K. (34)
o
By (20) and (28), we have
L=q’ X7 CY, X+ Xo=a"Y . (35)

Thus, from (21), it follows that
Us=(X1+ Xo)A+ AT (X1 + Xo)
1 - 1 " T 2~
+ (Xt Xo)G4+GL(X1 + Xo)+ HiHy — qa”C'C

1 = 1 cre ,
=’y [AY +YA" + LZYHTHY —ycrey
(87

+ GG + (g - 1)aZBBT}Y_l
e {AIY +vAT + Q%YHTHY -ycTcy

+ GG ' +(¢ - 1)a*BB* —qBKY—qYKTB'f} y!
<a’y! {AJ +val + ;TYHTHY -vctey

+ GGT + 2—?)’[&'TKY + @q - 1)(}'2BBT}Y’1
o2

Hence
A=)y 0 D <o (36)
t 0 172 t =
Similarly, from (19), (21), (24), (34), and (35)
_ e 1 .. -
Ao =X 14+ ATX + a—z)nGJrGiXo
n LX0G+G1X1 X, LC - CTITX,
+ —)s LL"X, +¢K'K
=X A4 + AT X, +- X1 C+C+X0 +- XOC+C+ X,

- X1LC - cTLT

. X LLTX1
+ XoA + AT X0 + QTXOGJ,GPYD
+ H{H; — ¢XoBK _ ¢K"B" X,
< (X1 4+ Xo)A1 4+ AT (X1 + Xo) + %(Xl + X0)Gy
xGLX +Xo)+H'H-C"C + 2¢XoBB" X,
vc'cy

=Y A Y + VAl + SYHHY -
(87

+ 66" + Q—ZYKTI(Y +(q—1a’BB" |y
(6%
37)
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From (29), (36), and (37), and a nonsingularity of the matrix of (23),
it follows that inequality (25) is true. O
Lemma 3.5: Under the assumptions of Theorem 3.1, the matrix
A. = A+ BK + GK,, — LC is Hurwitz.
Proof: From (31) and (37), it follows:

X7 (A+ BK 4+ GK,, — LC)" + (A+ BK + GK.,

- LOYX, 4+ aiquLT < X7 AX <o (38)

Letv # 0 satisfy(4A+BK +GK., — LC)"v = Av. Then (38) gives

2Re(MNv* X o+ a%]w*LLT'U <0, and it implies thaR(‘(/\) <0.

If Re(\) = 0, then L¥v = 0. Thus, (4 + BK + GK,,.)"'v =

(A+BK+GK,—LC)Tv = Av. SinceA+BK +GK,, is HurW|tz,

it follows thatRe(\) < 0, which is in contradiction witRRe(\) = 0.

Hence, ifRe(X) < 0, it further implies thatd + BK + GK,, — LC

is Hurwitz. O
Proof of Theorem 3.1.Lete = {r + 1,r +2,---,q} = e, U

e.(r > 1) correspond to a subset of controllers subject to outages.

From (9)—(11) and (15)—(17), we have

4qc = .’4(1 - Bcc[{cc - Lcocco
Hyee=H, — K..
quo = Gq - LeoLZu
where
[0 --- 0 (1—t-41)B (1-t,)B
Bo=|' 0 0 0
0 0 0
0 -+ 0 (1—pry1)CT (1-pg)C
ot 0 -+ 0 0 0
0 -~ 0 . 0
K..=diagl0 - 0 (1—t.y)K (1—14)K]
L.,=diagl0 --- 0 (1—-p,+1)L (1 —py)L].

By Lemma 3.2, this closed-loop system with sensor and/or actuator
outages is internally stable and has Hp, disturbance attenuation
of a > 0 if
A, 2 ,-1[€X+XAQ&+ )&G%(}qu,,X-i—H;eLHW <0. (39
It is easy to see that

H Hy.= H;f'H - K. K..

quuG,{llveo = GqC - LeULt{U

C/,Cec < diagl(q — I)CTC 0 - 0.

Then by Lemma 3.4 and (26)—(28), we have that
Ape=AIX 4+ X4, + _XG GIxX+H!H,
-KIBIL.X -clLl,x - XB..K..-

- LXLE()LZ;X - K'K..

‘YLeoCeo

= A X 4+ X4, + - XG,7+C WX+ H Hyy

— Xdiag[(¢ — 1) BB 0
— diag[(¢ — 1)CTC 0
— Kl K..— XL.,Ceo -

01X
0] — KICBTFX
cTrT x — 7)& L.,IT X

eo<

- GXLCO + ac;{;) <5Li(,X + ac)
(0% o

- (XBee + K)(BLLX + K..) <0.

XB!’(‘I(F(?
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Provided that 4,., H,..) is a detectable pair, Lemma 3.2 guarantees Remark 3.8: It should be noted that a solution to the above reliable
that 4,. is Hurwitz and thatT.(s) = Hyee(sI — Age) ' Gyqeo, the  controller design problem could be derived directly from the work of
transfer function matrix fromu,, t0 z.., satisfies||T.||.c < «. To Veillette et al. [3]. This is done by setting all the B's and C's equal
prove detectability of A,., H,..), assume that” = (v{,v1 ) # 0 in their design equations for reliable decentralized control, where the
satisfies A,.v = Av and Hgeev = 0. Then Av; = Avy and decentralized design for the case of redundant controllers is achieved
Huv, = 0. From detectability of(A4, H), it follows that either with a combined observer-design equation of dimensipns ¢n.*
Re(A) < 0 orvy = 0. If v, = 0, then A,.v = Av gives which can be reduced to an algebraic Riccati-like equation (ARLE) of
(A+ BK + GK, — LC)va = Avz. By Lemma 3.5, we have that dimension2n X 2n by using a method similar to that of Lemma 3.4.
Re(M) < 0. Thus, the proof of Theorem 3.1 is completed. O Similar to the approach of Veilletteet al. to reliable control
For the decentralized reliable control problem, the outage of §B], sensor and/or actuator failures (outages) are also treated as
sensors in a control channel is the same as the outage of all actuapteat uncertainty in our approach here. However, by using the
in that control channel. As the system under consideration is singammetry in the closed-loop system, our design approach in this
input/single-output (SISO) in each control channel, a controller failupaper involves twon x n design equations only, as opposed to
can be modeled as either an actuator outage or a sensor outage inttieathigher order design equations of Veillets al. [3] (order
channel. By modeling controller failures only as actuator outages 2m x 2n). The design given by Theorem 3.1 requires only a standard
the corresponding control channels and by using similar argumeatgebraic Riccati equation (ARE) of dimensioms x n for the
as in Theorem 3.1, we have the following design procedure. observer design. Hence computational procedure in Theorem 3.1 is
Corollary 3.6: Let (A, H) be a detectable pair andbe a positive much simpler than that of Veillettet al. Furthermore, the redundant
constant. Suppose thaf and K, are as given in (18) wittk, > 0  controllers themselves are automatically guaranteed to be stable. The
being symmetric and satisfying the following state-feedback desigesign method in [3] for decentralized reliable control (for actuator
algebraic Riccati equation: outages) guarantees only that some of the controllers are open-loop
stable, unless more complicated design equations are used. In the
A X+ XoA+ LQXOGGTXO —XoBB*Xo+H"H =0 (40) context of our (decentralized) design problem here, all controllers
o are guaranteed to be open-loop stable. This is equivalent to any one

and with A+ BK + G K., Hurwitz. Suppose also thdt s as given in of the decentralized controllers being open-loop stable because all
’ - controllers are assumed identical here.

(20) withY > 0 being symmetric and satisfying the observer desig N
Remark 3.9: For simplicity, only results for SISO systems are

algebraic Riccati equation . . - ]

given. The generalization to multi-input/multi-output (MIMO) sys-
tems is straightforward, except that the notations will get complicated.
But in the MIMO case, Corollaries 3.6 and 3.7 may only apply to
actuator outages and sensor outages, respectively.

AY +vAT + %YHTHY —qvCcTcy + GGT
8%
+ Q—ZYI{TI{Y + Gq - 1)&331’ =0 (41)
o

IV. AN EXAMPLE

Now we look at an example to illustrate the design procedure given
in the previous section. The plant is of the form (1)—(3) and has two

sySt.em 'S asymptotlce}lly stable aﬁm”.x < a. identical control channels; = 2). The plant matrices are given as
Similarly, by modeling controller failures only as sensor outag Sllows: ‘

in the corresponding control channels, we have the following design

whered, = A—¢BBT X, andp{Y X,} < o?. Then, for controller
failures corresponding to any proper subset E, the closed-loop

procedure. -2 1 1 1 1 0

Corollary 3.7: Let (A, H) be a detectable pair andbe a positive A= 3 0 0 2 G = 0 B= 0
constant. Suppose thaf and K, are as given in (18) witi, > 0 ’ -1 0 =2 =3y 01’ 0
being symmetric and satisfying the state-feedback design algebraic -2 -1 2 -1 0 1

Riccati equation

1
A" X+ XoA + G%XOGGTXO — ¢XoBB'X, H= {0 0 3 0}’ = 000, g¢=2
+H'H+(¢-1)a’C'C=0 (42) Itis easy to check that the open-loop system is unstable( An# )
_ _ _ _ ~is a completely observable pair, and hence, detectable. By solving
with A + BK + GK., Hurwitz. Suppose also that is as given in the ARE’s in (40) and (41) in Corollaries 3.6, we have an output

(20) withY” > 0 being symmetric and satisfying the observer desigigedback controlleE, of the form (4) and (5) with
algebraic Riccati equation

[—261.5469 1.0223 1.0153 1.0097
o AT Y T _ | -651.5013 0 0 2.0000
AV +V A+ ZYH HY -V OV 4+ GG Ae=1_3005207 0 —2.0000 —3.0000
2 . 7A€ _ 3¢ 1 ARK
+ —ZYKTKY + gazBBT -0 43) ! 337.4229 2.0018 1.3165 1.4850
o 2 259.5615
. T . 654.5013
with A, = A — ¢BB" X, andp{Y X,} < . Then, for controller L= 239 ;297
failures corresponding to any proper subset E, the closed-loop _34(') 0691
system is asymptotically stable, afj.||. < a. O o
K =[-0.6462 —1.0018 —0.6835 —0.4850].

It can be seen easily that the controller designs in Corollaries 3.6
and 3.7 are less conservative than that in Theorem 3.1. The prOOf§This high-order design equation is similar to but not the same as the

for the above two corollaries are quite similar to that of Theorem 3glgepraic Riccati equation (ARE) and it is referred to as algebraic Riccati-like
and are hence omitted. equation (ARLE).
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TABLE | [4] D. D. Siljak, “Reliable control using multiple control systemdgrit. J.
RELIABLE CONTROLLER DESIGN RESULTS Contr., vol. 31, no. 2, pp. 303-329, 1980.
[5] C. S. Araujo and J. C. Castro, “Application of power system stabilisers
Outages Designed for || Actuator Outage | Sensor Outage in a plant with identical units,Proc. Inst. Elec. Eng.vol. 138, pt. C,
Controller e P no. 1, pp. 11-18, 1991.
Design o 4.08 4.39 [6] K. M. Sundareshan and R. M. Elbanna, “Qualitative analysis and
No Outage a, 350 4.93 decentralized controller synthesis for a class of large-scale systems with
Controller Failure a, 3.32 708 symmetrically interconnected subsystemAiitomatica vol. 27, no. 2,

pp. 383-388, 1991.
[7] J. Ackermann, “Multi-model approaches to robust control system de-
sign,” in Uncertainty and Control: Proceedings of an International
Similarly, by solving the ARE’s in (42) and (43) in Corollaries 3.7, Seminar Organized by DFVLR, Bonn, Germany, May 19B5Acker-

we have an output feedback control®y of the form (4) and (5) with mann, Ed. Berlin, Germany: Springer-Verlag, 1986. _
_ 8] —_, Sampled-Data Control SystemsBerlin, Germany: Springer-
—23.9136  1.0316 1.0271 1.0169 Verlag, 1985.
—21.1069 0 0 2.0000 [9] B. W. JohnsonDesign and Analysis of Fault Tolerant Digital Systems
Ac = —53.4086 0 —92.0000 —3.0000 Reading, MA: Addison-Wesley, 1989.
36.2765 —2.1497 1.1114 —1.5931 [10] H. E. Rauch, “Autonomous control reconfiguratioffEE Contr. Syst.
[ 292009 S : -9 vol. 15, no. 6, pp. 37-48, 1995.
[ 21.9833 [11] M. Kinnaert, R. Hanus, and P. Arte, “Fault detection and isolation for
24.1069 unstable linear systemsJEEE Trans. Automat. Contrvol. 40, pp.
L= 524086 740-742, Apr. 1995,
e f [12] C.-C. Tsui, “A general failure detection, isolation and accommodation
[ —39.5770 system with model uncertainty and measurement noigeEE Trans.
K =[-1.3005 —1.1497 —0.8886 — 0.5931]. Automat. Contr, vol. 39, pp. 2318-2321, Nov. 1994.

Both of these two controllerS, andX,; can provide internal stability
and guaranteed disturbance attenuation for the closed-loop system not
only when both control channels are operational but also when any
of these two control channels experiences an outage.
The design results are given in Table I. The two values of the Design of Performance Robustness for Uncertain
closed-loop disturbance attenuation are computed for each of the two ~ Linear Systems with State and Control Delays

controllers. Namely:
) J. S. Luo, P. P. J. van den Bosch, S. Weiland, and A. Goldenberge
a,: When there is no outage;

a.: when there is a controller failure.
Abstract—The linear systems considered in this paper are subject to
The “Designa” in Table | is the value ofx used in solving the two uncertain perturbations of norm-bounded time-varying parameters and
corresponding design equations. multiple time delays in system state and control. The time delays are

The actual achievable values of (namely ., and a.) for uncertain, independent of each other, and allowed to be time-varying.

th | d-| t 0 th d it | t he integral quadratic cost criterion is employed to measure system
e closed-loop system are all less than and quite close 10 formance. Using solutions of Lyapunov and Riccati equations, a linear

value of o for which the design equations have solutions and thgate feedback control law is proposed to stabilize the perturbed system
conditions in the Corollaries are satisfied. This indicates that degre®l to guarantee an upper bound of system performance, which is

of conservativeness in the design method is not very severe. ~ applicable to arbitrary time delays.

From Table I, it would seem that the actual system performanceindex Terms—Algebraic Riccati equation, delay effects, linear—
would be better when some controller failure occurs, contrary to tlyeadratic control, Lyapunov matrix equation, robustness, stability,
desirable property of graceful degradation of performance. This is $ticertain systems.
however, because a controller failure (modeled as an actuator outage
and/or sensor outage) effectively eliminates one column and/or one |

X . S INTRODUCTION
row of the closed-loop transfer function matrix. This is similar to an s ) o )
observation made in [3]. The problem of stabilizing uncertain systems with time-varying and
bounded parametric uncertainties has attracted a considerable amount
ACKNOWLEDGMENT of interest in recent years. Among different approaches, Lyapunov

and Riccati equation descriptions of uncertainty are important ways
The authors wish to thank the reviewers for many useful suggds- deal with the problem. Based on linear optimal control theory
tions on the initial manuscript of the present work. with quadratic cost criteria and using Lyapunov stability theory, many
methods have been proposed for finding a linear state feedback law
REFERENCES
Manuscript received April 22, 1996.

[1] M. Vidyasagar and N. Viswanadham, “Reliable stabilization using a J. S. Luo is with the Bombardier-DeHaviland, Canada.
multicontroller configuration,’Automatica vol. 21, no. 5, pp. 599-602, P. P. J. van den Bosch and S. Weiland are with the Measurement

1985. and Control Group, Department of Electrical Engineering, Eindhoven
[2] A. N. Gundes and M. G. Kabuli, “Reliable decentralized control,” inUniversity of Technology, 5600 MB Eindhoven, The Netherlands (e-mail:
Proc. American Control ConfBaltimore, MD, pp. 3359-3363. P.P.J.v.d.Bosch@ele.tue.nl).

[3] R. J. \Veillette, J. V. Medanic, and W. R. Perkins, “Design of reliable A. Goldenberge is with the Robotics and Automation Laboratory, University
control systems,IEEE Trans. Automat. Contrvol. 37, pp. 290-304, of Toronto, Toronto, Canada.
1992. Publisher Item Identifier S 0018-9286(98)07533-3.

0018-9286/98$10.00 1998 IEEE



