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Design of Permanent Magnets to Avoid Chaos in PM
Synchronous Machines

Y. Gao, Student Member, IEEE,and K. T. Chau, Member, IEEE

Abstract—This paper analyzes the effect of permanent magnets
(PMs) on the occurrence of chaos in PM synchronous machines
(PMSMs). Based on the newly derived nonlinear system equation,
the bifurcation analysis shows that the sizing of PMs significantly
determines the stability of PMSMs. Hopf bifurcation and chaos
may even occur in the PMSMs if the PMs are not properly sized.
Experimental results of two practical PMSMs are provided to sup-
port the theoretical analysis.

Index Terms—Bifurcation, chaos, permanent magnet syn-
chronous machine (PMSM).

I. INTRODUCTION

T HE PERMANENT magnet synchronous machine
(PMSM) is becoming more and more attractive for both

industrial and electric vehicle applications [1] because of its
inherent advantages of high-power density and high efficiency.
However, investigation of its chaotic behavior has been sur-
prisingly limited. Also, past discussion was based onad hoc
computer simulation, whereas the actual effect of PMs on the
occurrence of chaos in PMSMs was unexplored [2].

This paper analyzes the relationship between sizing of PMs
and chaos in PMSMs. Two practical PMSMs with different ma-
chine parameters are used for exemplification. Bifurcation anal-
ysis is employed to investigate the effect of PM sizing on chaotic
behavior in PMSMs. Experimental verification of the theoretical
results is described.

II. SYSTEM MODELING

Fig. 1 shows a PMSM driven by an induction motor (IM). The
PMSM modeled in frame is given by [3]
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Fig. 1. PMSM system.

where , are the stator currents, , are the stator volt-
ages, and are the stator inductances, is the stator
resistance, is the PM flux, is the number of pole pairs,

is the mechanical rotor speed, is the mechanical driving
torque, is the rotor inertia, and the viscosity friction co-
efficient.

For simplicity, a symmetric load of resistanceis adopted
so that and can be expressed in terms of and ,
respectively. In addition, the net driving torque is considered
to be proportional to , namely, , where

is the PM torque and is a constant.
Equation (1) can be further simplified by transformingto
, and to , to , and to , where

, , and is a positive constant.
Hence, (1) can be expressed as

(2)

where , ,
, and .

III. PM SIZING

According to [4], Hopf bifurcation and, hence, chaos exist
in a dynamical system, such as the system described by (2),
in three-dimensional state-space if its three eigenvalues are all
nonzero with two of them being purely imaginary conjugates.

There are two major types of PMSMs: one with PMs
mounted on the rotor surface, called the surface-magnet
type; and one with PMs buried inside the rotor, called the
interior-magnet type.

A. Surface-Magnet PMSM

The surface-magnet PMSM exhibits no saliency since
. In order to avoid the trivial case when , is set to be
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nonzero and is defined as . Thus, (2) can be rewritten
as

(3)

The fixed points can readily be solved by setting zero to the
derivatives in (3). Although the origin is always a fixed point, it
will never cause Hopf bifurcation since the characteristic equa-
tion of (3) evaluated at the origin is given by

which will never have pure imaginary solu-
tion based on practical machine parameters. On the other hand,
the characteristic equation evaluated at the nonzero fixed points

is

(4)

By applying the Routh–Hurwitz stability criterion, the critical
value of is . Hence, the critical
value of can be obtained as

(5)

which denotes the maximum permissible value of, hence
the size of PMs, to avoid the occurrence of chaos. The corre-
sponding eigenvalues are given by

(6)

Therefore, Hopf bifurcation occurs at . Once exceeds this
critical value, chaos may occur.

B. Interior-Magnet PMSM

The interior-magnet PMSM exhibits significant saliency
since , hence, offering additional salient power. In
order to derive the explicit solution for the sizing of PMs,is
set to zero and is defined as . Notice that =0 is
the case when . Thus, (2) can be rewritten as

(7)

By setting zero to all derivatives in (7), the fixed points can
be easily derived, namely, the origin and the nonzero fixed-point
pairs ( , , ) and ( , ,

), where . The origin is always a
stable fixed point since the corresponding eigenvalues are,

, and . The stability of those nonzero fixed points can be
determined from the following characteristic equation:

(8)

TABLE I
MACHINE PARAMETERS

Hence, the Routh–Hurwitz stability condition is given by

(9)

Thus, it can be found that the fixed-point pair ( ,
, ), if it exists, is always unstable and will never

cause Hopf bifurcation since it fails to meet condition (9). How-
ever, it can be found that another fixed-point pair ( ,

, ) can satisfy (9) with the critical value of
equal to . Hence, the
critical value of can be obtained as

(10)

The corresponding eigenvalues are given by

(11)
Therefore, Hopf bifurcation occurs at . Once exceeds this
critical value, chaos may occur.

IV. CHAOS

As discussed, the sizing of PMs, namely of, exhibits an
important effect on the system behavior. Normal stable fixed-
point operation is guaranteed only when is lower than .
To assess the possible behavior beyond the stable region as de-
fined by , the bifurcation diagram is an important tool.

Two practical PMSMs (Machine A is a surface-magnet one,
whereas Machine B is an interior-magnet one) with their param-
eters listed in Table I are used for exemplification. In order to
experimentally verify the theoretical results based on these two
PMSMs, is chosen for Machine A, whereas is for
Machine B. Also, no load is adopted for both machines. Con-
sequently, the corresponding bifurcation diagrams ofvia
are determined as shown in Fig. 2. Although these two bifurca-
tion diagrams have different patterns, a common conclusion can
be drawn. Namely, both PMSMs will exhibit chaotic behavior
once > . Whether the PMSM will operate at a fixed point
or be trapped into chaos is mainly determined by the sizing of
PMs. From Fig. 2 and Table I, it can be found that both Ma-
chines A and B will exhibit chaotic behavior since their PM flux
values are both higher than their critical values (for Machine A:
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(a)

(b)

Fig. 2. Speed bifurcation diagrams. (a) Machine A. (b) Machine B.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Measured chaotic waveforms and trajectories of Machine A. (a)i .
(b) i . (c)! . (d) i � i plane. (e)i � ! plane. (f)i � ! plane.

and ; for Machine B:
and ).

Figs. 3 and 4 are the measured time-domain waveforms of
, and as well as the measured trajectories of ,

, and planes for Machines A and B, respec-
tively. It can be seen that both machines offer the well-known
chaotic nature, namely random-like and bounded. In addition,
the corresponding trajectories resemble a butterfly, which is ac-
tually the well-known Lorenz attractors.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Measured chaotic waveforms and trajectories of Machine B. (a)i .
(b) i . (c)! . (d) i � i plane. (e)i � ! plane. (f)i � ! plane.

Therefore, the sizing of PMs during the design of PMSMs
should not be biased on the conventional optimization of power
density, efficiency, or speed range but also need to avoid the oc-
currence of chaos based the newly derived equations of (5) and
(10). Moreover, it should be noted that the proposed derivation
and analysis can readily be extended to other general cases such
as the presence of nonconstant load or even active load.

V. CONCLUSION

This paper has analyzed the effect of PMs on the occurrence
of chaos in PMSMs, including both the surface-magnet and in-
terior-magnet types. The key is derivation of the critical value of
PM flux that can be offered by the PMSM. Beyond this critical
value, Hopf bifurcation and, hence, chaos result. Two practical
PMSMs have been employed for exemplification. The measured
results, including both chaotic waveforms and trajectories, have
verified the theoretical derivation and confirmed the importance
of this analysis. Finally, the proposed analysis is so general that
it can readily be extended to other modes of operation or even
other motor drives.
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