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Abstract—This paper deals with the problems of positive real
(PR) analysis and PR control for uncertain discrete-time de-
scriptor systems. The parameter uncertainties are assumed to be
time-invariant norm bounded and appear in both the state and
input matrices. A new necessary and sufficient condition for a
discrete-time descriptor system to be regular, causal, stable and
extended strictly PR (ESPR) is proposed in terms of a strict linear
matrix inequality. Based on this, the concepts of strong robust
admissibility with ESPR and strong robust admissibilizability
with ESPR were introduced. Without any additional assumptions
on the system matrices, necessary and sufficient conditions for
strong robust admissibility with ESPR and strong robust admis-
sibilizability with ESPR are obtained. Through these results, the
problems of PR analysis and PR control are solved. Furthermore,
an explicit expression of a desired state feedback controller is also
given, which involves no decomposition of the system matrices.

Index Terms—Descriptor systems, discrete-time systems, pa-
rameter uncertainty, positive real (PR) control, state feedback.

I. INTRODUCTION

POSITIVE real (PR) control is a research problem of recur-
ring interest in the past years [1], [3], [10]. The study of this

problem is motivated by the robust and nonlinear control where
a well-known fact is that the positive realness of a certain loop
transfer function will guarantee the overall stability of a feed-
back system if uncertainty or nonlinearity can be characterized
by a PR system [12]. By solving a pair of Riccati inequalities,
a solution to this problem was given in [10]. When parameter
uncertainties appear in a system model, the PR control problem
was studied in [14], where state feedback controllers were de-
signed and a Riccati equation approach was developed, while in
[7] observer-based dynamic output-feedback controllers were
constructed in terms of solutions to certain linear matrix in-
equalities (LMIs). The corresponding results for discrete-time
systems can be found in [8]. It is worth mentioning that the re-
sults in [8] were further extended to two-dimensional (2-D) sys-
tems in [16].

On the other hand, it is known that descriptor system models
are more convenient and natural than state-space models in the
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description of many practical systems, such as interconnected
large-scale systems, economic systems, power systems [2], [5].
Descriptor systems are also referred to as singular systems, im-
plicit systems, generalized state-space systems, differential-al-
gebraic systems or semi-state systems. The study of descriptor
systems has received much attention during the past decades,
and many results based on the theory of state-space systems
have been extended to the area of descriptor systems [2], [5], [6],
[19]. Very recently, the positive realness of descriptor systems
was studied in [21], where PR lemmas for descriptor systems in
both the continuous and discrete contexts have been proposed
in terms of generalized algebraic Riccati equations and inequal-
ities. However, the design of controllers that achieve the posi-
tive realness of the closed-loop system has not been investigated
in [21]. It is worth pointing out that the problem of PR control
for discrete descriptor systems is much more difficult than that
for state-space systems due to the fact that the Lyapunov-type
matrix in discrete-time descriptor systems is indefinite as re-
ported in [21] while in the state-space case the Lyapunov matrix
is positive definite. It is also worth mentioning that in [21] pa-
rameter uncertainties in descriptor system model have not been
considered.

In this paper, we consider the problems of PR analysis and
PR control for uncertain discrete-time descriptor systems. The
parameter uncertainties are assumed to be time invariant and un-
known but norm bounded appearing in both the state and input
matrices. In order to overcome the difficulty encountered when
designing state feedback controllers for discrete-time descriptor
systems, we first present a new necessary and sufficient condi-
tion in terms of a strict LMI, which ensures a discrete-time de-
scriptor system to be regular, causal, stable and extended strictly
PR (ESPR). It should be pointed out that the given strict LMI
is more desirable than a nonstrict one in [21] since testing a
nonstrict LMI may cause some numerical problems [11]. In
order to solve the problems, the concepts of strong robust ad-
missibility with ESPR and strong robust admissibilizability with
ESPR were introduced. Without assumptions on the system ma-
trices, necessary and sufficient conditions for strong robust ad-
missibility with ESPR and strong robust admissibilizability with
ESPR are derived in terms of a strict LMI and matrix inequal-
ities, respectively. When these matrix inequalities are feasible,
a desired state feedback controller can be constructed directly
and no decomposition of the system matrices is involved.

A. Notation

Throughout this paper, for real symmetric matrices and ,
the notation (respectively, ) means that the ma-
trix is positive semi-definite (respectively, positive def-
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inite). is the identity matrix with appropriate dimension. The
superscripts “ ” and “ ” represent the transpose and the com-
plex conjugate transpose, respectively. The notation
is the interior of the unit disk with center at the origin. We use

to represent the set . Matrices,
if not explicitly stated, are assumed to have compatible dimen-
sions.

II. DEFINITIONS AND PROBLEM FORMULATION

Consider an uncertain linear discrete-time descriptor system
described by

(1)

(2)

where is the state; is the control input;
is the disturbance input; and is the con-

trolled output. The matrix may be singular; we as-
sume that , and . , , , and are
known real constant matrices with appropriate dimensions.
and are time-invariant matrices representing norm-bounded
parameter uncertainties, and are assumed to be of the form

(3)

where , , and are known real constant matrices with
appropriate dimensions. The uncertain matrix satisfies

(4)

and , where is a compact set in . Furthermore, it is
assumed that given any matrix , there exists
a such that . and are said to be
admissible if both (3) and (4) hold.

Remark 1: It should be pointed out that the structure of the
uncertainty with the form (3) and (4) has been widely used when
dealing with the problem of robust control for regular and de-
scriptor uncertain systems in both continuous- and discrete-time
contexts; see e.g., [13], [20], and the references therein.

The nominal discrete-time descriptor system of with
is

(5)

(6)

For the descriptor discrete-time system , we introduce the
following definition.

Definition 1—[2], [5]:

(I) is said to be regular if is not identi-
cally zero.

(II) is said to be causal if the degree of
is equivalent to .

(III) is said to be stable if .
(IV) is said to be admissible if it is regular, causal and

stable.
When system is regular, the transfer function of this

system is given as follows:

(7)

Throughout this paper, we shall use the following concept of
positive realness.

Definition 2—[21]:

(I) System is said to be PR if its transfer function
is analytic in and satisfies
for .

(II) System is said to be strictly PR (SPR) if its
transfer function is analytic in and
satisfies for .

(III) System is said to be ESPR if it is SPR and
.

The problems of PR analysis and PR control for the uncer-
tain discrete-time descriptor system will be addressed. The
purpose of the PR analysis problem is to develop conditions en-
suring that the uncertain descriptor system with
is admissible and ESPR for all parameter uncertainty satis-
fying (3) and (4), while the aim of the PR control problem is to
design a state feedback controller for such that the resulting
closed-loop system is admissible and ESPR.

III. MAIN RESULTS

We first give the following results, which will be used in the
derivation of our main results.

Lemma 1: The discrete-time descriptor system is admis-
sible if and only if there exist matrices and such that

(8)

where is any matrix with full column and satis-
fies .

Proof: For the proof of Lemma 1, see [15].
Lemma 2—[17]: Given any matrices , and with ap-

propriate dimensions such that . Then, we have

Lemma 3—[4], [21]: Consider a state-space system de-
scribed by

(9)

(10)

Then, this system is stable and ESPR if and only if there exists
a matrix such that
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Theorem 4: The discrete-time descriptor system is ad-
missible and ESPR if and only if there exist matrices
and such that the following LMI holds:

(11)

where is any matrix with full column and satis-
fies .

Proof: For the proof of Lemma 1, see the Appendix .
Remark 2: Theorem 1 provides a necessary and sufficient

condition for the discrete-time descriptor system to be ad-
missible and ESPR. In the case when , that is, the de-
scriptor system reduces to a state-space system, Theorem
1 coincides with Lemma 4.2 in [4]. Therefore, Theorem 1 can
be regarded as an extension of existing ESPR results for dis-
crete-time state-space systems to descriptor systems.

Remark 3: Note that the condition in (11) is a strict LMI,
which is in contrast to those in [21], where nonstrict LMI condi-
tions were given. It should be pointed out that some numerical
problems may arise when checking nonstrict LMI conditions.
Therefore, the strict LMI condition in (11) is more desirable
from the numerical point of view.

Considering Theorem 1, we introduce the following defini-
tions in order to solve the problems of PR analysis and PR con-
trol formulated in the previous section.

Definition 3: The uncertain discrete-time descriptor system
with is said to be strongly robustly admissible

with ESPR if there exist matrices and such that

(12)

for all the parameter uncertainty satisfying (3) and (4),
where is any matrix with full column and sat-
isfies .

Definition 4: The uncertain discrete-time descriptor system
is said to be strongly robustly admissibilizable with ESPR if

there exists a linear state feedback control law ,
, such that the closed-loop system is strongly ro-

bustly admissible with ESPR in the sense of Definition 3.
In the following, attention will be focused on the develop-

ment of conditions for strong robust admissibility with ESPR
and strong robust admissibilizability with ESPR, respectively.
To this end, we need the following result.

Lemma 4: [9] Given matrices , and of appropriate di-
mensions and with symmetric, then

for all satisfying , if and only if there
exists a scalar such that

Now, we are in a position to present a necessary and sufficient
condition for strong robust admissibility with ESPR.

Theorem 2: The uncertain discrete-time descriptor system
with is strongly robustly admissible with ESPR

if and only if there exist a scalar , matrices and
such that the following LMI holds:

(13)

where , , and are given in (14)–(16), respectively,
shown at the bottom of the page, and the matrix
is given in Definition 3.

Proof: By Definition 3, it is easy to see that the unforced
discrete-time descriptor system of is strongly robustly ad-
missible with ESPR if and only if there exist matrices
and such that (12) holds. Applying the Schur complement for-
mula to (12), it can be seen that (12) is equivalent to (17) shown
at the bottom of the page. Observe that (17) can be rewritten as

(14)

(15)

(16)

(17)
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That is

(18)

where

By Lemma 4, it can be shown that (18) holds for all sat-
isfying (4) if and only if there exists a scalar such that

(19)
which, by the Schur complement formula, results in the LMI in
(13). This completes the proof.

The following theorem gives the result on the strong robust
admissibilizability with ESPR.

Theorem 3: The uncertain discrete-time descriptor system
is strongly robustly admissibilizable with ESPR if and only

if there exist scalars , , matrices , and
such that

(20)

(21)

and

(22)

where the matrix is given in Definition 3, and

In this case, a state feedback control law chosen by

(23)

will be such that the closed-loop system is strongly robustly
admissible with ESPR.

Proof: By Definition 4 and Theorem 2, we have that the
uncertain discrete-time descriptor system is strongly ro-
bustly admissibilizable with ESPR if and only if there exist a
scalar , matrices , and such that

(24)

where is given in (16), and , , and are given in
(25)–(27) at the bottom of the page, respectively. Write

where the partition is compatible with the related matrices.
Then, (24) can be rewritten as the last equation at the bottom
of the page, which, by the Schur complement formula again,

(25)

(26)

(27)
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is equivalent to , , and equation (28) at the bottom
of the page holds. This, by the Schur complement formula, can
be shown to be equivalent to

(29)

It is easy to see that (29) is satisfied if and only if there exists a
scalar such that and

This can be rewritten as

(30)

Finally, it is easy to see that there exists a matrix such that
(30) holds if and only if (22) holds, and in this case, a suitable

can be chosen as in (23). This completes the proof.
In the case when there is no parameter uncertainties in the

uncertain discrete-time descriptor system , this system will
reduce to

then, by Theorem 3, we have the following result.
Corollary 1: Consider the discrete-time descriptor system

. Then, there exists a state feedback controller such that the
closed-loop system is admissible and ESPR if and only if there
exist a scalar , matrices and such that

(31)

and

(32)

where the matrix is given in Definition 3, and

In this case, a suitable state feedback control law can be chosen
by

Remark 4: Corollary 1 provides a necessary and sufficient
condition for the existence of state feedback controllers en-
suring admissibility and ESPR of the closed-loop system. It
is noted that the design of a desired state feedback controller
involves no decomposition of the system matrices, which is due
to the use of Theorem 1 where the positive definite matrix is
introduced. Usually, in the synthesis of discrete-time descriptor
systems, decompositions of system matrices will be involved
because of the indefiniteness of the Lyapunov-type matrix [18],
[20]; this will make the design procedure indirect and relatively
complicated. It is also worth pointing out that in the context
of discrete-time descriptor systems, the indefiniteness of the
Lyapunov-type matrix may make it difficult to obtain necessary
and sufficient conditions for the existence of state feedback
controllers guaranteeing some performance of the closed-loop
system [18], [20]. Considering the above, the results in Corol-
lary 1 is elegant from a mathematical point of view.

IV. NUMERICAL EXAMPLE

In this section, we give an example to demonstrate the effec-
tiveness of the proposed method.

Consider an uncertain discrete-time descriptor system in (1)
and (2) with parameters as follows:

(28)
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It is supposed that the uncertain matrix is given as
. Then, it can be verified that the nominal discrete de-

scriptor system is neither admissible nor ESPR. Now, to solve
the PR control problem, we choose

Then, it can be checked that

satisfy the matrix inequalities in (20)–(22). Therefore, by The-
orem 3, we have that the PR control problem is solvable, and a
desired state feedback control law can be chosen as

V. CONCLUSION

The problems of PR analysis and PR control for discrete-time
descriptor systems with parameter uncertainties in both the state
and input matrices have been studied. In terms of a strict LMI,
a new necessary and sufficient condition for a discrete-time de-
scriptor system to be regular, causal, stable and ESPR have been
proposed. The problems are solved via the notions of strong
robust admissibility with ESPR and strong robust admissibiliz-
ability with ESPR. Without any additional assumptions on the
system matrices, necessary and sufficient conditions for strong
robust admissibility with ESPR and strong robust admissibiliz-
ability with ESPR have been obtained in terms of a strict LMI
and matrix inequalities, respectively. An explicit construction
procedure to obtain a desired state feedback control law has
also been given, which involves no decomposition of the system
matrices.

APPENDIX

PROOF OF THEOREM 1

A. Sufficiency

Assume that the LMI in (11) is satisfied. We first show the
admissibility of the system . To this end, we write

where and . Then, the LMI in
(11) can be rewritten as (33) shown at the bottom of the page,
which implies

Therefore, by Lemma 1, we have that system is admissible.
Next, we show that under the condition of the theorem, the dis-
crete-time descriptor system is ESPR. By the Schur com-
plement formula, it follows from (33) that

(34)

where

(35)

(36)

Then, it is easy to see that (34) implies that there exists a matrix
such that

(37)

Let

Then, recalling that the system is admissible, we have that
is nonsingular for all . Pre- and post-mul-

tiplying (37) by and , respectively,
yield

(38)

which implies

(39)

(33)
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Now, by some simple algebraic manipulations, it can be verified
that

(40)

where the relationship is used. From (38) and (40), it
is easy to show that for all

(41)

Note that for all

(42)

where is given in (35). Then, by (41) and (42), we have that
for all

Noting and using Lemma 2, we obtain

(43)

Observe that

which, by the Schur complement formula, implies (44) shown
at the bottom of the page. By the Schur complement formula
again, it follows from (44) that

(45)

Therefore, from (43) and (45), we have that for all

(46)

On the other hand, since is admissible, we can find two
nonsingular matrices and such that [2]

(47)

In this case, the matrix satisfying can be chosen as

where is any nonsingular matrix. Now, write

where the partition is compatible with that of and
in (47). Then, it is easy to see that

(48)

Pre- and post-multiplying (33) by and

, respectively and then using the above nota-
tions, we have (49) shown at the bottom of the page. Where

(44)

(49)
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represents matrices that will not be used in the following
discussion, and

Pre- and post-multiplying (49) by

and its transpose, respectively, and then noting the 3–3 block,
we obtain

This together with (48) gives

which together with

implies

Considering this and (46), it easy to see that the discrete-time
descriptor system is ESPR.

B. Necessity

Suppose that the discrete-time descriptor system is ad-
missible and ESPR. Then, there exist two nonsingular matrices

and such that [2]

(50)

Then, it is easy to see that the matrix satisfying can
be written as

(51)

where is any nonsingular matrix. Write

where the partition is compatible with that of . Note that

Considering the system is ESPR, by Lemma 3, it follows
that there exists a matrix such that

(52)
Let

Then, by (52), it is easy to see that we obtain the first equation of
the bottom of the page. Pre- and post-multiplying this inequality
by

and its transpose, respectively, we obtain (53) shown at the
bottom of the page. Set

(54)
Then, pre- and post-multiplying (53) by

and its transpose, we can write

(55)

That is, the matrices and given in (54) satisfy (55). This
completes the proof.

(53)
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