NON-VANISHING OF SYMMETRIC SQUARE L-FUNCTIONS

YUK-KAM LAU

(Communicated by Dennis A. Hejhal)

ABSTRACT. Given a complex number s with $0 < \Re e \, s < 1$, we study the existence of a cusp form of large even weight for the full modular group such that its associated symmetric square L-function $L(\operatorname{sym}^2 f, s)$ does not vanish. This problem is also considered in other articles.

1. Introduction

Let k be an even positive integer and f a holomorphic cusp form of weight k with respect to the full modular group. We represent the Fourier expansion of f (at the cusp ∞) by

$$f(z) = \sum_{n=1}^{\infty} \psi_f(n) n^{(k-1)/2} e(nz)$$

where $e(\alpha) = e^{2\pi i\alpha}$. Assume that f(z) is an eigenfunction for all Hecke operators T_n , with $T_n f = \lambda_f(n) n^{(k-1)/2} f$. Note that $\lambda_f(n)$ is real and has the Deligne's bound

$$(1.1) |\lambda_f(n)| \le \tau(n)$$

where $\tau(n) = \sum_{d|n} 1$ is the divisor function. We normalize f so that $\psi_f(1) = 1$; then we have $\psi_f(n) = \lambda_f(n)$. Such an f is called a primitive form. Associated to each primitive f, the Rankin-Selberg convolution L-function $L(f \otimes f, s)$ and the symmetric square L-function $L(\text{sym}^2 f, s)$ are respectively defined as, for $\Re e s > 1$,

$$L(f \otimes f, s) = \sum_{n=1}^{\infty} \lambda_f(n)^2 n^{-s}$$

and

(1.2)
$$L(\text{sym}^{2}f, s) = \zeta(2s) \sum_{n=1}^{\infty} \lambda_{f}(n^{2}) n^{-s}$$

where $\zeta(s)$ is the Riemann zeta-function. These two L-functions are closely linked by the relation (see [5, (0.2) and (0.4)])

$$\zeta(s)L(\operatorname{sym}^2 f, s) = \zeta(2s)L(f \otimes f, s).$$

In this paper, we are concerned with the non-vanishing results of $L(\text{sym}^2 f, s)$ in the critical strip. Li [4] showed that for a given complex number $\rho \neq 1/2$

Received by the editors February 6, 2001.

2000 Mathematics Subject Classification. Primary 11F66.

satisfying $0 < \Re e \, \rho < 1$ and $\zeta(\rho) \neq 0$, there are infinitely many primitive forms f of different weight such that $\zeta(2s)L(f\otimes f,s)$ do not vanish at $s=\rho$, or equivalently, $L(\operatorname{sym}^2 f,\rho) \neq 0$. In addition, Kohnen and Sengutpa [3] have recently showed that for any fixed $s=\sigma+it$ with $0<\sigma<1$ and $\sigma\neq 1/2$, and for all sufficiently large k, there exists a primitive form f of weight k such that $L(\operatorname{sym}^2 f,s)\neq 0$. The approaches used in [4] and [3] are different: the former utilizes an approximate functional equation for an averaged sum of $L(\operatorname{sym}^2 f,\rho)$ while the latter relies on a formula of Zagier. Here, we shall use another method to prove the theorem below, which includes the results in [3] and [4].

Theorem. For any fixed $s \in \mathbb{C}$ with $0 < \Re e \ s < 1$, there exist infinitely many even k such that $L(sym^2f,s) \neq 0$ for some primitive form f of weight k. Furthermore, when $\Re e \ s \neq 1/2$ or s = 1/2, there exists a constant $k_0(s)$ depending on s such that for all even $k \geq k_0(s)$, $L(sym^2f,s)$ does not vanish for some primitive form f of weight k.

Remark. The case s=1/2 is not treated in either [3] or [4]. Moreover, our alternative proof is somewhat simpler than [4], and seems more 'elementary' than [3] (without using Zagier's formula).

2. Preliminaries

Let $S_k(1)$ be the linear space of cusp forms of weight k for the full modular group $\Gamma = SL_2(\mathbf{Z})$. Then $S_k(1)$ is a finite-dimensional Hilbert space with respect to the Petersson inner product

$$\langle f, g \rangle = \int_{\Gamma \backslash \mathbf{H}} y^k f(z) \overline{g(z)} \, \frac{dxdy}{y^2}$$

and the set of all primitive forms \mathcal{B}_k forms an orthogonal basis for $S_k(1)$. Moreover, we have the Petersson trace formula: define

$$w_f = \frac{\Gamma(k-1)}{(4\pi)^{k-1} \langle f, f \rangle}$$

and $S(m, n, c) = \sum_{ad \equiv 1} c e((am + dn)/c)$ (the classical Kloosterman sum); then

(2.1)
$$\sum_{f \in \mathbf{R}} w_f \lambda_f(m) \lambda_f(n) = \delta_{m,n} + 2\pi i^{-k} \sum_{c \ge 1} c^{-1} S(m,n,c) J_{k-1}(\frac{4\pi \sqrt{mn}}{c})$$

where $\delta_{m,n} = 1$ or 0 according to whether m = n or not, and $J_{k-1}(x)$ is the Bessel function. From [6, (5) in Section 2·13], we have the integral representation

(2.2)
$$J_{k-1}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(k-1)\theta + ix\sin\theta} d\theta.$$

Bounding trivially, using integration by parts or the Poisson integral representation $J_{k-1}(x) = (\sqrt{\pi}\Gamma(k-1/2))^{-1}(x/2)^{k-1}\int_{-1}^{1}(1-t^2)^{k-3/2}e^{ixt}\,dt$ ([6, (3) in 2·3]), we have the following estimates: for $x \geq 0$,

(2.3)

(i)
$$J_{k-1}(x) \ll 1$$
, (ii) $J_{k-1}(x) \ll \frac{x}{k}$, (iii) $J_{k-1}(x) \ll \frac{1}{\Gamma(k-1/2)} (\frac{x}{2})^{k-1}$.

Using the Weil bound

$$|S(m,n,c)| \le (m,n,c)^{1/2} c^{1/2} \tau(c),$$

and $\lambda_f(1) = 1$, we have with (2.3)(ii)

(2.5)
$$\sum_{f \in \mathcal{B}_k} w_f \ll 1 + k^{-1} \sum_{c>1} c^{-3/2} \tau(c) \ll 1.$$

Define

(2.6)
$$\Delta(s) = \pi^{-3s/2} \Gamma(\frac{s+1}{2}) \Gamma(\frac{s+k-1}{2}) \Gamma(\frac{s+k}{2})$$
$$= \pi^{(1-3s)/2} 2^{1-s-k} \Gamma(s+k-1) \Gamma(\frac{s+1}{2})$$

(as $\Gamma(s)\Gamma(s+1/2) = \sqrt{\pi}2^{1-2s}\Gamma(2s)$) and $\Lambda(\text{sym}^2f, s) = \Delta(s)L(\text{sym}^2f, s)$. Then $\Lambda(\text{sym}^2f, s)$ is entire and satisfies the functional equation (shown by Shimura [5])

(2.7)
$$\Lambda(\operatorname{sym}^2 f, s) = \Lambda(\operatorname{sym}^2 f, 1 - s).$$

Moreover one can show that $\Lambda(\operatorname{sym}^2 f, s) \to 0$ as $|\operatorname{Im} s| \to \infty$ in any vertical strip $|\Re e \, s| \ll 1$.

Finally, let us explain the approach here (which is quite widely used in non-vanishing problems). Using residue theorem and the functional equation of $L(\operatorname{sym}^2 f, \cdot)$, we can express $L(\operatorname{sym}^2 f, s)$ as a convergent series. The averaging process (over all primitive forms) with Petersson trace formula yields that the (averaged) sum consists of two parts: the diagonal terms (contributed by $\delta_{m,n}$ in (2.1)) and the off-diagonal terms. (See (3.6) below.) We then obtain the asymptotic formula (3.13) after giving an estimation to the off-diagonal terms. Our result is deduced from this formula.

3. Proof of the Theorem

Assume $0 < \Re e \, s \le 1/2$. Consider the integral $(2\pi i)^{-1} \int_{\mathcal{R}} \Lambda(\operatorname{sym}^2 f, s + w) \, dw/w$ where \mathcal{R} is the positively oriented rectangular contour with vertices at $\pm 2 \pm iT$, we have, by residue theorem and taking $T \to \infty$, that

$$\begin{split} \Lambda(\text{sym}^2 f, s) &= \frac{1}{2\pi i} \left(\int_{(2)} - \int_{(-2)} \right) \Lambda(\text{sym}^2 f, s + w) \, \frac{dw}{w} \\ &= \frac{1}{2\pi i} \int_{(2)} \Lambda(\text{sym}^2 f, s + w) \, \frac{dw}{w} + \frac{1}{2\pi i} \int_{(2)} \Lambda(\text{sym}^2 f, 1 - s + w) \, \frac{dw}{w} \end{split}$$

after using the functional equation (2.7) and changing w to -w. Hence, if we write

(3.1)
$$V_z(y) = \frac{1}{2\pi i} \int_{(2)} \zeta(2(z+w)) \Delta(z+w) y^{-w} \frac{dw}{w},$$

we get from (1.2) that

(3.2)
$$L(\operatorname{sym}^{2} f, s) \Delta(s) = \sum_{n=1}^{\infty} \frac{\lambda_{f}(n^{2})}{n^{1-s}} V_{1-s}(n) + \sum_{n=1}^{\infty} \frac{\lambda_{f}(n^{2})}{n^{s}} V_{s}(n).$$

Let z = 1 - s or s. From (2.6),

$$(3.3) \qquad \qquad \Delta(z+w) \ll_{|s|} \dot{2}^{-k} \Gamma(\Re e\,(z+w) + k - 1) |\Gamma(\frac{z+w+1}{2})|$$

for $\Re e(z+w) \ge -3/4$. Moving the line of integration to $\Re e(z+w) = A$, we have for $A > \max(\Re e(z,1/2),$

(3.4)
$$V_z(y) \ll_{|s|,A} y^{\Re e \, z - A} 2^{-k} \Gamma(k + A - 1).$$

Shifting to $\Re e(z+w) = -1/2$ (across the poles at $w=0,\,1/2-z$), we obtain with (3.3)

(3.5)

$$V_z(1) = \begin{cases} \zeta(2z)\Delta(z) + \Delta(1/2)(1/2 - z)^{-1} \\ \gamma\Delta(1/2) + 2^{-1}\Delta'(1/2) \end{cases} + O(2^{-k}\Gamma(k - 3/2))$$

where γ is the Euler constant. The second case corresponds to z = 1/2. As will be seen, the main term is given by

$$V_{1-s}(1) + V_s(1) = \begin{cases} \zeta(2-2s)\Delta(1-s) + \zeta(2s)\Delta(s) \\ 2\gamma\Delta(1/2) + \Delta'(1/2) \end{cases} + \cdots$$

according to $s \neq 1/2$ or s = 1/2. Its order of magnitude is about $2^{-k}\Gamma(k - \Re e \, s)$. Let $0 < \nu \le 10^{-3}$ be a fixed number. Both sums in (3.2) over $n > k^{1+5\nu}$ can be evaluated as follows: choosing $A = 1 + \nu^{-1}$ in (3.4), we have (z = 1 - s or s)

$$\sum_{n>k^{1+5\nu}} \frac{\lambda_f(n^2)}{n^z} V_z(n) \ll 2^{-k} \Gamma(k+\nu^{-1}) \sum_{n>k^{1+5\nu}} \frac{\tau(n^2)}{n^{1+1/\nu}}$$

$$\ll 2^{-k} k^{-4-1/\nu} \Gamma(k+\nu^{-1}) \ll 2^{-k} k^{-1/4} \Gamma(k-1/2)$$

by (1.1) and Stirling's formula ([1, Chapter 10]). Summing over all primitive forms and using (2.1), with $\lambda_f(1) = 1$,

(3.6)
$$\Delta(s) \sum_{f \in \mathcal{B}_k} w_f L(\operatorname{sym}^2 f, s) = V_{1-s}(1) + V_s(1) + \sum_{z=1-s,s} 2\pi i^{-k} \sum_{n \le k^{1+5\nu}} n^{-z} V_z(n) \mathcal{J}(n) + O((\sum_f w_f) 2^{-k} k^{-1/4} \Gamma(k-1/2))$$

where $\mathcal{J}(n) = \sum_{c \geq 1} c^{-1} S(1, n^2, c) J_{k-1}(4\pi n/c)$. We give an estimate for $\mathcal{J}(n)$. From (2.3)(ii) and (2.4),

$$\sum_{c>k^{1+20\nu}} c^{-1}S(1,n^2,c)J_{k-1}(\frac{4\pi n}{c}) \ll nk^{-1}\sum_{c>k^{1+20\nu}} c^{-3/2}\tau(c) \ll n/k^{3/2+9\nu}.$$

By (2.3)(iii), when $n \le k^{1-\nu}$,

$$\sum_{c \le k^{1+20\nu}} c^{-1} S(1, n^2, c) J_{k-1}(\frac{4\pi n}{c}) \ll \Gamma(k-1/2)^{-1} \sum_{c \le k^{1+20\nu}} c^{-1/2} \tau(c) (2\pi k^{1-\nu})^{k-1}$$
$$\ll k^{(1-\nu)k} \Gamma(k-1/2)^{-1} \ll n/k^{3/2+9\nu},$$

by Stirling's formula. Similarly, for $k^{1-\nu} < n \le k^{1+5\nu}$ we have

$$\sum_{k^{6\nu} < c \le k^{1+20\nu}} c^{-1} S(1, n^2, c) J_{k-1}(4\pi n/c) \ll n/k^{3/2+9\nu}.$$

Hence,

(3.7)
$$\mathcal{J}(n) = \delta(n,k) \sum_{c < k^{6\nu}} c^{-1} S(1,n^2,c) J_{k-1}(\frac{4\pi n}{c}) + O(nk^{-3/2 - 9\nu})$$

where $\delta(n,k) = 0$ if $n \le k^{1-\nu}$, and 1 if $k^{1-\nu} < n \le k^{1+5\nu}$. Inserting (3.7) into (3.6), together with (2.5) and the estimate

$$k^{-3/2-9\nu} \sum_{n \le k^{1+5\nu}} |n^{1-z} V_z(n)| \ll 2^{-k} k^{-3/2-9\nu} (\log k) \Gamma(k+1) \ll 2^{-k} k^{-2\nu} \Gamma(k-1/2)$$

(following from (3.4) with A = 2), we see that (3.6) becomes

$$\Delta(s) \sum_f w_f L(\mathrm{sym}^2 f, s)$$

$$(3.8) = V_{1-s}(1) + V_s(1) + i^{-k}(\mathcal{E}_k(1-s) + \mathcal{E}_k(s)) + O(2^{-k}k^{-8\nu}\Gamma(k-1/2))$$

where

$$\mathcal{E}_k(z) = 2\pi \sum_{k^{1-\nu} < n \le k^{1+5\nu}} n^{-z} V_z(n) \sum_{c < k^{6\nu}} c^{-1} S(1, n^2, c) J_{k-1}(\frac{4\pi n}{c}).$$

From (2.2), we have

(3.9)

$$\mathcal{E}_k(z) = \sum_{k^{1-\nu} < n \le k^{1+5\nu}} n^{-z} V_z(n) \sum_{c \le k^{6\nu}} c^{-1} S(1, n^2, c) \int_0^{\pi/2} 2\Re e \, f_k(\theta, \frac{4\pi n}{c}) \, d\theta$$

where $f_k(\theta, x) = e^{ix \sin \theta} (e^{-i(k-1)\theta} - e^{i(k-1)\theta})$. When $|x| \le k^{6/5}$, we have

$$\left| \frac{d}{d\theta} (x \sin \theta \pm (k-1)\theta) \right| \approx k$$
 for $\pi/2 - k^{-1/4} \le \theta \le \pi/2$,

whence $\int_{\pi/2-k^{-1/4}}^{\pi/2} f_k(\theta, \frac{4\pi n}{c}) d\theta \ll k^{-1}$ for $4\pi n/c \leq k^{6/5}$ by integration by parts. From (3.4) with A=1 and (2.4),

$$\sum_{k^{1-\nu} < n \le k^{1+5\nu}} n^{-z} V_z(n) \sum_{c \le k^{6\nu}} c^{-1} S(1, n^2, c) \int_{\pi/2 - k^{-1/4}}^{\pi/2} \Re e \, f_k(\theta, \frac{4\pi n}{c}) \, d\theta$$

$$\ll 2^{-k} k^{-1} \Gamma(k) \sum_{k^{1-\nu} < n \le k^{1+5\nu}} n^{-1} \sum_{c \le k^{6\nu}} c^{-1/2} \tau(c) \ll 2^{-k} k^{-8\nu} \Gamma(k - 1/2).$$

We put this estimate into (3.9). Then we interchange the sums in the remaining part and use the periodicity of $S(1,\cdot,c)$ to give

(3.10)

$$\mathcal{E}_{k}(z) = \sum_{c \leq k^{6\nu}} c^{-1} \sum_{k^{1-\nu} < n \leq k^{1+5\nu}} S(1, n^{2}, c) n^{-z} V_{z}(n) \int_{0}^{\pi/2 - k^{-1/4}} 2\Re e \, f_{k}(\theta, \frac{4\pi n}{c}) \, d\theta$$
$$+ O(2^{-k} k^{-8\nu} \Gamma(k - 1/2))$$
$$= \sum_{c \leq k^{6\nu}} \sum_{0 \leq r \leq c} c^{-1} S(1, r^{2}, c) T_{z}(r, c) + O(2^{-k} k^{-8\nu} \Gamma(k - 1/2))$$

with

$$T_z(r,c) = 2 \sum_{\substack{k^{1-\nu} < n \le k^{1+5\nu} \\ n \equiv r(c)}} n^{-z} V_z(n) \int_0^{\pi/2 - k^{-1/4}} \Re e \, f_k(\theta, \frac{4\pi n}{c}) \, d\theta.$$

From the definition of $f_k(\theta,\cdot)$ (the line below (3.9)), we see that

$$T_z(r,c) \ll \int_0^{\pi/2 - k^{-1/4}} |\sum_{\substack{k^{1-\nu} < n \le k^{1+5\nu} \\ n \equiv r(c)}} n^{-z} V_z(n) e(\frac{2n}{c} \sin \theta) |d\theta|$$

$$= \int_0^{\pi/2 - k^{-1/4}} \left| \int_{(\kappa)} \zeta(2(z+w)) \Delta(z+w) \sum_{\substack{k^{1-\nu} < n \le k^{1+5\nu} \\ n \equiv r(c)}} n^{-z-w} e(\frac{2n}{c} \sin \theta) \frac{dw}{w} \right| d\theta$$

by (3.1) with the path moved from $\Re e \, w = 2$ to $\kappa = 2 - \Re e \, z$. By (3.3), $\Delta(z+w) \ll 2^{-k} \Gamma(k+1) (|w|+1)^{-2}$ for $\Re e \, w = \kappa$. Hence,

$$(3.11) T_z(r,c) \ll 2^{-k}\Gamma(k+1)$$

$$\times \int_{(\kappa)} \int_0^{\pi/2 - k^{-1/4}} |\sum_{K_1 < m \le K_2} \frac{e(2m\sin\theta)}{(cm+r)^{z+w}} | d\theta \frac{|dw|}{(|w|+1)^3}$$

where $K_1 = (k^{1-\nu} - r)/c$ and $K_2 = (k^{1+5\nu} - r)/c$. Using $\sum_{m \leq M} e(2m\alpha)$ $\ll |\sin(2\pi\alpha)|^{-1}$ with partial summation, or bounding trivially, the sum in (3.11) is $\ll (|w| + 1)k^{2\nu - 2} \min(|\sin(2\pi\sin\theta)|^{-1}, k)$

as $\Re e(z+w)=2$. After substituting (3.12) into (3.11), the θ -integral equals

$$\int_{0}^{\pi/2-k^{-1/4}} \min(|\sin(2\pi\sin\theta)|^{-1}, k) \, d\theta$$

$$= \int_{0}^{\cos(k^{-1/4})} \min(|\sin(2\pi u)|^{-1}, k) \, \frac{du}{\sqrt{1-u^2}}$$

$$\ll \left(\int_{0}^{k^{-1}} + \int_{1/2-k^{-1}}^{1/2+k^{-1}})k \, du + \left(\int_{k^{-1}}^{1/2-k^{-1}} + \int_{1/2+k^{-1}}^{3/4})|\sin(2\pi u)|^{-1} \, du$$

$$+ \int_{3/4}^{1-(16k)^{-1/2}} |\sin(2\pi u)|^{-1} \, \frac{du}{\sqrt{1-u}} \ll 1 + \log k + k^{1/4}$$

by using $\sin\alpha \geq 2\alpha/\pi$ if $0\leq\alpha\leq\pi/2$. In view of (3.11) and (3.12), we conclude that $T_z(r,c)\ll 2^{-k}k^{2\nu-7/4}\Gamma(k+1)\ll 2^{-k}k^{2\nu-1/4}\Gamma(k-1/2)$, and by (3.10) that

$$\mathcal{E}_k(z) \ll 2^{-k} k^{2\nu - 1/4} \Gamma(k - 1/2) \sum_{c < k^{6\nu}} \sum_{0 \le r < c} c^{-1} |S(1, r^2, c)| + 2^{-k} k^{-8\nu} \Gamma(k - 1/2)$$

which is absorbed by the O-term in (3.8). Therefore, (3.8) and (3.5) yield

$$\Delta(s) \sum_{f \in \mathcal{B}_k} w_f L(\operatorname{sym}^2 f, s)$$

$$= \begin{cases} \zeta(2 - 2s) \Delta(1 - s) + \zeta(2s) \Delta(s) \\ \Delta'(1/2) + 2\gamma \Delta(1/2) \end{cases} + O(2^{-k} k^{-8\nu} \Gamma(k - 1/2)).$$

From Stirling's formula, we have $\Gamma(k+z-1)=\Gamma(k+a-1)e^{ib\log k+O(1/k)}$ (z=a+ib) for $|z|\leq k^{1/3}$ and $\Gamma'(k-1/2)/\Gamma(k-1/2)=\log k+O(1)$. Hence for the case s=1/2, the dominating term in (3.13) is $\Delta'(1/2)$, of order $2^{-k}(\log k)\Gamma(k-1/2)$, for all large k, and we can thus conclude $\sum_{f\in\mathcal{B}_k}w_fL(\operatorname{sym}^2f,1/2)\neq 0$. For the case $\Re e < 1/2$, the term $\zeta(2-2s)\Delta(1-s)$ ($\asymp 2^{-k}\Gamma(k-\Re e s)$) dominates others for all large k. (Note that $\zeta(2-2s)$ is non-zero.) When s=1/2+it and $t\neq 0$, denoting $a(t)=2^{1/2-it}\pi^{-1/4-3it/2}\zeta(1+2it)\Gamma(3/4+it/2)$, the main term in (3.13) is

$$\zeta(1+2it)\Delta(1/2+it) + \zeta(1-2it)\Delta(1/2-it)$$

$$= 2^{-k} \Big(a(t)\Gamma(k-1/2+it) + a(-t)\Gamma(k-1/2-it) \Big)$$

$$= 2^{-k}\Gamma(k-1/2) \Big(2|a(t)|\cos(t\log k + \vartheta(t)) + O(k^{-1}) \Big)$$

where $\vartheta(t)$ is the argument of a(t). Suppose $(2\pi)^{-1}t\log 2$ is irrational. Then by Kronecker's theorem ([2, Theorem 438]), there exist infinitely many r_i (depending on t) satisfying $|r_it\log 2 + \vartheta(t) - 2\pi m_i| \leq \pi/4$ for some integer m_i . Thus, we take $k = 2^{r_i}$ for those sufficiently large r_i so that the right side of (3.13) is $\gg 2^{-k}|a(t)|\Gamma(k-1/2) > 0$. If $(2\pi)^{-1}t\log 2$ is rational, we consider instead $(2\pi)^{-1}t\log 3$ which must then be irrational. Our result follows with the previous argument. The case $1/2 < \Re e s < 1$ is done because of the functional equation (2.7).

ACKNOWLEDGEMENTS

The author expresses his sincere gratitude to the referee for the valuable comments. He also thanks Dr. Kai-Man Tsang for his encouragements and Charlies Tu for unfailing supports.

References

- H. Davenport, Multiplicative Number Theory, Second edition, Springer-Verlag, 1980. MR 82m:10001
- [2] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Oxford University Press, 1979. MR 81i:10002
- [3] W. Kohnen and J. Sengupta, Nonvanishing of symmetric square L-functions of cusp forms inside the critical strip, Proc. Amer. Math. Soc. 128 (2000), 1641–1646. MR 2000j:11072
- [4] K.-J. Li, On the poles of Rankin-Selberg convolution of modular forms, Trans. Amer. Math. Soc. 348 (1996), 1213-1234. MR 96h:11038
- [5] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79-98. MR 52:3064
- [6] G.N. Watson, A Treatise on the Theory of Bessel Function, Reprint, Cambridge University Press, 1996. MR 96i:33010

INSTITUT ÉLIE CARTAN, UNIVERSITÉ HENRI POINCARÉ (NANCY 1), 54506 VANDOEUVRE LÉS NANCY CEDEX, FRANCE

 ${\it Current\ address} : \ {\it Department\ of\ Mathematics}, \ {\it The\ University\ of\ Hong\ Kong}, \ {\it Pokfulam\ Road}, \ {\it Hong\ Kong\ Kong}$

E-mail address: yklau@maths.hku.hk