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Robust H Control for Uncertain
Discrete-Time-Delay Fuzzy Systems

Via Output Feedback
Controllers

Shengyuan Xu and James Lam

Abstract—This paper investigates the problem of robust output
feedback control for a class of uncertain discrete-time fuzzy
systems with time delays. The state–space Takagi–Sugeno fuzzy
model with time delays and norm-bounded parameter uncertain-
ties is adopted. The purpose is the design of a full-order fuzzy
dynamic output feedback controller which ensures the robust
asymptotic stability of the closed-loop system and guarantees an

norm bound constraint on disturbance attenuation for all
admissible uncertainties. In terms of linear matrix inequalities
(LMIs), a sufficient condition for the solvability of this problem
is presented. Explicit expressions of a desired output feedback
controller are proposed when the given LMIs are feasible. The
effectiveness and the applicability of the proposed design approach
are demonstrated by applying this to the problem of robust
control for a class of uncertain nonlinear discrete delay systems.

Index Terms—Discrete systems, linear matrix inequality (LMI),
output feedback, robust control, Takagi–Sugeno (T–S) fuzzy
models, time-delay systems, uncertain systems.

I. INTRODUCTION

AS AN alternative method to conventional control approach
for complex control systems, fuzzy logic control has re-

ceived much attention in the past decades. It has been shown
that fuzzy logic control is one of the most useful techniques
for utilizing the qualitative knowledge of a system to design
controllers. A great number of industrial applications via fuzzy
logic control have been reported [14], [15], [28]. Among var-
ious model-based fuzzy control approaches, the method based
on the Takagi–Sugeno (T–S) fuzzy model has become popular
today, which gives a simple and effective way to control com-
plex nonlinear systems. The main features of this approach are
as follows: first, a nonlinear system is represented by a T–S
fuzzy model, in which local dynamics in different state space re-
gions are represented by linear models. Then, the overall model
of the system is achieved by a fuzzy “blending” of these fuzzy
models. Based on this, the control design can be carried out by
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the so-called parallel distributed compensation (PDC) scheme.
Applications of such a fuzzy control scheme can be found in
[10], [21], and [23].

Recently, stability analysis of T–S fuzzy control systems has
been investigated, and several stability criteria have been pro-
posed; see, e.g., [18] and [19]. When parameter uncertainties
appear, the problems of robust stability analysis and robust sta-
bilization for fuzzy systems have been studied. For example, by
a linear matrix inequality (LMI) approach, some robust stability
results were presented in [17] in the continuous case; based on
these, robust fuzzy stabilizing controllers were constructed via
the PDC scheme. The corresponding results for discrete case can
be found in [11]. Very recently, the robust control problem
for fuzzy systems described by T–S fuzzy model has been ad-
dressed. By the LMI approach, sufficient conditions for the solv-
ability of this issue were proposed in [4] and [12] for the discrete
and continuous cases, respectively. It should be pointed out that
in both [4] and [12], state feedback controllers were designed
under the assumption that all state variables are available.

On the other hand, it is well-known that time delay arises
quite naturally in propagation phenomena, population dynamics
or engineering systems such as chemical processes, long trans-
mission lines in pneumatic systems [8]. Many results on esti-
mation and control issues related to time-delay systems have
been proposed [8], [9], [25], [26]. Recently, fuzzy systems with
time delays have been introduced in [3] and [5], where several
stability analysis results were given via different approaches,
and stabilizing controllers were also designed. When delays are
time-varying, the stability results for fuzzy delay systems were
given in [27]. It is noted that in [3], [5], and [27], no parameter
uncertainties were taken into account. In the case when param-
eter uncertainties arise and not all of the states are available di-
rectly, the robust output feedback control problem for fuzzy
systems with time delays was discussed in [13]. In terms of so-
lutions to a certain LMI, an output feedback controller was de-
signed in [13]. These results were further applied to a class of
nonlinear delay systems. It is worth noting that the results in
[13] were obtained in the context of continuous T–S fuzzy sys-
tems. For discrete fuzzy systems with time delays and parameter
uncertainties subject to that all state variables are not available,
however, the problem of robust control via output feedback
controllers is still open and remains unsolved, which motivates
the present study.
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In this paper, we are concerned with the problem of robust
output feedback control for a class of discrete fuzzy sys-
tems with parameter uncertainties and time delays. The T–S
fuzzy model is adopted for fuzzy modeling of a discrete uncer-
tain nonlinear systems with time delays. The parameter uncer-
tainties are assumed to be time varying but norm bounded. The
purpose is the design of a full-order fuzzy dynamic output feed-
back controller such that the resulting closed-loop system is ro-
bustly asymptotically stable while satisfying a prescribed
performance level irrespective of the parameter uncertainties.
Sufficient conditions for the solvability of this problem are ob-
tained in terms of LMIs. A desired output feedback controller
can be constructed by using standard numerical algorithms to
solve these given LMIs [2], and no tuning of parameters is re-
quired.

Notation: Throughout this paper, for real symmetric ma-
trices and , the notation (respectively, )
means that the matrix is positive–semidefinite (respec-
tively, positive–definite). is an identity matrix with appropriate
dimension. is the set of natural numbers. refers to
the space of square summable infinite vector sequences.
stands for the usual norm. The notation represents
the transpose of the matrix . Matrices, if not explicitly stated,
are assumed to have compatible dimensions.

II. PROBLEM FORMULATION

The T–S fuzzy dynamic model is described by fuzzy IF–THEN

rules, which locally represent linear input–output relations of
nonlinear systems. Similar to [16], a discrete-time T–S fuzzy
model with time delays and parameter uncertainties can be de-
scribed by

Plant Rule i: IF is and is and

and is THEN

(1)

(2)

(3)

(4)

where is the fuzzy set and is the number of IF-THEN rules;
is the state; is the control input;

is the measured output; is the controlled output;
is the disturbance input which is assumed to be-

long to is an integer representing the time delay
of the fuzzy system; are the premise
variables. Throughout this paper, it is assumed that the premise
variables do not depend on the input variables explicitly.

, and are known real con-
stant matrices; and are real-valued
unknown matrices representing time-varying parameter uncer-
tainties, and are assumed to be of the form

(5)

where , and are known real constant matrices
and are unknown time-varying matrix
function satisfying

(6)

The parameter uncertainties and are
said to be admissible if both (5) and (6) hold. It is worth men-
tioning that interval bounded parameters can also be used to
describe uncertain systems. In the discrete-time case, interval
model control and applications can be found in [1], [29], and
the references therein.

Given a pair , the final output of the fuzzy system
is inferred as follows:

(7)

(8)

(9)

where

in which is the grade of membership of in .
Then, it can be seen that

for all . Therefore, for all

(10)

(11)

Now, by the parallel distributed compensation (PDC) technique,
we consider the following full-order fuzzy dynamic output feed-
back controller for the fuzzy system (7)–(9):

Control Rule : IF is and is and and
is , THEN

(12)

(13)

where is the controller state, , and are
matrices to be determined later. Then, the overall fuzzy output
feedback controller is given by

(14)

(15)
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From (7)–(9), (14), and (15), the closed-loop system can be ob-
tained as

(16)

(17)

where

and

(18)

(19)

(20)

(21)

Then, the robust fuzzy control problem to be addressed
in this paper can be formulated as follows: given an uncertain
fuzzy system (7)–(9) and a scalar , determine an output
feedback fuzzy controller in the form of (12) and (13) such that

R1) The closed-loop system in (16) and (17) is robustly
asymptotically stable when .

R2) Under zero-initial condition, the controlled output
satisfies

(22)

for any nonzero and all admissible uncertain-
ties.

III. MAIN RESULTS

In this section, an LMI approach will be developed to solve
the problem of robust output feedback control of uncertain
discrete delay fuzzy systems formulated in the previous section.
We first give the following results which will be used in the proof
of our main results.

Lemma 1 [24]: Given any matrices , and with appro-
priate dimensions such that . Then, we have

Lemma 2 [22]: Let , and be real matrices of
appropriate dimensions such that and . Then,
for any scalar such that , we have

Theorem 1: The uncertain system in (16) and (17) is robustly
asymptotically stable and (22) is satisfied if there exist matrices

, and , and scalars , such
that the matrix inequalities shown in (23) and (24) at the bottom
of the page, hold, where

(25)

Proof: Under the conditions of the theorem, we first es-
tablish the robust asymptotic stability of the system in (16). To
this end, we consider (16) with that is

(26)

Choose a Lyapunov function candidate for the system in (26) as
follows:

(27)

(23)

and

(24)
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Then it can be verified that

(28)

Using Lemma 1 and noting (11), we have

This together with (28) and the relationship

(29)

implies

(30)

where

Now, from (24), it is easy to see that for , (31), as
shown at the bottom of the page, holds. Set

(32)

for . Then, applying the Schur complement to
(31) gives

(33)

and

(34)

for . Considering (33) and using Lemma 2, we
have that for

(35)

where

Then, it follows from (34) and (35) that for

(36)

(31)
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On the other hand, from (23), we have

(37)

which, by the Schur complement, implies

(38)

and

(39)

where and are given in (32). Taking into account (38)
and using Lemma 2 again, we have

(40)

for . Then, by (39) and (40), it can be established that
for

(41)

Then, it follows from (30), (36), and (41) that

for all . Hence, the uncertain system (16) with
is robustly asymptotically stable.
Next, we show that for any nonzero the uncertain

system in (16) and (17) satisfies (22) under zero initial condition.
To this end, we introduce

(42)

where the scalar . Noting the zero initial condition and
(16), (17), and (29), we can deduce

(43)

where is given in (27). By Lemma 1, we have

and

Therefore
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(44)

where

Using (23) and (24), and following a similar way to the deriva-
tion of (36) and (41), we can obtain

(45)

and

(46)

Therefore, the inequality in (44) together with (45) and (46)
gives that for any

(47)

which implies for any nonzero . This
completes the proof.

Now, we are in a position to give the main result on the solv-
ability of the robust output feedback control problem.

Theorem 2: Consider the uncertain discrete delay fuzzy
system (1)–(4). Given a scalar , then there exists a
full-order fuzzy dynamic output feedback controller (12) and

(13) such that the requirements (R1) and (R2) are satisfied if
there exist matrices , and ,
such that the following LMIs:

(48)

for and (49), as shown at the bottom of the page, for
, hold for some given matrix and scalars

, where

Furthermore, a desired robust dynamic output feedback
controller is given in the form of (14) and (15) with parame-
ters as follows:

(50)

(51)

(49)
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where and are any nonsingular matrices satisfying

(52)

Proof: Under the conditions of the theorem, we first show
that there always exist nonsingular matrices and such that
(52) is satisfied. To this end, we note that (48) implies

which, by the Schur complement formula, gives that
, therefore is nonsingular. This ensures that there al-

ways exist nonsingular matrices and such that (52) is sat-
isfied. Now, we introduce the following nonsingular matrices

(53)

Let

(54)

Then

where

(55)

Observe that

(56)

(57)

(58)

and

(59)
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Then, we have . By applying the Schur complement for-
mula to (49), we have that for , (57), as shown
at the bottom of the previous page, holds. By Lemma 1, it can
be deduced that for , (58) and (59), as shown
at the bottom of the previous page, hold. Then, it follows from
(57)–(59) that (60), as shown at the bottom of the page, holds,
where

Using the relationship

and considering the notations in (19)–(21) with , and
for in (50) and (51), we can verify that the matrix

inequality in (60) can be rewritten as shown in the inequality at
the bottom of the page. Pre- and postmultiplying this inequality
by and its transpose, re-
spectively, result in the first equation shown at the bottom of
the next page, which, by the Schur complement, is equivalent to
(61), as shown at the bottom of the next page, for .
Following a similar line as in the derivation of (61) and using
(48), we can obtain that for , (62), as shown at the
bottom of the next page, holds. Considering (61) and (62) and
applying Theorem 1, we conclude that with the controller pa-
rameters in (50) and (51) the closed-loop system (16) and (17)
is robustly asymptotically stable and (22) is satisfied.

Remark 1: Theorem 2 provides a sufficient condition for the
solvability of the robust output feedback control problem
for uncertain discrete time-delay fuzzy systems. We note that
(48) and (49) are LMIs in and , when

and , are given. In this case, these
LMIs can be solved efficiently by resorting to some standard

(60)
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numerical algorithms, which involves no tuning of parameters
[2]. In the case when the parameters and

, are not fixed, it can be seen that (48) and (49) are not
LMIs with respect to the parameters and

, since these parameters appear in (48) and (49)
in a nonlinear fashion, which is sometimes encountered when
dealing with the output feedback control problem for time-delay
systems with or without parameter uncertainties; see, e.g., [6],
[7], [9]. In order to cast the output control problem in this
paper into an LMI framework, we therefore fix the parameters

and ; such an approach was also
adopted in [6], [7], [9].

Remark 2: It is worth pointing out that the result in Theorem
2 can be readily extended to the case with multiple delays. It is
also noted that the result in Theorem 2 are independent of the
delay size; therefore, Theorem 2 can be applicable to the case
when no a priori knowledge about the size of the time delay is
available.

IV. NUMERICAL EXAMPLE

In this section, we will apply the proposed method to de-
sign a fuzzy dynamic controller for an uncertain nonlinear dis-
crete delay system. The uncertain discrete nonlinear time-delay
system is described as follows:

where and are uncertain parameters satisfying

(61)

(62)
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Similar to [20], we assume that , and select
the membership functions as

Then, the nonlinear time-delay system can be represented by the
following uncertain time-delay T–S model:

Plant Rule 1: IF is THEN

and

Plant Rule 2: IF is THEN

where

and and can be represented in the form of (5)
and (6) with

In this example, we choose the performance level .
In order to design a fuzzy output feedback controller for
the T–S model, we first choose

Fig. 1. State response of x (k) (—) and x (k) (� � �).

Then, using the Matlab LMI Control Toolbox to solve the LMIs
in (48) and (49), we obtain the solution as follows:

Now, choose

(63)

It is easy to verify that the matrices and in (63) satisfy the
equality in (52); therefore, by Theorem 2, a desired fuzzy output
feedback controller can be constructed as in (12) and (13) with
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Fig. 2. Control input u(k).

Fig. 3. Measured output y(k).

With the aforementioned fuzzy controller, the simulation results
of the state response of the nonlinear system are given in Fig. 1,
where the initial conditions are set as

and the exogenous disturbance input is defined
as

where is a random number taken from a uniform distribution
over , and and .
Fig. 2 shows the control input, while Figs. 3 and 4 present the
corresponding measured output and the controlled output, re-
spectively. From these simulation results, it can be seen the
designed fuzzy output feedback controller ensures the robust
asymptotic stability of the closed-loop system and guarantees
a prescribed performance level.

Fig. 4. Controlled output z(k).

V. CONCLUSION

The problem of robust output feedback control for
uncertain discrete T–S fuzzy systems with time-varying
norm-bounded parameter uncertainties and time delays has
been studied. A sufficient condition for the existence of a
full-order fuzzy dynamic output feedback controller, which
robustly stabilizes the uncertain system and guarantees a pre-
scribed level on disturbance attenuation, has been obtained.
The design approach has been applied to the problem of robust

control of a class of nonlinear discrete delay systems,
and the simulation results have showed the effectiveness of the
proposed approach.

REFERENCES

[1] C. Abdallah, P. Dorato, F. Pérez, and D. Docampo, “Controller synthesis
for a class of interval plants,” Automatica, vol. 31, pp. 341–343, 1995.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, ser. SIAM Studies in Applied
Mathematics. Philadelphia, PA: SIAM, 1994.

[3] Y.-Y. Cao and P. M. Frank, “Analysis and synthesis of nonlinear time-
delay systems via fuzzy control approach,” IEEE Trans. Fuzzy Syst., vol.
8, no. 2, pp. 200–211, Apr. 2000.

[4] , “Robust H disturbance attenuation for a class of uncertain dis-
crete-time fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp.
406–415, Aug. 2000.

[5] , “Stability analysis and synthesis of nonlinear time-delay systems
via linear Takagi-Sugeno fuzzy models,” Fuzzy Sets Syst., vol. 124, pp.
213–229, 2001.

[6] H. H. Choi and M. J. Chung, “An LMI approach toH controller design
for linear time-delay systems,” Automatica, vol. 33, pp. 737–739, 1997.

[7] S. H. Esfahani and I. R. Petersen, “An LMI approach to output-feedback-
guaranteed cost control for uncertain time-delay systems,” Int. J. Robust
Nonlinear Control, vol. 10, pp. 157–174, 2000.

[8] J. K. Hale, Theory of Functional Differential Equations. New York:
Springer-Verlag, 1977.

[9] E. T. Jeung, J. H. Kim, and H. B. Park, “H -output feedback controller
design for linear systems with time-varying delayed state,” IEEE Trans.
Autom. Control, vol. 43, no. 7, pp. 971–974, Jul. 1998.

[10] Y.-H. Joo, L.-S. Shieh, and G. Chen, “Hybrid state-space fuzzy model-
based controller with dual-rate sampling for digital control of chaotic
systems,” IEEE Trans. Fuzzy Syst., vol. 7, no. 4, pp. 394–408, Aug. 1999.

[11] H. J. Lee, J. B. Park, and G. Chen, “Robust fuzzy control of nonlinear
systems with parametric uncertainties,” IEEE Trans. Fuzzy Syst., vol. 9,
no. 2, pp. 369–379, Apr. 2001.



XU AND LAM: ROBUST CONTROL FOR UNCERTAIN DISCRETE-TIME-DELAY FUZZY SYSTEMS 93

[12] K. R. Lee, E. T. Jeung, and H. B. Park, “Robust fuzzyH control for un-
certain nonlinear systems via state feedback: An LMI approach,” Fuzzy
Sets Syst., vol. 120, pp. 123–134, 2001.

[13] K. R. Lee, J. H. Kim, E. T. Jeung, and H. B. Park, “Output feedback ro-
bustH control of uncertain fuzzy dynamic systems with time-varying
delay,” IEEE Trans. Fuzzy Syst., vol. 8, no. 6, pp. 657–664, Dec. 2000.

[14] E. H. Mamdani and S. Assilian, “Applications of fuzzy algorithms for
control of simple dynamic plant,” Proc. Inst. Elect. Eng. Control Theory
Appl., vol. 121, pp. 1585–1588, 1974.

[15] M. Sugeno and M. Nishida, “Fuzzy control of model car,” Fuzzy Sets
Syst., vol. 16, pp. 103–113, 1985.

[16] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its appli-
cations to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol.
SMC-15, no. 1, pp. 116–132, Jan./Feb. 1985.

[17] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of
uncertain nonlinear systems via fuzzy control: Quadratic stabilizability,
H control theory, and linear matrix inequalities,” IEEE Trans. Fuzzy
Syst., vol. 4, no. 1, pp. 1–13, Feb. 1996.

[18] , “Fuzzy regulators and fuzzy observers: Relaxed stability condi-
tions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, no. 2,
pp. 250–265, May 1998.

[19] K. Tanaka and M. Sugeno, “Stability analysis and disign of fuzzy control
systems,” Fuzzy Sets Syst., vol. 45, pp. 135–156, 1992.

[20] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis:
A Linear Matrix Inequality Approach. New York: Wiley, 2001.

[21] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control
of nonlinear systems: Stability and design issues,” IEEE Trans. Fuzzy
Syst., vol. 4, no. 1, pp. 14–23, Feb. 1996.

[22] Y. Wang, L. Xie, and C. E. de Souza, “Robust control of a class of uncer-
tain nonlinear systems,” Syst. Control Lett., vol. 19, pp. 139–149, 1992.

[23] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “Fuzzy model-based con-
troller for inverted pendulum,” Electron. Lett., vol. 32, pp. 1683–1685,
1996.

[24] L. Xie and C. E. de Souza, “RobustH control for linear systems with
norm-bounded time-varying uncertainty,” IEEE Trans. Autom. Control,
vol. 37, no. 8, pp. 1188–1191, Aug. 1992.

[25] S. Xu, J. Lam, and C. Yang, “H and positive real control for linear
neutral delay systems,” IEEE Trans. Autom. Control, vol. 46, no. 8, pp.
1321–1326, Aug. 2001.

[26] , “Quadratic stability and stabilization of uncertain linear discrete-
time systems with state delay,” Syst. Control Lett., vol. 43, pp. 77–84,
2001.

[27] Z. Yi and P. A. Heng, “Stability of fuzzy control systems with bounded
uncertain delays,” IEEE Trans. Fuzzy Syst., vol. 10, pp. 92–97, 2002.

[28] Y. M. Zhang and R. Kovacevic, “Neurofuzzy model-based predictive
control of weld fusion zone geometry,” IEEE Trans. Fuzzy Syst., vol. 6,
pp. 389–401, 1998.

[29] Y. M. Zhang, E. Liguo, and B. Walcott, “Robust control of pulsed gas
metal arc welding,” ASME J. Dyna. Syst., Meas., Control, vol. 124, pp.
281–289, 2002.

Shengyuan Xu received the B.Sc. degree from
Hangzhou Normal University, Hangzhou, China, the
M.Sc. degree from Qufu Normal University, Qufu,
China, and the Ph.D. degree from Nanjing University
of Science and Technology, Nanjing, China, in 1990,
1996, and 1999, respectively.

From 1999 to 2000, he was a Research Associate
in the Department of Mechanical Engineering, Uni-
versity of Hong Kong, Hong Kong. From December
2000 to November 2001 and from December 2001 to
September 2002, he was a Postdoctoral Researcher

in CESAME at the Universitè Catholique de Louvain, Louvain-la-Neuve, Bel-
gium, and the Department of Electrical and Computer Engineering, University
of Alberta, Edmonton, AB, Canada, respectively. From September 2002 to Au-
gust 2003, he was a William Mong Young Researcher in the Department of Me-
chanical Engineering, University of Hong Kong, Hong Kong. He is a Professor
and Ph.D. Supervisor in the Department of Automation, Nanjing University of
Science and Technology, Nanjing, China, and an Honorary Associate Professor
in the Department of Mechanical Engineering, University of Hong Kong, Hong
Kong. His current research interests include robust filtering and control, singular
systems, time-delay systems, multidimensional systems, and nonlinear systems.
He has published more than 40 papers in international scientific journals.

Dr. Xu was a recipient of the 2002 National Excellent Doctoral Dissertation
Award from the National Education Commission of China.

James Lam received a first-class B.Sc. degree in
mechanical engineering from the University of Man-
chester, Manchester, U.K., in 1983, and the M.Phil.
and Ph.D. degrees in the area of control engineering
from the University of Cambridge, Cambridge, U.K.,
in 1985 and 1988, respectively. His postdoctoral
research was carried out at the Australian National
University between 1990 and 1992.

He has held faculty positions at the City Univer-
sity of Hong Kong, Hong Kong, and the University of
Melbourne, Melbourne, Australia. He is now an As-

sociate Professor in the Department of Mechanical Engineering, the University
of Hong Kong, and is holding a Concurrent Professorship at the Northeastern
University, Guest Professonship at the Huazhong University of Science and
Technology, Consulting Professorship at the South China University of Tech-
nology, and Guest Professorship of Shandong University, China. He is a Char-
tered Mathematician, a Fellow of the Institute of Mathematics and Its Appli-
cations (U.K.), a Member of the Institution of Electrical Engineers (U.K). He
is an Honorary Editor of the IEE Proceedings: Control Theory and Applica-
tions (from 2005), and an Associate Editor of the Asian Journal of Control, the
International Journal of Applied Mathematics and Computer Science, and the
International Journal of Systems Science. His research interests include model
reduction, delay systems, descriptor systems, stochastic systems, multidimen-
sional systems, robust control and filtering, fault detection, and reliable control.

Dr. Lam was awarded the Ashbury Scholarship, the A. H. Gibson Prize and
the H. Wright Baker Prize for his academic performance. He is a Scholar (1984)
and Fellow (1990) of the Croucher Foundation. He is on the Conference Edito-
rial Board of the IEEE Control Systems Society.


	toc
	Robust $H_{\infty}$ Control for Uncertain Discrete-Time-Delay Fu
	Shengyuan Xu and James Lam
	I. I NTRODUCTION
	Notation: Throughout this paper, for real symmetric matrices $X$

	II. P ROBLEM F ORMULATION
	III. M AIN R ESULTS
	Lemma 1 [ 24 ]: Given any matrices ${\cal X}, {\cal Y}$, and ${\
	Lemma 2 [ 22 ]: Let ${\cal A}, {\cal D}, {\cal S}, {\cal W}$, an
	Theorem 1: The uncertain system in (16) and (17) is robustly asy
	Proof: Under the conditions of the theorem, we first establish t

	Theorem 2: Consider the uncertain discrete delay fuzzy system (1
	Proof: Under the conditions of the theorem, we first show that t

	Remark 1: Theorem 2 provides a sufficient condition for the solv
	Remark 2: It is worth pointing out that the result in Theorem 2 

	IV. N UMERICAL E XAMPLE

	Fig. 1. State response of $x_{1}(k)$ ( ) and $x_{2}(k)$ ( ${\cdo
	Fig.€2. Control input $u(k)$ .
	Fig.€3. Measured output $y(k)$ .
	Fig.€4. Controlled output $z(k)$ .
	V. C ONCLUSION
	C. Abdallah, P. Dorato, F. Pérez, and D. Docampo, Controller syn
	S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Mat
	Y.-Y. Cao and P. M. Frank, Analysis and synthesis of nonlinear t
	H. H. Choi and M. J. Chung, An LMI approach to $H_{\infty}$ cont
	S. H. Esfahani and I. R. Petersen, An LMI approach to output-fee
	J. K. Hale, Theory of Functional Differential Equations . New Yo
	E. T. Jeung, J. H. Kim, and H. B. Park, $H_{\infty}$ -output fee
	Y.-H. Joo, L.-S. Shieh, and G. Chen, Hybrid state-space fuzzy mo
	H. J. Lee, J. B. Park, and G. Chen, Robust fuzzy control of nonl
	K. R. Lee, E. T. Jeung, and H. B. Park, Robust fuzzy $H_{\infty}
	K. R. Lee, J. H. Kim, E. T. Jeung, and H. B. Park, Output feedba
	E. H. Mamdani and S. Assilian, Applications of fuzzy algorithms 
	M. Sugeno and M. Nishida, Fuzzy control of model car, Fuzzy Sets
	T. Takagi and M. Sugeno, Fuzzy identification of systems and its
	K. Tanaka, T. Ikeda, and H. O. Wang, Robust stabilization of a c
	K. Tanaka and M. Sugeno, Stability analysis and disign of fuzzy 
	K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analy
	H. O. Wang, K. Tanaka, and M. F. Griffin, An approach to fuzzy c
	Y. Wang, L. Xie, and C. E. de Souza, Robust control of a class o
	L. K. Wong, F. H. F. Leung, and P. K. S. Tam, Fuzzy model-based 
	L. Xie and C. E. de Souza, Robust $H_{\infty}$ control for linea
	S. Xu, J. Lam, and C. Yang, $H_{\infty}$ and positive real contr
	Z. Yi and P. A. Heng, Stability of fuzzy control systems with bo
	Y. M. Zhang and R. Kovacevic, Neurofuzzy model-based predictive 
	Y. M. Zhang, E. Liguo, and B. Walcott, Robust control of pulsed 



