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ABSTRACT. Given a complex number s with 0 < Res < 1, we study the
existence of a cusp form of large even weight for the full modular group such
that its associated symmetric square L-function L(sym?2f,s) does not vanish.
This problem is also considered in other articles.

1. INTRODUCTION

Let k be an even positive integer and f a holomorphic cusp form of weight k&
with respect to the full modular group. We represent the Fourier expansion of f
(at the cusp oo) by

= Z Wi (n)n*=D/ 2e(nz)

where e(a) = ™. Assume that f(z) is an eigenfunction for all Hecke operators
T,, with T,,f = Ap(n)n*=1/2f. Note that Af(n) is real and has the Deligne’s
bound

(1.1) [As(n)] < 7(n)

where 7(n) = 37, 1 is the divisor function. We normalize f so that 1;(1) = 1;
then we have 1;(n) = Ag(n). Such an f is called a primitive form. Associated to

each primitive f, the Rankin-Selberg convolution L-function L(f ® f,s) and the
symynetric square L-function L(sym?f, s) are respectively defined as, for Res > 1,

L(f®fs Z Ap(n)*n=*
and
(1.2) L(sym®f,s) = ((25) D _ Ag(n*)n~°

where ((s) is the Riemann zeta-function. These two L-functions are closely linked
by the relation (see [5, (0.2) and (0.4)])

((s)L(sym?f, ) = ((25)L(f ® f, 5)-
In this paper, we are concerned with the non-vanishing results of L(sym?f,s)

in the critical strip. Li [4] showed that for a given complex number p # 1/2
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satisfying 0 < Re p < 1 and ((p) # 0, there are infinitely many primitive forms f of
different weight such that ¢(2s)L(f & f,s) do not vanish at s = p, or equivalently,
L(sym?f, p) # 0. In addition, Kohnen and Sengutpa [3] have recently showed that
for any fixed s = o + it with 0 < ¢ < 1 and o # 1/2, and for all sufficiently large
k, there exists a primitive form f of weight k& such that L(sym?f,s) # 0. The
approaches used in [4] and [3] are different: the former utilizes an approximate
functional equation for an averaged sum of L(sym?f, p) while the latter relies on a
formula of Zagier. Here, we shall use another method to prove the theorem below,
which includes the results in [3] and [4].

Theorem. For any fired s € C with 0 < Re s < 1, there exist infinitely many even
k such that L(sym?f,s) # 0 for some primitive form f of weight k. Furthermore,
when Re s # 1/2 or s = 1/2, there exists a constant ko(s) depending on s such that
for all even k > ko(s), L(sym?f,s) does not vanish for some primitive form f of
weight k.

Remark. The case s = 1/2 is not treated in either [3] or [4]. Moreover, our alter-
native proof is somewhat simpler than [4], and seems more ‘elementary’ than [3]
(without using Zagier’s formula).

2. PRELIMINARIES

Let Si(1) be the linear space of cusp forms of weight k for the full modular group
I' = SL3(Z). Then Sk(1) is a finite-dimensional Hilbert space with respect to the
Petersson inner product

_ & Z—Zdzdy
<f,g>—/P\Hy £ 2

and the set of all primitive forms By, forms an orthogonal basis for Si(1). Moreover,
we have the Petersson trace formula: define

v~ Tte—1)
I am)=1(f, f)

and S(m, n,.c) =D aa=1(c) el(am + dn)/c) (the classical Kloosterman sum); then

(2.1)

47r\/mn)
c

Z wiAp(m)Ag(n) = Omon + 2~k Z ctS(m,n,c)Jp1(
fEBx e>1
where §,,., = 1 or 0 according to whether m = n or not, and Jx_1(x) is the Bessel
function. From [6, (5) in Section 2-13], we have the integral representation

1 T . o
(22) kal(-r) / e‘l(k*l)e-}-l:&sm& do.

:% .

Bounding trivially, using integration by parts or the Poisson integral representation
Je1(z) = (Val(k — 1/2)) " Ya/2)k1 [1(1 — £2)F=3/2¢i% gt ([6, (3) in 2-3]), we
have the following estimates: for x > 0,

(2.3)

@) Jeoi(z) < 1, (i) Jpor(2) < % (iii) Jp_1(z) < F_(_k—_ll_m(g)k_ll
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Using the Weil bound

(2.4) [S(m,n,c)| < (m,n,e)2c %7 (c),
and A¢(1) = 1, we have with (2.3)(ii)
(2.5) dowp <14k Py e (o) < 1
feBs c>1
Define

s+1 s+k—1 s+k
r
(=Y

. 541
(2.6) = p(1=99)/291-s k(g 4 1)r("’; )
(as T(s)['(s + 1/2) = w21 72T'(2s)) and A(sym?f,s) = A(s)L(sym?f,s). Then
A(sym?®f, s) is entire and satisfies the functional equation (shown by Shimura [5])

(2.7) A(sym?f,5) = A(sym?f,1 — s).

Moreover one can show that A(sym?f,s) — 0 as |Im s| — oo in any vertical strip
|Re s| < 1.

Finally, let us explain the approach here (which is quite widely used in non-
vanishing problems). Using residue theorem and the functional equation of
L(sym?f,-), we can express L(sym?f,s) as a convergent series. The averaging
process (over all primitive forms) with Petersson trace formula yields that the (av-
eraged) sum consists of two parts: the diagonal terms (contributed by 8, ,, in (2.1))
and the off-diagonal terms. (See (3.6) below.) We then obtain the asymptotic for-
mula (3.13) after giving an estimation to the off-diagonal terms. Our result is
deduced from this formula.

Afs) = w321

3. PROOF OF THE THEOREM

Assume 0 < Re s < 1/2. Consider the integral (2mi)~ f?z A(sym?f, s +w) dw/w
where R is the positively oriented rectangular contour with vertices at +2 417", we
have, by residue theorem and taking T' — oo, that

ot = - pentras o

d 1 d
= A(sym?f, s+w)—u+— A(smef,l—s+w)—w
27TZ (2) w 211 (2) w

after using the functional equation (2.7) and changing w to —w. Hence, if we write

1 d
(3.1) Vi(y) = Tm/@)((?(z+w))A(z+w)y‘w %,
we get from (1.2) that
(3.2) L(sym?f, s) Z V1 s(n) Z f(n

Let z =1~ s or s. From (2.6),

z+w+1

(3.3) Az +w) <5 27T (Re (2 +w) + k — 1)|T( 5

)l
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for Re (z + w) > —3/4. Moving the line of integration to Re (z + w) = A, we have
for A > max(Re z,1/2),

(3.4) Vily) <jspa ¥ 427 Tk + A - 1).

Shifting to Re (2 + w) = —1/2 (across the poles at w = 0, 1/2 — z), we obtain with
(3.3)

(3.5)

((22)A(2) + A(1/2)(1/2 - 2)7}

v ={ S s + 0@ 4T (k- 3/2)

where « is the Euler constant. The second case corresponds to z = 1/2. As will be
seen, the main term is given by

C(2 - 25)A(1 — 5) + C(28)A(s)

Vi-(+ V(1) = {27A(1/2)+A’(1/2) o

according to s # 1/2 or s = 1/2. Its order of magnitude is about 27*T'(k — Re s).
Let 0 < v < 1072 be a fixed number. Both sums in (3.2) over n > k'*5” can be
evaluated as follows: choosing A =1+ v~ in (3.4), we have (z = 1 — s or )

Af(n?) —k -1 7(n?)
n>k1t5v n>kl+5v
& 27RETVYD (kY < 27FETVATD (K — 1/2)
by (1.1) and Stirling’s formula ([1, Chapter 10]). Summing over all primitive forms
and using (2.1), with Af(1) =1,

A(s) Z wyL(sym?f, s)
FEB

(3.6) =Vi_s(1) Z 2mi~ Z n~*V,(n)J(n)

z=1-s,8 n<kl+5v

O((> w2 k4T (k — 1/2))
f

where J(n) = Zczlc”ls(l,nz,c)Jk_l(élwn/c). We give an estimate for J(n).
From (2.3)(ii) and (2.4),

Z ¢ 18(1,n2 ¢)Jk_ 1(4 )y nk™! Z 321 (c) < /K32
e>klt20v e>kl+20v
By (2.3)(iii), when n < k'~7,
Z 18(1 n? O Jk—1(— ) < P(k— ]_/2)_1 Z C_I/QT(C)(QTFkl_U)k_l

e<kl+20v c<k1+20v

< EOTVRD(E — 1/2)7 <« n k329,

4mn

by Stirling’s formula. Similarly, for k'~ < n < k175 we have

cr8(1,n2, ¢)Jp_1(dmn/c) < n/k>/2FV.
k6v <CSIC1+2OV :
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Hence,

(3.7) S(n, k) > ¢ 71S(1,n%, ¢) Sk 1(47r ) + O(nk=3/27%)

c<kbv

where 6(n, k) = 0if n < k'7¥, and 1 if k'7% < n < kM5 Inserting (3.7) into
(3.6), together with (2.5) and the estimate

k—3/2—9r/ Z ,nl—sz(n” & 2—kk—3/2~9u(10g k‘)F(k + 1) & 2—kk—2ur(k _ 1/2)

n<kl+5v

(following from (3.4) with A = 2), we see that (3.6) becomes
5) D wyL(sym®f, s)
f

(38) = Vis(1) + Vi(1) + i %(E(1 — 8) 4 Ekl(s)) + O(2 %K% (k — 1/2))

where
Er(z) =2m Z n *V,(n Z ¢'S(1,n? ) Ji 1(47r_n)
kl-—v<nskl+5u C<k6u
From (2.2), we have
(3.9)
—z -1 2 /2 4mn
&(z)= > nTVi(n) Y e'S(L,n%0) 2Re fi (0, ——) db
kl=v<n<kl+sy <KoY 0

where f(8, 1) = ei®sinf(e=i(k—1)6 _ ¢i(k=1)8) When || < k5/5, we have
d —1/4
ﬁ(xsm@:l:(k—l)ﬁ) =k for m/2 — k <6< 7/2,

whence [™2 . fi(8,%m0)d8 < k=1 for 4nnje < kS/5 by integration by parts.
n/2—k~Y/ c
From (3.4) with A =1 and (2.4),

w/2 4
Z n~*V,(n) Z C_ls(l,nz,c)/ Re f (6, ﬂ)dg
kl-v<n<kl+5v c<kbv m/2—k—1/4
< 2_kk_1I‘(k) Z -1 Z C-—-l/Z << 2= kk 81/1‘\( __ 1/2)
Kl-v<n<kltsy  c<kbv

We put this estimate into (3.9). Then we interchange the sums in the remaining
part and use the periodicity of S(1,-,¢) to give

(3.10)
7'r/2—k_1/4 4rn

= Z ¢! Z S(l,nz,c)n_sz(n)/ 2Re f1(9, ——)d0

c<kb¥ kl-v<n<ki+sv 0

+ 027 k™8T (k — 1/2))
=Y > S )T (r,0) + 02 *kTH T (k - 1/2))

c<kbv 0<r<e
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n/2—k~ /4
T.(rc)=2 Y. n*zvz(n)/ Re £ (6, 4”—”) d9.
0

kl—u<n5k1+51/
n=r(e)

From the definition of fi(#,-) (the line below (3.9)), we see that

x/2—k~1/4 m
TZ(T,C)<</0 | Z n Vz(n)e(7 sin 6)| d@

kl—V <n<klt+5v
n=r(c)

n/2—k~ /% n w
:/ / C2(z+w)A(z +w) Z n= 7Y (2—81n0)d de

0 (k) kl—v op<il+br ¢ w
nEch)

by (3.1) with the path moved from Rew = 2 to k =2 —-Re z. By (3.3), A(z+w) <
27FT(k + 1)(|Jw| + 1)~ 2 for Rew = . Hence,

T.(r,c) < 27FD(k+1)

(3.11) /(K) /W

where K1 = (k'™% —r)/c and Ky = (K'"*™ —r)/c. Using 3, ., e(2ma)
< |sin(2ra)|~! with partial summation, or bounding trivially, the sum in (3.11) is

R e(2msin @)

(em +r)ztw

|dw|
(lwl +1)°

| do

K1<m<K

(3.12) < (Jw| 4+ 1)k* =2 min(|sin(27 sin 0)| 1, k)
as Re (z + w) = 2. After substituting (3.12) into (3.11), the f-integral equals

x/2—k~1/*
/ min(| sin(27 sin 6)| 71, k) do
0

du
V1 — 2

k! 1/2+k~1 1/2—k"1 3/4
< (/ / Ve du + (/ +/ )| sin(27u)| ™! du
1/2—k—1 k-1 1/24k-!

1—(16k) /2 du )
+/ | sin(2mu)| ! < 1+logk+ K4
3/4 \/1 —Uu

by using sina > 2a/7 if 0 < @ < 7/2. In view of (3.11) and (3.12), we conclude
that T.(r,¢) < 27%k?~7/4T(k +1) < 27%k?~1/4T(k — 1/2), and by (3.10) that

Enlz) < 27KV -1/2) 7 > TS, o)+ 2R T (k- 1/2)

c<kbr 0<r<c
which is absorbed by the O-term in (3.8). Therefore, (3.8) and (3.5) yield
) > wyL{sym*f,s)
feB

_ (2 —28)A(1 —s) + ¢(28)A
(8.13) = { N(1/2) + 29A(1/2)

cos(k™1/4)
= / min(| sin(27u)] !, k)

&) 4 0@k (k- 1/2))
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From Stirling’s formula, we have I'(k + z — 1) = ['(k + a — 1)e??logk+0(1/k)
(z = a+ib) for |z] < kY3 and I"(k —1/2)/T(k—1/2) = log k+O(1). Hence for the
case s = 1/2, the dominating term in (3.13) is A’(1/2), of order 2=*(log k)I'(k—1/2),
for all large k, and we can thus conclude ZfeBk wyL(sym?f,1/2) # 0. For the case
Res < 1/2, the term ((2—2s)A(1 —s) (x 27FT'(k — Re s)) dominates others for all
large k. (Note that ((2 — 2s) is non-zero.) When s = 1/2 ++ it and t # 0, denoting
a(t) = 2127t =1/4=3/2¢(1 4 2i)I(3/4 + it /2), the main term in (3.13) is

C(L+ 2it)A(1/2 + it) + C(1 — 2it)A(1/2 — it)
= o7k (a(t)F(k: ~1/24it) + a(—t)D(k — 1/2 — n))

= 27FD(k - 1/2) <2|a(t)| cos(tlog k + 9(t)) + 0(1(1))

where ¥(t) is the argument of a(t). Suppose (27) 'tlog2 is irrational. Then by
Kronecker’s theorem ([2, Theorem 438]), there exist infinitely many r; (depending
on t) satisfying |r;tlog2 + 9(t) — 27m;| < 7/4 for some integer m;. Thus, we
take k = 27 for those sufficiently large r; so that the right side of (3.13) is >
27K [a(t)|T(k—1/2) > 0. If (27) ~ 't log 2 is rational, we consider instead (27)~tlog 3
which must then be irrational. Our result follows with the previous argument. The
case 1/2 < Res < 1 is done because of the functional equation (2.7).
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