
KNOWING THE COSTS AND DELAY
functions of fundamental building blocks

enables designers to optimize costs and

propagation delays of the larger units built

from them. A fundamental building block of

an arithmetic logic unit (ALU) is the binary

adder. In this article, we examine the im-

plementation of fixed-point adders on Xilinx

4000 series FPGA chips and cost and delay

functions of various addition algorithms. On

the basis of this study, we propose opti-

mization schemes for the design of FPGA

carry-skip and carry-select adders.

Adder cost and performance
Although many writers have discussed

VLSI fixed-point addition techniques,1-9 gate-

count and gate-delay unit models in their

studies are not useful for evaluating costs and

performance of FPGA adders. In our study,

we obtain operational times from Xilinx tim-

ing-simulation software instead of from the

gate-delay models used for fixed VLSI de-

signs. Instead of gate counts, we measure

cost as the number of configurable logic

blocks (CLBs) used. The performance-to-cost

ratio is cost divided by operational time. In

making comparisons, we rank techniques

with larger performance-cost ratios as having

better performance.

Carry-ripple adder. Adders differ in the

ways their carries propagate. The most ba-

sic is the carry-ripple adder. The Xilinx 4000

series’ dedicated carry logic designed for se-

quential carry propagation makes imple-

menting n-bit carry-ripple adders easy. We

have implemented carry-ripple adders rang-

ing in length from 8 to 80 bits on different

part types.

We have also implemented carry-

complete and carry-look-ahead adders. By

comparison with the ripple adder, their high

costs, complexities, and high fan-in and fan-

out requirements3,4 make them unsuitable

for implementation on FPGA devices.

The carry-ripple adder is a basic building

block of other adders. The timing models we

use in our optimization analyses of carry-skip

and carry-select adders are functions of the

carry-ripple adder’s worst-case operational

time.

Timing models. We partition an n-stage

adder into x blocks. Each block has n/x

stages. We define the timing models of block

k, where 1 ≤ k ≤ x, as follows:

■ Carry-ripple delay, R(yk). The total delay

of a carry entering block k, rippling

through subsequent stages, and emerg-

ing from the block is

R(yk) = λ1 + δyk (1)

where yk is the number of stages in block

k, δ is the incremental delay of a single

stage, and λ1 is a constant.
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■ Carry-generate delay,

G(yk). The total delay of

a carry generated at the

first stage of the block,

rippling through subse-

quent stages, and emerg-

ing from the block is

G(yk) = 

λ2 + δ (yk − 1) (2)

where λ2 is a constant.

■ Carry-terminate delay,

T(yk). The total delay of

a carry entering the

block, rippling through

subsequent stages, and

terminating at the last

stage is the same as the

carry-generate delay;

T(yk) = G(yk).

Carry-skip adders
Observing that a carry may skip any addition stages on

certain addend and augend bit values, researchers devel-

oped the carry-skip technique to speed up addition in the

carry-ripple adder. One can construct a carry-skip adder by

partitioning a carry-ripple adder into blocks of the same or

various sizes and adding carry-skip logic to each block.

Carry-skip logic determines when a carry entering the block

may skip directly to the next block. Using a multilevel struc-

ture, carry-skip logic determines whether a carry entering

one block may skip the next group of blocks. Because mul-

tilevel skip logic introduces longer delays, it may be of little

value beyond three or four levels even with fixed VLSI tech-

nology. Implemented on Xilinx 4000 devices, a carry takes

much longer to propagate through multilevel carry-skip log-

ic than through efficient, dedicated carry logic. Therefore,

here we examine only single-level FPGA carry-skip adders.

Implementation of nonoptimized adders. The opera-

tional time of carry-skip adders greatly depends on their con-

figurations. We investigated the implementation of various

configurations of each adder of a given length and selected

those that gave the best performance data. Figure 1 shows

performance parameters of nonoptimized carry-skip adders

of sizes from 8 to 80 bits. Our results show that the nonopti-

mized carry-skip adder performs no better than the carry-

ripple adder, with a small increase in cost. However, it was

worth investigating whether the optimized carry-skip adder

would perform better than the carry-ripple adder.

Optimization analysis. Many researchers have exten-

sively studied optimization of carry-skip adders and have

suggested many timing models for fixed VLSI technology.2,6-8

As we have said, these models cannot be used for FPGA cir-

cuit analysis, which is based on CLB number and route de-

lay. Therefore, we have developed the following formulation

of a carry-skip timing model for optimization analysis.

Carry-skip delay. Factors such as carry-skip logic structure,

carry-skip logic mapping, and CLB placement and routing at

the implementation stage contribute to carry-skip delay. We

assumed that the carry-skip logic structure is the dominant

factor, and our implementation results later corroborated

that assumption.

To use the CLB array structure effectively, we propose the

general tree structure for a carry-skip logic block shown in

Figure 2. Each rectangle represents a function generator. Ck−1

and Ck are the carry-in and carry-out of block k, and Ck

yk−1 is

the carry-out produced by the block. The figure shows that
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Figure 1. Performance parameters of nonoptimized FPGA adders in comparison with carry-
ripple adders.
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Figure 2. Carry-skip logic structure.
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the multilevel carry-skip logic has 2yk + 2 inputs. The first lev-

el has approximately N1 = (2yk)/8 CLBs, and level i has Ni =

Ni−1/8 CLBs. Thus, the total number of CLBs needed to im-

plement a yk-bit carry-skip logic structure is N = N1 + N2 + N3

+ … ≅  1 + (5/16)yk .

Carry-skip delay includes constant look-up table delay, in-

terconnect delay between function generators within CLBs,

and interconnect delay between CLBs. Of these, intercon-

nect delay between CLBs is dominant. Therefore, in calcu-

lating carry-skip delay, we consider only inter-CLB delay. On

the other hand, in CMOS technologies, interconnect delay is

linearly proportional to the square of the length of intercon-

nect lines.10 Therefore, the carry-skip delay expression is

S(yk) = λ3 + β l 2 (3)

where λ3 is a constant, β the coefficient of linearity, and l

the effective length of the interconnect lines.

From Figure 2, we can assume l is approximately propor-

tional to the number of carry-skip logic layers, and we ex-

press it as

l = γ log4(1 + 3N) = γ log4[4 + (15/16)yk] ≅ γ log4(4 + yk) (4)

Substituting Equation 4 into Equation 3 gives

S(yk) = λ3 + α log4
2(4 + yk) (5)

where α = βγ2 is a constant coefficient, and λ3 is the delay

of carry-in and carry-out logic. Equation 5 shows that carry-

skip logic implemented on an FPGA device is neither a con-

stant nor a linear function as reported by other

researchers.2,6,7

Configuration optimization. An n-bit carry-skip adder par-

titioned into x blocks has a configuration Y = {y1, y2, …, yx−1,

yx}, and n = ∑k=1
x yk. The optimization problem is to determine

a configuration that gives the adder the minimum worst-case

carry propagation (operational) time. Figure 3 shows the

worst-case carry propagation path, which takes the carry

generated at the adder’s first stage the longest propagation

time to reach the final stage. The carry generated at the first

stage ripples through the first block, skips the subsequent

blocks to the last block, and ripples through to the last stage.

This worst-case propagation delay occurs when the operand

pair are 010101…101 and 001010…011, and Cin = 0. The

worst-case propagation time is the sum of the carry-generate

delay of the first block, the skip-logic delays of the subse-

quent (x − 2) blocks, and the carry-terminate delay of the fi-

nal block:

(6)

Equation 6 implies the following criteria:

1. x > 2. Otherwise, the carry-skip adder has no advantage

over the carry-ripple adder because there are no carry-

skip operations.

2. R(yk) ≥ S(yk). The carry-ripple delay of any block is

greater than or equal to the carry-skip delay.

3. R(yi) ≤ ∑k=i
x−1 S(yk) + T(yx). The carry-ripple delay of any

block is less than or equal to the delay of the carry to

skip the block and subsequent blocks and ripple

through the last block, terminating at the last stage. 

Minimizing Equation 6 is equivalent to minimizing the sizes

of the first and last blocks and the number of blocks. There

are two simple steps to obtaining the optimal configuration.

The first is to use criterion 2 to determine the last block’s min-

imum size. The second is to use criterion 3 to determine the

length of the other blocks recursively, starting from the sec-

ond-to-last block until all n bits have been assigned.

Comparisons. Here we compare analytical and imple-

mented performance improvements of the carry-skip adder

using the proposed optimization scheme. Constants and co-

efficients in Equations 1, 2, and 5 differ slightly among dif-

ferent types of parts. We base our results on the Xilinx

XC4010PQ160-5 chip.

Analytical comparisons. We derive the timing model pa-

rameters from the first-order approximation of implemented

operational times shown in Figure 1. The parameters of

Equations 1, 2, and 5 are λ1 = 13.5, λ2 = 12.5, λ3 = 11, δ = 0.8,

and β = 1.3. Analytically, if the proposed adder is smaller

than 54 bits, it will have no speed advantage over the carry-

ripple adder. We obtained optimized configurations of

adders from 56 to 112 bits. The operational times of the the-

oretical adders are 1% to 24% faster than carry-ripple adders.

Implementation comparisons. Figure 4 shows implemen-

tation results for optimized FPGA adders. The results show

an improvement of from 0.6% to 16% for optimized adders

of sizes from 64 to 112 bits. The implementation results show

slightly less improvement than the analytical results but ac-
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Figure 3. Worst-case carry propagation path of carry-skip
adders.
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curately reflect theoretical

predictions. The 56-bit adder

has no speed advantage

over the carry-ripple adder.

Compared with the nonopti-

mized adders in Figure 1, the

proposed adders have simi-

lar costs but shorter opera-

tional times.

Carry-select adders
Each block of a carry-

select adder generates two

sets of sums, one for the car-

ry-in 0 and the other for 1.

The carry-select logic selects

the appropriate set of sums

upon arrival of the carry bit.

Implementation of nonoptimized adders. Various block

schemes and addition techniques can implement a carry-

select adder. We investigated different combinations of block

schemes and addition techniques before undertaking opti-

mization analyses. Again see Figure 1 for costs, operational

times, and performance-cost ratios of the best-performing set

of nonoptimized adders. Propagation delays of nonoptimized

carry-select adders are comparable to those of carry-ripple

adders. Next we investigated whether optimized carry-select

adders would have better operational times.

Optimization analysis. Our optimization studies of

carry-skip adders led us to expect that configuration opti-

mization would result in speed improvements. We propose

three carry-select adder configurations and optimization

schemes. The three configurations are the select-ripple-

ripple (S-R-R), select-skip-ripple (S-S-R), and select-skip-skip

(S-S-S) adders. The optimization schemes proposed here

use the timing models given earlier for carry-ripple and

carry-skip adders.

S-R-R adder. In each S-R-R adder block, two carry-ripple

chains produce conditional sums and carry-outs. Each

block’s carry-select logic selects the appropriate sum and

carry-out. Carry-select operation delay is a constant µ inde-

pendent of block size. The problem of optimization is to de-

termine the adder configuration Y = {y1, y2, …, yx−1, yx} for the

minimum worst-case propagation time. The criterion for de-

termining block sizes is that the carry-select signal must syn-

chronize with the conditional sums and carry-outs. This

criterion is

R(yk) = (k − 2) µ + R(y1)  (for k ≥ 2) (7)

Substituting Equation 1 into Equation 7 with n = y1 + ∑k=2
x yk

gives 

y1 = 1/x[n − (µ/δ)] − (µ/2δ)x + 3µ/2δ (8)

The worst-case propagation time is the ripple delay of

block 1 plus the propagation time of the carry-select signal:

T = (x − 1)µ + R(y1) = (1/x)(δn − µ) + (µ/2)x + [λ1 + (µ/2)]

We find the nearest integer to x, where x = [2(δn − µ)/µ]1/2,

by equating the derivative dT/dx to 0. This gives us the near-

optimal adder block number. The optimal solution is n ≥
(3µ)/δ for x ≥ 2.

S-S-R adder. We construct an S-S-R adder by adding carry-

skip logic to each S-R-R block. Carry-select logic selects the

conditional sums and carry-outs generated by the ripple

chains within each block. Carry-skip logic determines when

the carry entering the block may skip directly to the next

block. The worst-case carry propagation path is the same as

that shown in Figure 3. To benefit from the carry-skip tech-

nique and synchronize the arrivals of block carry-ins and

conditional sums, we must meet the following criteria:

1. x > 2. This criterion is the same as for the carry-skip

adder.

2. S(yk) ≤ R(yk) + µ. Skip delay must be less than or equal

to the total of ripple delay and carry-select delay.

3. T(yx) ≤ ∑k=2
x−1 S(yk) + G(y1). The last block’s conditional

sum generation time must synchronize with arrival of

the carry-in. 

4. R(yk) ≤ T(yx). Any block’s ripple delay must be less than
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Figure 4. Performance parameters of optimized FPGA adders in comparison with carry-ripple
adders.
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or equal to the last block’s conditional sum generation

time.

Substituting R(yk) and T(yx) into criterion 4 gives yk ≤ yx −
θ, where θ = 1 − [(λ1 − λ2)/δ]. This means that the last block

is the largest. The worst-case propagation time is

T = ∑k=2
x−1 S(yk) + G(y1) + µ (9)

Criterion 2 determines the first block size. Setting yk = yx −
θ for k = 2, 3, …, x − 1, Equation 9 becomes

T = (x − 2) S(yk) + G(y1) + µ (10)

where yk = (n − y1 − θ)/(x − 1). Minimizing Equation 10 gives

the optimal number of blocks and their sizes. (We use the

quasi-Newton search method to find the minima.)

S-S-S adder. The S-S-S adder block configuration is the

same as that of the S-S-R adder. We use an additional carry-

skip network to examine the adder carry-in and block carry-

outs and to determine all block carry-ins. The critical path

is the same for both adders. The criteria for the S-S-S adder

are the same as those for the S-S-R adder except for criteri-

on 3. To synchronize the conditional sums generated by the

last block and the carry-in by the carry-skip network, crite-

rion 3 for the S-S-S adder becomes

T(yx) ≤ S(n − y1 − yx) + G(y1) (13)

and the worst-case carry propagation time is

T = S(n − y1 − yx) + G(y1) + µ (14)

The optimization process is the same as for the S-S-R

adder.

Comparisons. Now we summarize and compare theo-

retical and implementation results for carry-select adders.

For theoretical comparisons, parameters for Equations 1, 2,

and 5 are the same as those given for carry-skip adders: λ1 =

13.5, λ2 = 12.5, λ3 = 11, δ = 0.8, and β = 1.3. The carry-select

logic delay µ is 12 ns for the XC4010PQ160-5 device.

Analytical comparisons. Optimization analyses show that

S-R-R and S-S-R adders smaller than 48 bits, as well as S-S-S

adders smaller than 56 bits, have no speed advantage over

carry-ripple adders. Optimized theoretical S-R-R, S-S-R, and

S-S-S adders are 13% to 39%, 15% to 36%, and 7% to 43% faster

than carry-ripple adders.

Implementation comparisons. Operation speeds of the

three optimized adders larger than 48 bits are very similar.

The S-R-R adder is the most economical to implement, at a

cost about 50% less than the other two adders. The speed

improvement of the S-R-R adder over the carry-ripple adder

is 7% to 36%.

OUR STUDY REVEALS that performance parameters of a

specific addition technique implemented in different FPGA

part types differ slightly. In general, adders implemented on

lower-density parts have slightly shorter operational times

than adders on higher-density parts, but their costs are al-

most the same.

The results in Figures 1 and 4 show that the carry-ripple

adder has the lowest cost and highest performance-cost ra-

tio because of its highly regular structure and its effective

use of the CLB’s dedicated carry logic. Therefore, it is prefer-

able where simplicity and cost are critical factors. The carry-

complete and carry-look-ahead adders are the least suitable

for implementation on FPGA devices due to their high costs,

irregular structures, and inability to use the dedicated carry

logic.

The optimized carry-skip adder is second lowest in costs

and second best in performance-cost ratios. However, the

operational time of an optimized carry-skip adder smaller

than 56 bits compares less favorably to that of the carry-ripple

adder. Thus, the carry-skip adder is not the best choice for

designs using smaller adder units.

The optimized S-R-R adder has the lowest cost of the three

carry-select adders and hence the best performance-cost ra-

tio. For implementation of adders larger than 48 bits, the op-

timized S-R-R adder is the most appropriate choice. When it

is longer than 48 bits, it has the best operational time at a

reasonable cost increase over carry-ripple adders. Although

it is not cheaper to implement than the carry-skip adder, the

technique does have the advantages of regular structures

and almost the same performance-cost ratio as the carry-

skip adder.

Our results also show that the timing models proposed

here are valid and the optimization schemes are effective.

This article can serve as a useful reference for designing

FPGA adders. Designers can easily extend these schemes to

FPGA devices other than the Xilinx 4000s, provided the de-

vices have similar dedicated carry logic and structure.
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