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DC Stability Analysis of High-Order, LowpassA
Modulators With Distinct Unit Circle NTF Zeros

Ngai Wong Member, IEEEand Tung-Sang Nd-ellow, IEEE

Abstract—This paper presents an analytical approach to the in- perfections. The assumption of distinct unit circle NTF zeros
vestigation of the dc stability of high-order (order > 2), low- encompasses a large clas$kf modulators including those in
pass (LP) ¥ A modulators with distinct noise transfer function the popular cascade-of-resonators structure [4], [5] with opti-
(NTF) zeros on the unit circle. The techniques of state-space di- _ . - . .
agonalization and decomposition, continuous-time embedding and mized, distributed NTF zeros to bO,OSt the SNR by several bits
Poincaré map analysis are combined and extended. It is revealed [3]. Baseband or LP modulators with NTF zeros about dc are
that high-order ¥ A modulators can be transformed and decom- studied in this paper as dc stability is only meaningful in the
posed into second- and first-order subsystems. The investigation, context of these modulators. Stable bandpass modulators that
coupled with efficient numerical methods, generalizes itself to dif- accept inputs centered about some carrier frequencies can, how-

ferent types of transition flow and provides theoretical insight into . .
the sta¥£trajectory and limit cyclg behavior. It is shown ?hat es- ©€Ver, be obtained from stable LP prototypes through appropriate

timation of dc input bounds based solely on the boundary transi- transformations [2].
tion flow is inadequate. A procedure utilizing the information from Current attempts to analyze the stability>f modulators
different transition flow assumptions and the discrete nature of a ¢can mainly be classified into linear and nonlinear approaches.
modulator is introduced for locating the stable dc input bounds of Linear methods [6]-[9] suffer from their approximation nature
practical, discrete-time XA modulators. .. . L
and deficiency to explain phenomena such as chaos and limit
Index Terms—elc stability, A, embedding, nonlinear dynam- cycles present in the practical, discrete-time modulators. Non-

ical systems, Poincaré mapEA, state space. linear methods [10]—[20], though capable of providing rigorous
theoretical treatment and explaining some of the intricate phe-
l. INTRODUCTION nomena, are largely constrained by their complexity and poor

scalability. A recent computational approach of Schreteal.
[21]-[23] that proves stability by locating a positively invariant
NSet (PIS) also faces the barrier of exponential grow in its com-
utational complexity and the results are too conservative when

odulator order grows beyond three.

By generalizing the matrix diagonalization framework of
fbiner and Yang [24] and its subsequent application to stability
alysis [25]-[27], this paper addresses the case of state-space

ESPITE the widespread deployment A modulators
D [1], [2] in modern electronic products, the theoretical u
derstandings of high-ordébrder > 2) £¥A modulators have
been lagging behind. Much of the modulator design work st
relies heavily on extensive computer simulation [3]. Among the
longstanding unresolved issues, modulator stability remain%
major topic which is especially critical for the conditionally-

. n
s';ag!ﬁthlgh-tc;lrder mod.l:Latolr.s ) _It\ludn:erous atctjemgts to tg‘dl(l? % nsition matrix with complex-conjugate eigenvalues that are
stabllity problem are either imited to second-order modulalofge ey i many practical modulators utilizing distinct NTF
or bound to be too conservative for higher order systems. Thi

. . : Sros on the unit circle [2], [3]. Itis shown that these modulators
paper presents an analytical, nonlinear dynamical approacf’bgﬁ be transformed into second- and first-order subsystems
the dc stability study of a class of high-order, lowpass (EB)

tion of stable dc input bounds.

. . . . which used to give complicated formulas even for third-order
The incentive for pursuing high-orderA modulators, even ( g P

thouah th to instabilitv. is the hiah sianal tmodulators) to obtain straightforward continuous-time trajecto-
ougnh they are mor? prone to |”ns abriity, 15 the high SIgNalee s tor modulators of arbitrary orders. The boundary transition
noise ratio (SNR) or “resolution” achievable without an overl}/IOW assumption in the Poincaré map analysis of Wang is also

high oversampling ratio (OSR) [2]..S_ingle-ti’u‘A modulators waived and all possible limit cycles corresponding to different
are usually preferred over their multibit counterparts due to thﬁg

inh i itv and hiaher tol p | i pes of transition flow are obtained via efficient numerical
inherent finearity and higher tolerance ot analog component Iifiaogs [28 Ch. 10]. Fixed-point stability is analyzed with

closed-form tangent linear manifolds. Criteria for dc stability of
practical, discrete-tim&A modulators are derived by utilizing
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because it specifies the maximum dc input for which the modhit circle NTF zeros are exemplified but the procedures are
ulator can correctly “modulate” into its output bitstream. Aseadily extendable to modulators of arbitrary orders. The
nominal inputs into LPZA modulators are slow time-varying cascade-of-resonators architecture is chosen for illustration due
signals relative to the oversampling rate, and in the limitinig its popularity and favorable properties like unit circle NTF
case dc signal, dc input bound gives a meaningful figure faeros and better robustness than other architectures [4], [5].
determining the safe input range. Furthermore, dc bound is

shown to be tighter than that for conventional ac signals [8} Discrete System Similarity Transforms

and, therefore, can also be sensibly regarded as the worst-casgith respect to Fig. 1, and following a similar ap-

bound. proach as in [29], we define the state-vectrf’ =

This paper is organized as follows. Section Il begins with p (¥ = ;] andp = 2 — 1. The state-space
state-space formulation and transform¥ A modulator into representation of a parameterizetth-order modulator is
a representation with the least amount of coupling. The diag-

o " . ©) = A5 4 Oy, 4 4O

onalization and decomposition methods of Steiner and Yang px z >(<0) z UTaz VU
[24] are extended to transition matrices having complex con- y = bou + d,V'x(® )
jugate eigenvalues as a result of the distinct NTF zeros. Con- v = sgn(y).

tinuous-time embedding [12] is then applied to obtain EXPrefere sgn(y) is the sign function whose outputisl wheny >
sions for the time evolution of state trajectories. Section Ill engr 54 —1 wheny < 0. The bracketed superscripts denote the
ploys piecewise linear analysis to investigate the dynamics Qfmper of similarity transforms the state vectors or matrices
decomposed second-order subsystem(s) and a first-order $iile \ndergone. Specifically, for our example in Fig. 1 where
system present in odd-order modulators only. Systems of nQp-_ 4 and 5, see (2) at the bottom of the page. Note, that (2)
linear equations for locating the fixed-points under differenfeicts the case of an odd-order systevn 5). For an even-
transition flow assumptions are established in Section IV. Sugfjer modulator ' = 4), the elements outside the delimiting
equations allows for the application of efficient numerical aljnas are simply dropped, for example, the rightmost column
gorithms based on a class of quasi-Newton methods. Sectio%Iyd bottommost row im;‘)), the last element ix©® | b;o) etc.
gives the closed-form tangent linear manifold that characteriz?ﬁis convention of combined representation of even- and odd-

the stability of a fixed-point and its associated limit cycle. SeGder systems will be followed throughout this paper. Next, by
tion VI discusses the DOA associated with a stable limit Cydgubstitutingp — - — 1 and considering the special structure of

This concept, a_long With the properties_ of the cql_JpIed subsy_ﬁ-% the first equation of (1) is rewritten as
tems and the discrete-time constraint, is then utilized to devise
a testing procedure for finding the stable dc input bound of & = (I + Ay)(I+ A1)x© + (I+ Ay)bu
practical>A modulator. Numerical results of fifteebA mod- FI+ Ag)aﬁo)v. 3)
ulators are also given. Finally, Section VIl draws the conclusion.
Examining Fig. 1, the NTF zeros are just the poles of the

Il. STATE-SPACE TRANSFORMATION AND EMBEDDING transfer function fromv to y with zero input {¢ = 0). In other
words,(I+ A,)(I+ A;) musthave eigenvalues corresponding

This section d_escrll_:)es two |mp_ortant te_:chnlques _for 8§ the distinct NTF zeros and is diagonalizable by a nonsingular
state-space manipulation and continuous-time modeling o trix T4 whose columns consist of the eigenvectorsIof-

d!screte—_tlm(_aEA modulator. Th(_ay represent extensmn_ of th )(I+ A,), resulting in
diagonalization and decomposition technique of Steiner and

Yang [24] and the embedding process of Wang [12]. For brevity, 2x(W = AWx@® L My 4 ally, @
only a fourth- and a fifth-order LEEA modulators with distinct y = bou + dPx®
KO [0 P o 20 0T
b =[biky bokiks bskikoks baky... ks |bski...ks]T
a;o) = — [alk‘l a2k1k2 a3k1k2k3 a4k1 . ]C4 |a5k1 . k5 ]T
d9 =[k" 0 0 0 |0]
AL =A; +zA,
0 0 0 0 0 0 k' 0 0
—riky 0 k3t 0 | 0 0 0 0 0 |0
=l 0o 0o o o] o |T*lo 0o o0 k' |o (2)
0 0 —roky O | kst 0.0 0 0 | o
0 0 0 0 0 0O 0 0 0 0
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Fig. 1. Two example&eA modulators in parameterized cascade-of-resonators structures: (a) fourth-order, (b) fifth-order.

where with
xM =T71x®, b = T7Y(I+ A2)bY x® =Ty'xM, b = Ty 'V
al) T (14 Apal®, dO) — )T, al?) =Ty'all, d{) =dN Ty
A =T 1+ As)(I+ A1)Ta 0, 0 0
. 0 ®N2 0
- 0 0 ... 0 1
1 o[z ] ®
ejw1 0 N 1 K3
e; = [ 0 e—jwi:| ;o No= {5J . (5) The elements in all state matrices are made real by this transfor-

mation. Now the state-space representation is transformed into
Here, N is the number of second-order subsystems. The boldggrallel second-order subsystems plus an additional first-order
0’s stand for zeros apart from the diagonal. This (by conven- subsystem for odd-order modulators. In this block-diagonal
tionw; > 0) correspond to the distinct NTF zero frequencieserm, the state variables of every subsystem become almost
It can be verified that the elements in other state matrices @&coupled, interacting only through the quantizer function

also complex conjugate pairs. To visualize the dynamics (graph=— sgn(y). By detailing the second equation in (7)
ically) it is desirable to work with real state variables. This is
=bout+[di ... don, | dany1]

achieved by a similarity transform that separates the real ahd

imaginary parts of the conjugate elements, namely X [z?).. ;332 | gﬁ)ﬂ]T
Q 0| o0 = bou+[d dQ][ g "’72(2)}T
x1 =Txx?, Ty = + [don,—1  don, ] [l,g\)b_l (2) ] ‘+d2N2+1x51\)rQ+1
1 ©
0- [1 J:| . ©) The segonq line of (9) is a sum of dot products which_represent_
1 —j the projections of the state variables of every second-order sub

system onto the vectors formed by every element paiigﬁ%,
namely[dy;—1  do; ]T, 1 = 1,2,..., No. A further transfor-
mation and simplification is to rotate and scale the coordinate
system of each second-order subsystem so that these vectors

Such transform produces

{ 2x(® = AgZ)x(Q) + bg)u + agz)v
y = bou + d?x®
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y , y in Fig. 3(b), bounded by and the far end boundarid?, and
v’ [dl} 4x / P, denote the possible regions for transition point occurrence.
|4 / - // These wedges are called the positive and negative transition

/‘\ 4, S~ |/ %<0 wedgesT" andT'. In reality the transition may take place any-
L - X \/ - X where onP; andP,, (within T andT) where¢, n € [0, 1] are
J/ AN - ~ called theT” andT tilt factorsfor obvious reasons. BotR,, and
/ A~y s
// 8> AN ’/ 2 [ﬂ y P, reduce toP when¢ andn approach zero.
4
x’ B. Embedding and Transition Flow
Fig. 2. Normalization process by rotating to the new coordinate systeg. Embedding [12] refers to the construction of a set of con-

tinuous differential equations whose solution, in the form of a

become the unit vectors in the conventional upward sense (§€8tinuous-time trajectory as in Fig. 3(c), contains every point
Fig. 2), and to scalé,, 11 to unity for odd-order modulators. along the discrete trajectory. Such formulation results in con-
This process, denoted as thermalizationprocess, is done by tinuous-time functions that are easier to handle analytically. To

the normalization matrif",, defined as embed an arbitrary order discrete-time system given by (11), we
consider a continuous-time counterpart
1 ) 0 0 Xe = Acxe + beu + agw 13
T, = . : {y:b0u+dcxc ( )
H— d_P where the subscriptstands for continuous-time. Assuming
2Nz +1 k andx.(k) is known, the exact solution of the first equation

n; = (B + d%i)—1/2 [cosz?i —sm@%} (10) (13), e.g., see [30]

sind;  cosv; = Atk 5
whered;’s are as determined in Fig. 2. An interesting propert’ﬁc( ) = exp ,C(' — k) xe(k)

t
_of the transformation biI',, is that it_has no effect oA . This + / exp(Ac(t — 7)) [beu(T) + acv(r)] dr  (14)
is sound because only the coordinate system of every second- Jk
order subsystem is changed but not its nature. Summarizingwhereexp(o) stands for matrix exponential. Suppas@ndv
x® — A§3)x(3> n bf)u n af’)v 1) remain co_nstgnt during the time intervaK ¢ < k + 1, then at
_ (3)(3) the next time instance
y = bou+dy’'x ft1

where Xe(k 4+ 1) =exp(Ac)xc(k) + / exp (Ac(k+1—1))
x®) ZT=1x@) b — To1p@ Ji

a® =T 'a® A®) =T'ADT, = AD x [beu(r) + aC”(T)]ldT

d® =d@T,=[0 1 ... 0 1 | 1]. (@12 =exp(Ac)xc(k) + U exp (ACT)dT}

. . 0
Equations (1), (4), (7), and (11) all describe the szime_qu- x [bou(k) + acv(k)] . (15)
ulator becausg (and, therefore, the modulator outpytis in- ) ) ) S
variant. The only distinction lies in the different choices of théﬂap‘z'l”g (15) to (11) and noting the identiy = AT =
state vectors. The second equation in (11) corresponds to thely X~ exp(\)T") where In(o) denotes matrix logarithm
perplaneP that divides the state space into two regions, calléf'd /\ is & diagonal matrix, the embedded, continuous-time
the positive half-plan®HP and the negative half-plarieHp, Mmatrices are
wherein the quantizer outputs, denoted«yare+1 and—1,

. w1 0 0
respectively. 3) . :
The global dynamics of a practic8lA modulator is reviewed Ac=In(A7) = 0 0
in Fig. 3. Employing the convention of Wang [12], mode- 0 Wé“” .

and modev distinguish the positive and negative states of the
quantizer output. First, a practicalA modulator (usually im- w;
plemented with switched-capacitors) is a sampled-data system ’
and its state trajectory undergoes discrete mapping as shown in 1
b, = (/ exp(AC'r)d’r>
0

Il
| —|
£ o
|
S
&

-1
Fig. 3(a). The dynamics is affine within each half-plane and the bgg)
trajectory, being solvable by linear techniques, follows certain 1 1
rules until it crosse#. If continuous trajectory is assumed, the a. = (/ exp(AcT)dT> al®
quantizer output changes sign (and so do the dynamics) when 0

the trajectory hits exactly aR. However, the discrete constraintAccording to (15), a unit time step advancement (i.e., increasing
in practice will carry the trajectory somewhere beyond (and inby 1) in the continuous-time trajectory corresponds to a hop to
clusive of) P where it stays for one and only one time instancéhe next state in the discrete-time trajectory.

known as thdransition point before changing dynamics. The Next, consider the extra first-order subsystem in an odd-order
dynamics is then governed by another set of rules in the oppoedulator, and assuming. = [z.1Zc - . - Teon, |22n,+1] (the

site half-plane and the cycle repeats. The two shaded wedgabscript is omitted fromzan, 1 for reasons that will become

d.=d®. (16)

?
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Fig. 3. Conceptual drawings of the nonlinear dynamics: (a) a discrete trajectory, (b) transition wedges and Poincaré sections, (c) contitorguarichfe)
limit cycle, fixed-points, and an associated domain of attraction (DOA).

clearlaten)b. = [f1 B2 ... [Bon, |Bons+1 ]T anda. = Asaresultthe second equation in (13) can be verified to be equal
[041 Qy ... Qon, |052N2+1 ]T, then from (13) and (16) to
ToN,+1 =P2N,+1U + Q2N, +1V y =bou + de (5( - Aglﬁcu) ‘ + Tan, 41
A
_J v+ = Pony 1w+ aan, 41, fory >0 17 ( Y X g ) S
= = —d.A-'b d
{7 2 Bony 41U — 02n,41, fory <O. an bo = deAebe Jut deX| + Tane

For properly designed modulatorg, and~_ are of opposite _ (bo + &z(i _ Az)_lf)z) u+ dox| + Tan, 41
signs and, therefore, y, +1 represents an “oscillating” quantity :
under normal operation of the odd-order modulator.For conve- =Ku + deX| + Zan,+1 (19)

nience, we denote a matrix or vector after droppingthe termsout- . ) . . . . .
sidethe delimiters (forthe case of odd-order modulators) by atiy@€re I is the identity matrix of appropriate dimension. In
sign, [see (16)]A. = diag[w1 wa ... wu, |istheblock- the thlrd line of (19) the superscripts for the dlscret.e §ystgm
diagonal matrix after omitting the last row and columeaf, and matrlces_ are pmltted because the pracketeq value is invariant
b, is b, without B, +1 etc. It should be stressed that this tilgé/"der similarity transforms. Referring to Fig. 1, this value,
sign is immaterial for even-order modulators wher&in= A., denoted by a constai(, is the forward-path resonator dc gain

b. = b.etc.AspointedoutinSectiontheanalysisassumesacdf@"0ring the last branch in an odd-order modulator which is

stantinput.. Thisenablesfurthersimplificationof(13)throughas©t Part of a resonator, i.e., by puttiigk; ...k; = 0 in

signing another continuous-time state-vestt whichisadis- ' 19- 1(b)] fromu toy with v = 0. Therefore, we end up with
placement ok, (t), namely a much simplified system of equations as in (20), shown at

- the bottom of the page. It can be seen that the state equations
X T . . . . . .
X (: [$2N2+J =[z1 ... man,| Tony41] ) are piecewise linear with respect to the sign of the quantizer
outputv = sgu(y), which changes only when the trajectory

x(t) crosses P (P : Ku+ vajl To;| + ToN,41 = 0).

>

~ Az ,1’“
[—C—X } + [—C—A bcu] . 18)
T2N,+1 0

X = A.X + a.v
v+ fory >0

v fory <0 (for odd-order modulators only).

ToN, 41 =

(20)

y=Ku+ dcx 2 T2i| + TaN,+1

N.
+ 2o, +1 = Ku +
i=1
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As mentioned, the state space is divided intoalled thetransition matrix it can be deduced that, see (22) at
two halves, called the positive half-planethe bottom of the page. Hence the first equation in (21) can be
(PHP : ngl wz‘ + @on,41 > —Ku) for v = +1 and decomposed into separate second-order subsystems, namely

-1 .
negative haIf-pIane(NHP: SN wo, | + wan, 11 < —Ku [m‘l(t)} + [ Wi 2 } v = [Cf)swit e w"'t}
— ! x9;(t) —w g1 sinw;t  cosw;t

for v = —1. The exact solution in each half-plane, with . _1

the help of (14), can be solved using linear techniques to X qx?i—l(o)} + { Wi oo }v> (23)

give (21) at the bottom of the page. It can be seen that the 22i(0) Wi 2i-1

solution consists of a part corresponding to the second-orger 1,2, ..., N,. By regarding(zz;_1,z2;) as the usuat and

subsystem(s) and an extra part for the first-order subsystgmoordinates, it can be seen that (23) represents two circular

in odd-order modulators. The initial point (at= 0) within a trajectories orbiting in a counter-clockwise sense with an “an-

particular half-plane is denoted &60). The quantizer output  gular speed;. The distinct NTF zeros (therefore, finitg’s)

remains constant (i.e4;1 or —1) ast increaseontinuously ensure that the subsystems are nontrivial. Whea +1, the

until the trajectory hits on certail;, or P,, whereuport is  center of the trajectory is &t-w; ‘aq;, w; La9;_1), and that for

reset to zero and this transition point serves as thex(@for = —1 is flipped about the origin tq@wi—la%, —wi‘la%_l).

the new trajectory with opposite sign of It is also apparent from the first equation in (21) that the cen-
The role of continuous-time embedding is to “fill in” theters for individual second-order subsystems are aggregated in

states in between consecutive discrete states by assuming €@vectors- A 13, for trajectories irPHP andA 1 a, for tra-

tinuous or infinitesimal evolution of trajectory, i.e.,being a jectories iNNHP. Recalling the conditions foPHP andNHP

nonnegative real number. Subsequently, by restrictitg be  following (20), it becomes clear why the normalization process

nonnegative integers, (21) also describes the discrete trajeci@ry10) is important for ease of visualization as the criteria now

provided the starting conditior(0) in a half-plane is known. depend on the sum of thecoordinates (if regarding the pos-

The discrete trajectory continues until it crosses and depagiBle first-order subsystem as a vertically oscillating quantity) of

from P. The transition point, at which the sign ofs reversed, individual subsystems being above or belevi u. Also, for tra-

is assigned as the nex(0) andt is reset to zero and incre-jectories of the second-order subsystemBiP (NHP), their

mented by unit steps again. Although (21) gives the closed-fogBnters are itlNHP (PHP). This is necessary for functionalA

solution for the trajectory in each half-plane, it is not very inmodulators because otherwise trajectories may remain perma-

formative regarding the stability of tféA modulator because nently in a particular half-plane, i.e., th&A modulator output

for the discrete-time case the transition points are intractaldetied to+1 or —1.

analytically. To circumvent this uncertainty, (21) is interpreted Fig. 4(a) and (b) show a typical second-order and a first-

as individual continuous-time subsystems coupled through tB&ler subsystem. Fig. 4(a) illustrates the circular trajectories and

quantizer function under a certaiansition flow i.e., values of Fig. 4(b) shows the oscillating nature of the possible first-order

¢ andn are presumed [see Fig. 3(c)]. Fig. 3(d) shows the posubsystem against time. The positioning of the half-plane cen-

sible continuous-time limit cycle and fixed-points, denoted byers in Fig. 4(a) can vary as long as they are symmetric about the

X}, andx;, arising from a particular transition flow. For a stablerigin. In particular, there are two horizontal lines in each sub-

fixed-point a DOA (lying onl3¢ or P,) exists around it where system, called the positive threshold lihg and the negative

nearby trajectories are attracted toward the fixed-point. threshold ling:; _, due to the coupling effect from other subsys-
tems. They represent the values whose respective sums satisfy
[ll. PIECEWISELINEAR ANALYSIS the condition for the trajectories to be on the hyperplEnee.
L(N+1)/2] L(N+1)/2]

This section shows that every second-order subsystem can be
interpreted as circular trajectori~es orbiting about two centers in : kit = Z ki = —Ku (24)
opposite half-planes. Renamim];?’) in (21) asM; which is i=1 i=1

%(t) + AZlacw = (A;?’))t (5((0) + Ac_lécv)

21)
_ Jwon,41(0) 4t fory >0 ) (
Ton,+1(t) = {$2N2+1(0) +ot fory <0 (for odd-order modulators only).

rcoswit —sinwit 7

0
sinwt coswit
M; = (22)
coswp,t —sinwy,t
0
L sinwy, t coswn,t |
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Fig. 4. Decomposed subsystems: (a) second-order; (b) first-order; (c), (d) limit cycles in subsystems; (e), (f) two interacting second-atdenssirbsy
fourth-orderA modulator.

where[ (N + 1)/2] gives the total number of decomposed subitive threshold lines denote the thresholds across which a trajec-
systems inclusive of second-order and first-order ones. The ptsy enters théHP and the negative threshold lines denote the
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thresholds for entering thiHP. After crossing these lines, aThis requires finding closed-loop trajectories in all subsystems
trajectory go on forp andzn more time step (i.e., rotate far;¢ whose state variables satisfy (24)—(27), as is shown in Fig. 4(c)
andw;n more radians in a second-order subsystem or travel fand (d). The stability of these fixed-points and their associated
7-¢ andy1n more distance in a first-order subsystem) ontbmit cycles is then investigated through the tangent linear
P, and P,, denoted as,, = [#,1 ... 4pnv]andx, = manifolds about them.
[£,1 ... £pn], respectively. Strictly speaking, the parame- For an Nth-order modulator, there ar&/, second-order
ters¢ andn should be included in the notations®f andx, subsystems interacting with each other wherein different sub-
but for simplicity they are omitted and should be clear from th&ystems have different arrangements of half-plane centers. The
context. Referring to Fig. 4(a), it can be verified that trajectories of all second-order subsystems will be traveling in
a sense that they counteract each other. Fig. 4(e) and (f) show
the two second-order subsystems resulting from a fourth-order
—wi_lazi_1 (25) modulator. For example, iPHP the trajectory of the first

p2i = (Tp2i1 — w; 'an;) tanw;

—1
ki +w; a1

cos Wi subsystem is traveling upward tg_ while that of the second

and subsystem is going downward#e_ till they cross the threshold
Tpoi = (i’pzifl +w[1a2i) tanw;n lines and penetrate fof more time step intdNHP, where-
kio — w M anioy upon the dynamics changes and proceeds by the ruldsiBf

coswin +wi_1042i—1 (26) accordingly. F(_)r an odd-order m(_)dulator_, there afg+ 1
fori =1,2,..., No. And for the first-order subsystem whén subs_ystems W'.th the last one being a first-order supsystgm
is odd that interacts with the other second-order subsystems in a sim-
ilar manner. Fig. 5 shows a practical, discrete-time fifth-order

Ipn = k(o 1)+ +7-¢ @ndiyn = K, 11— + 740 (27)  modulator under stable and unstable operations. The state vari-
Here, another expression fdk + 1 is the floor function| (IV + ables are first transformed into and viewed by the subsystem
1)/2]. framework. In an unstable modulator, the integrator outputs all

Since the boundarid§¢ andPn insideT" andT are obtained evolve toward infinity but in Fig. 5(e) and (f) one subsystem
through mappingP by ¢ andr time step forward about ap- remains bounded. This is so because the state variables are in
propriate half-plane centers, their equations can be derivedthg decoupled, transformed state space. When the state vari-
recognizing that when states d?y, or P,, (i.e., %xp andxp) ables are transformed back to the integrator outputs (coupled
are mapped) andn time step backward, they will land onsubsystems), all of them will go to infinity as is observed
P : Ku+ d.x = 0. This yields (28) and (29) shown at thein real cases. A major difference and difficulty in practical
bottom of the page. YA modulators is that the trajectory is discrete and never

The transition flow occurring orPd, and Pn is denoted as falls exactly onto any continuous-time limit cycle, making the

(P¢ P »). Wang [10], [12] has investigated the special case ekact transitions intractable. Wang'’s work on third-ordik
the intuitively farthest stretchdg( P, , P;), called theboundary modulators argues that the discrete trajectories are close to the
transition flowcorresponding t¢) = n = 1. In nonlinear con- neighborhood and mostly within the space encompassed by
text the two pIanesP(,) andP,, ¢, n € [0,1], are chosen to the intuitively farthest stretchefl'(Py, Py) limit cycle. The
be thePoincaré sectionésee [31]). The successive mapping ofodulator is predicted to be stable whEBAP,, P;) is stable.
states, namely, a two-step return map Excellent match with experimental results are observed for

- - 5 - - - the third-order examples.

(éR Py — P¢’) - (éR Py — P")O(SEE Py = P¢) (30) Nonetheless, uncerptainty remains because there is no proof
is known as the first return or Poincaré map. This mapping to the existence of stable fixed-points 3?((131-/151) limit
reduces the system dimension by one because only stategyafle will guarantee stable discrete trajectories. In real modu-
the Poincaré sections are of concern. A (global) limit cyclators, the transition may take place anywhere WltﬂlandT
of F(Py4, P,) exists if a continuous closed-loop trajectorywith intractable values af ands instead of exactly od®; and
can be found resulting in two fixed-points;, and x;,, on P, Simulation of som&A modulatorgorder > 2) shows that
the two chosen Poincaré sectioi?§ andPn as in Fig. 3(d). though the stable limit cycles produced E‘QPhPl), if they

Py Kut de (M7 (% - Ao ac) + A +in — ¢ =0

N2
orPy: (Z ngl 1—Ww; 1a21) smwlqﬁ—l—(mpzz—f—w Lovgi_ 1) coswlgzﬁ—w o, 1) + I,y —7—¢p=—Ku (28)

=1

Py Kut do (M7 (%p + A e ) = A7'ae ) |+ — 74 =0

+ipny —v4n =— Ku. (29)

Nz
> . -1 : - -1 -1
or Pn : < E - (wI)Zi—l + w; az,i) sin w;n + (.T}pgi —w; oz2i_1) COSW;n + w; Olgi_l)
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Fig. 5. Simulation of a discrete-time fifth-ord&fA modulator QSR = 64, maximum NTFgain = 1.5, optimized NTF zeros): (a)—(d) discrete trajectories
under stable operatiom (= 0.42, zero-state initiat(°), 1000 runs) where bold lines represent the stB§lE, , P, ) limit cycle; (e),(f) discrete trajectories leading
to unstable operatioru(= 0.63, zero-state initiak(®), 2300 runs).

ever exist, generally encircle the discrete trajectories, there &lowing sections, stability of the general CaE(eP¢7 Pn), o,
frequent occasions that the discrete trajectories go beyond this [0, 1] is investigated. It is shown that in practical modula-
encirclement [see Fig. 5(b)—(d)]. Counterexamples are eadilys, discrete trajectories going beyond the stable limit cycle, if
found where the discrete trajectories eventually go unboundaaly, ofF(Pl,Pl) is a natural case. And that the existence of
despite the existence of stalﬂéi’l , Py). Itis this intricate na- stable fixed-points for all types of transition flow serves only as
ture that renders the stability analysiS@h modulators highly a necessary condition for stable dc operation. Sufficient condi-
difficult, especially for high-order modulators since graphicalon for dc stability and the procedures for finding the stable dc
interpretation would become much more complicated. In tleput bounds are presented in Section VI.
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IV. FIXED-POINT LOCATION BY NUMERICAL ANALYSIS dependence on threshold line values also applies. From (27),
its fixed-points are

Locating the fixed-points and their associated limit cycles Tyn = k(g 1)+ +7-¢ andiy y = k(vg41)- +74m (33)
under different transition flow assumptions is a critical stepnd the fly-times
toward stability analysis oEA modulators. The limit cycles

p-timen, 41 (aAt;N,j:;N) = (on=din)

approximate the locus of the discrete trajectories exhibited LN (34)
by practical modulators. An unstable (repelling) limit cycle n_timen, 11 (i;;N,g:v;N) = (ZPNV;“"W)

implies upstable operation of the mo_dulator. The inverse is n§fmilarly, combining (33) and (34), it is straightforward to see
necessarily true as discrete trajectories cannot fall exactly opta e fly-time functions can be represented in terms of the
the stable limit cycles and additional criteria for dc stability arg,ashold line values

needed. The nonlinearity introduced by the quantizer functionm general, anVth-

makes. it difficult to solve folr.the fixed—ppints algebraically SQ(N+1)/2] subsystems. Finding the fixed-points or global limit

numerlcal'n']ethods are ut|!|_zed. The f|xed—p9|nts are fountd e when these individual subsystems are coupled is equiv-

by recognizing that the.posmve and negatﬁ;ehmes(whlch alent to solving for the following set (| (N + 1)/2] — 1)

are the time that a trajectory spends in HP andNHP,  \,hjinear equations in terms of the threshold line valies

respectively) of all subsystems, when coupled together, myst (i = 1,2,....[(N + 1)/2]) (the unknowns) such that

be gqual. o . _ all subsystems give the same fly-times: see (35) shown at the
First, for the limit cycle in a second-order subsystem, it turnsottom of the page. In order words, the objective is to find the

out that the two threshold lines completely characterize th@ctork = [k;iy hkio ... F(N41)2)+ kL(N+1)/2J—]T

fixed-points and subsequently the fly-times. Given andki—,  that givesG = 0. But from (24), the last two elements la

the fixed-points off'(P,, P,,) (denoted by asterisks in Figs. 4are functions of the other elements, namely

(N2+1)+ andk(Nz-I-l)—'
order modulator can be decomposed into

and 5) for each second-order subsystem, with the help of (25) L(N4+1)/2] -1

and (26) and the fact that the fixed-points and the half-plane k\(nt1)/2)+ = —Ku — > kit

centers must form into a symmetrical kite shape [Fig. 4(c)], =1 (36)
. . . L(N+1)/2]—1

can be solved by two simultaneous equations as in (31) shown kl(Nt1)2)- = —Ku— ) ki

at the bottom of the page, for= 1,2,..., N, (note that the i=1

parametersy;, as;—1, a2, ¢ andyn are known parameters for Substituting them back into (35), there are eventu2(lf N +

a second-order subsystem). Hence the positive and negatiyf2| — 1) equations with the same number of unknowns that
fly-times [p_time andn_time in (32)] can be obtained throughcan be solved by standard numerical methods.

dividing the angles sustained about each half-plane cefiter[ The Broyden’s method (a quasi-Newton method, Ch. 10,
andf;_ in Fig. 4(c)] by the corresponding;, see (32) at the [28]) is chosen for this purpose due to its reduced compu-
bottom of the page, where= 1,2,..., N, andarg(o) is the tational complexity and superlinear convergence. The initial
angle function of a complex quantity. Combining (31) anduess of solution to kick off the Broyden'’s algorithm can be
(32), it is obvious that the fly-time functions can be expresseshsily estimated from simulation. From the solutionkoffor

as nonlinear functions of the threshold line values. For tleeglobal limit cycle), parameters like subsystem fixed-points
first-order subsystem in an odd-order modulator, the saraad fly-times are readily obtainable by back-substituting the

Q2i—1 Ak Q2i—1 3k
(tan wi¢p + T) Tpoiq + (tan w;n + T) Tpoiq

- iy +w o kio—w tasi_

= w; lagi(tan C/Ji(,b — tan win) - = cos @ ¢2 - - P 7]2 : (

S w; “OS W; 31)
tanw;p — =22 ) z*,. . — (tanw;n — =22 | T*,.
7 2i1 p2i—1 7] Qo1 p2i—1

-1 -1

_ -1 kiy+w, "oz ki——w a1

=w; agi(tanwip + tanwn) — —— oo + T + 2w i

ptime; (T, 1, Tpoi Fpoi_1,Tpa;) = wl arg <(£ =
(32)

)
. ~ ~ . . 2 —w s )i (E, w tan,
ntime; (£, 1, @ 0i, Tpoi—1, Tpai) = % arg <E;27 l—wf‘a;ngjEzngrwjw;_l%) .

G=[g1 g2 - Go((Nt1)/2)-1)=1 G2((N+1)/2)—1)] Where
{927‘,—1 = p_timey (k14, k1—) — p_time; 1 (k14 k1))

92i = ’I’L_tiIIlel(k‘1+, ]{71_) — n_timei_H (k(i+1)+7 k(i—i—l)—) s 1= 1, 2, ey [W—JDJ —1. (35)
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threshold line values into (31)—(34). Fig. 6(a)—(e) present thesgstem for odd-order modulators, the following functions for
numerical results for an example fourth-order modulator agair{8t : X, — %) are defined. The first set of functions is related
all types of transition flow. Note that by adjusting the initiato the circularity of the trajectories in second-order subsystems,
condition in the Broyden'’s algorithm, two sets of fixed-points; .. . | /. _1 2 . 1 2

can be found. Borrowing results from Section V, it is shown th §(Xp: Xp) = (Fp2im1 + @] a;’i) + (Fp2i = w; a%;l)

the “inner” set stands for stable fixed-points while the “outer” - (ip2i—1 + w,,-,_lam) - (j:pZi - w,,-,_lazi—1) (37)

set represents unstable fixed-points (also, respectively, caligg, _ 1,2,..., N»,. The second set of functions describes the

foci and saddles in second-order subsystems, [32]). For ‘r’l}?—time difference of every two adjacent subsystems
first-order subsystem, the fixed-points (in only one dimension),

and threshold line values are structured similarly and is not Nz +i(Xp, Xp) = p-time;(Xp, Xp) —p-timei1(Xp, Xp) (38)
shown here to limit the length of this paper. Loosely speakingpri = 1,2, ..., N,—1 or N, for odd-order modulators. Finally
it can be seen that there exists a region, constituting the DQAere are two equations quantifying the “exactnessgpfand
between the inner stable limit cycles and the outer unstablg on P, andP,, namely, (39) and (40) shown at the bottom
limit cycles wherein trajectories, if started with an appropriatgf the page. Both (39) and (40) become zero whgrandx,,
initial condition, will be “repelled” back to the stable limitjand exactly onP, andP,,. Clearly, about the fixed points;,
cycles. Trajectories going beyond the unstable fixed—poirﬁﬁdk;, (37)—(40) all go to zero, i.e.

will swirl away and result in instability (unbounded) or even P .
chaotic behavior (bounded). It can also be seen from Fig. 6(a) fi(xp, %) = 0fori=1,2,..., N. (41)

and (b) thatF(Py, P;) has the “least-forgiving” stable limit As mentioned, the Poincaré section analysis reduces the

cycle showing the smallest attractive region. system dimension by one. By setting (39) and (40) to zero
it is possible to derive the differentials oz, and di,x
V. STABILITY VIA. TANGENT LINEAR MANIFOLD in terms of dxp_1 = [di, dipe ... ditpN,l]T and
-~ - . . T .
A standard technique of evaluating the stability of the fixedXp-1 = [dip1 dipe ... diyn-1], respectively, such

points of F(P,, P,) is to investigate the tangent linear manithat for an evenv, see (42) shown at the bottom of the page,
folds (lying onP; andP,)) about them. Such approach require@nd Whereas for an od¥, (43) see shown at the bottom of the
the availability of closed-form, autonomous (time-independerftf:9€: Next, by partially differentiating the rest of the equations
algebraic functions for the trajectory evolution within each half (41) with respect tc, andx,,, and substituting backx,
plane. Previous expressions derived for high-ofiér mod- @nddx,x by the results in (42) or (43), we arrive at

ulators are very complicated and are difficult, if not impos- Midxp_1 = MadXp 1 (44)
s!ble, ;O for:_mdulatg nto Zlglebram funct!ons. Evzr.] trlle eXpreﬁ\ihere the(i, j)th element of th¢ N — 1) x (N — 1) matrix M,
sions for third-order modulators contain exceedingly compliz 557" "1 similarly that oM, is ~:/9:,.;. The elim-

- |
cated parameters [12]. Nonetheless, the approach mtroducegl ; b4 L . :

. : . hation ofz, v andz,y is possible because they are functions
Sections -1V offers a comprehensible, scalable solution to an . : . .
modulator order of the other state variables on the Poincaré sections.

Realizing that the Poincaré map E(Pdupn)’ denoted by Likewise, another set of eq_uatlonsNHP, Whlch is the coun-
N Ny A . terpart of (41), can be obtained by swapping the symbols
R : x, — %, is a two-step return magR : x, — Xp)o

b / 3 ; :
(R : %, — %), tWo sets of expressions governing the trae_md V, reversing the half-plane centers in (37) and changing

. L O
jectories inPHP and NHP are required. Starting witPHP, mt?/n‘tmls functions |r/1 (38).TSL;bsequevntly, d?fm'dgph—l -
and applying the interpretation of a high-order system as cdffpn Ay oo diy o] for (R xp — X)) we have
pled second-order subsystems and an additional first-order sub- M3dx, 1 = Mydx;, (45)

N
f]\r(f(p) = Ku+ <Z — (:ﬁpmfl - w;la%) sin w; ¢ + (Zﬁpgi + w;lazi,l) cos wip — wi1a2i1> + Lf]‘pN —v_¢. (39)
=1

N>

fn(xp) = Ku + (Z — (Ep2im1 + wi_lazi) sinwin + (Ep2i — w; 10&2i-1) cosw;n + wi_lazi—1)

=1

+ TN —y4n- (40)

~ _ 1 . . . A

di,n = coswngd [sinw1¢p —coswip ... sinwn,—1¢ —coswn,—1¢ sinwn,P|dXkp_1 42)
. _ 1 . . . -

di,N = cosongT [sinwin —coswin ... sihwn,—1m —coswn,—1n sinwn,n]|dXp_1.

di,ny = [sinwi¢p —coswip ... sinwy,¢ —coswn,P]dXp_1 (43)
dipy = [sinwin —coswin ... sinwy,n —coswn,n]dXp_1.
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Fig. 6. Example embedded fourth-ordé\ modulator ¢ = 0.523,0SR = 64, maximum NTFgain = 1.5, optimized NTF zeros): (a),(b) fixed-points of
different types of transition flow; (c),(d) threshold line values corresponding to stable fixed-points; (e) Positive and negative fly-timbkefbmit cycles; (f)
maximum eigenvalue magnitude for the tangent linear manifolds of stable fixed-points.

where the(i, j)th element of thg N — 1) x (N — 1) matrix values ofR have magnitude less than unity ([12], [32]). Clearly
M; is 0f;/0%,; and similarly that ofM, is —0f;/0%,,;. Now the formulations introduced in this section are scalable to sys-

combining (44) and (45) and evaluating the matrices at the fixe@ms of any order. Fig. 6(f) shows the maximum eigenvalue
points magnitude oR against different tilt factors for the set of stable

fixed-points in Fig. 6(a) and (b). Also, it can be easily deduced
that forn = 0, n_time is equal tap while that for¢p = 0, p_time
For compactness, we dendie = MZIM3M51M1|(_)

%) is equal toy [see Fig. 6(e)]. Accordingly, for simple rational in-
Stability of the fixed-points can then be assured if all the eigeputs such as 1/3, 1/2, 3/5, 2/3, etc., stable limit cycles (even in

dxl, 4 = M21M3M51M1|(£;,i;) dXp_1.  (46)
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Fig. 7. (a),(b) lllustration of the trajectory changefof 0 — 1 |F(P0, P, ) for the fourth-order modulator in Fig. 6, (c) the nine tests for the limit cycle switching.

some cases when the boundary transition flow is unstable) with inputu, a positiveu is assumed. The investigation begins
integer fly-times can be found &b, 7) = (1,0) wheren_time with the concept of overlapped DOAs of various stable, em-
is one. These limit cycles represent theoretically stable limit cigedded limit cycles featured in Sections 11-V. Specifically, when
cles for the real, discrete-timeA modulators, but due to noisew falls below a certain value, denoted§yy it is found that every
and component tolerance they are impossible to maintain in fixed-point on the Poincaré section (and their associated limit
ality and quickly diverge to other trajectories. cycles) is within the DOAs of all other fixed-points. However,
In summary, for anVth-order system, we havg, equations the existence of such a “common” DOA only guarantees a stable
describing the circular trajectories of second-order subsystentgk-time switching from a continuous limit cycle to another. In
within a half-plane. There a®¥, — 1 equations equating the fly- practice, the discrete nature of the state trajectory and its in-
times of these circular trajectories and in case of odd-order mdractable transition within the transition wedges prevent it from
ulators there is one additional equation equating the fly-timesfailing exactly onto any continuous limit cycles. Instead, the
the last second-order subsystem and the first-order subsystgajectory switches constantly between the DOAs of different
Finally, there is one pair of equations that can be combinedgtable limit cycles that may eventually lead to instability. To
one for the Poincaré sections. Therefore, there are talélly-  tackle the difficulty arising from the discrete constraint, itis first
dependent equations for generating the tangent linear manifalelzealed that only certain fixed-points (and their corresponding
limit cycles) are of interest whereupon all discrete trajectories
tend to converge. With the help of a special computer algorithm,
it is shown that for a: below &, (0 < & < &), a domain on
This section presents the dc stability criteria and derivatidhe hyperpland” (where all trajectories must cross despite their
of dc input bounds for practical, discrete-tirié\ modulators. transition flow) can be found around these fixed-points such that
Because the:A dynamics is symmetric about the modulatodiscrete trajectories cannot escape. Such domain constitutes a

VI. DC STABILITY FOR DISCRETETIME MODULATORS
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TABLE |
NUMERICAL RESULTS FOR15 DIFFERENTLP XA MODULATORS WITH OPTIMIZED NTF ZEROS ANDOSR. = 64. EACH SIMULATED BOUND IS ESTIMATED BY THE
MODULATOR BEING STABLE WITHIN 22° SIMULATION STEPSWITH ZERO-STATE INITIAL CONDITIONS IN x(©)

Max NTF
gain = 1.48 u
0 0285 | 0540 | 0716 | 0.821 | 0.880
0.1 0280 | 0535 | 0712 | 0.818 | 0.878
0.2 0262 | 0519 | 0699 | 0.809 | 0.871
o 03 0228 | 0.488 | 0675 | 0.790 | 0.856
FP, P) 04 0171 | 0.433 | 0630 | 0.755 | 0.828
05 0171 | 0318 | 0536 | 0682 | 0.774
assumed 06 0.460 | 0670 | 0570 | 0557 | 0.704
0.7 0.725 | 1.404 | 1.804 | 1.926 | 1.935
0.8 0.609
) U @ Jeiglm= 1 N/A 0647 | 0639 | 0644 | 0648
simulated 0776 | 0650 | 0576 | 0.545 | 0535
bounds e 0762 | 0639 | 0545 | 0534 | 0514
g 0722 | 0547 | 0474 | 0425 | 0436
SNR (dB) 9212 | 105.80 | 116.21 | 12642 | 13587
Max NTF order 3 4 5 6 7
gain = 1.5 u | |eiglmar
0 0262 | 0518 | 0699 | 0809 | 0.871
0.1 0256 | 0512 | 0.694 | 0.805 | 0.869
0.2 0237 | 0495 | 0680 | 0795 | 0.860
. 03 0202 | 0461 | 0653 | 0773 | 0.843
F(P, P) 0.4 0139 | 0399 | 0602 | 0732 | 0.811
0.5 0248 | 0243 | 0484 | 0646 | 0.752
assumed 0.6 0493 | 0799 | 0.796 | 0699 | 0.693
0.7 0708 | 1.442 | 1.979 | 2201 | 2.263
0.8 0.253
U @ |eiglpe= 1 N/A 0631 | 0620 | 0625 | 0629
simulated 0766 | 0630 | 0561 | 0530 | 0509
bounds g 0743 | 0599 | 0522 | 0510 | 0505
Z 0711 | 0523 | 0451 | 0.394 | 0406
SNR (dB) 9223 | 10563 | 117.12 | 127.26 | 13552
Max NTF order 3 4 5 6 .7
gain = 1.52 u | leiglma
0 0239 | 0495 | 0681 | 0.795 | 0.861
0.1 0233 | 0489 | 0676 | 0792 | 0.858
0.2 0213 | 0470 | 0661 | 0.780 | 0.849
. 03 0175 | 0433 | 0630 | 0.755 | 0.829
FP, P) 0.4 0103 | 0361 | 0570 | 0.708 | 0.793
0.5 0300 | 0283 | 0415 | 0607 | 0.731
assumed 06 0514 | 0004 | 0994 | 0937 | 0878
0.65 0609 | 1193 | 1519 | 1598 | 1.588
0.75 0.562
U @ Jeighpm= 1 N/A 0618 | 0601 | 0606 | 0610
simulated 0756 | 0605 | 0519 | 0494 | 0.485
bounds Z 0723 | 0592 | 0508 | 0.484 | 0.480
Z, 0699 | 0511 | 0432 | 0.363 | 0.376
SNR (dB) 9297 | 106.39 | 117.82 | 127.03 | 136.79

positively invariant set (PIS, Schreiet al. [21]-[23]) on P, the Lyapunov’'s methods, Ch. 5, [32]). The DOAs for different
eventually guaranteeing dc stability. stable fixed-points are lying on their corresponding Poincaré
As seen from Section V, a stable tangent linear manifold (i.esections. To unify the description all fixed-points and their as-
all eigenvalues of magnitude less than unity) is accompanisdciated DOAs, they are mapped back accordingly from the
with each stable fixed-point or limit cycle of a particular transiPoincaré sections onto the hyperpldievhere all trajectories,
tion flow. This implies that a DOA can be found or estimated (byrespective of the transition flow, must cross [cf. Fig. 3(d)].
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The description of all fixed-points and DOAs thereafter will al- DOA of B DOA of A
ways refer to their back-mapped versions Brunless other-
wise stated. Also, all fixed-points/limit cycles refer to first-order
ones as obtained from the (first-return) Poincaré map, instead of
higher order return maps.

A. Convergence of a One-Time Change in Transition Flow

The simplified case of the stability of a one-time switching
from one stable limit cycle of a particular transition flow to
another is first investigated, i.e., whether a stable limit cycle
will converge asymptotically to another when the tilt factgrs
7 € [0, 1] are changed. Numerical analysis as in Fig. 6(f) shows
that for all properly designed A modulators, a stable boundary
transition flow (i.e., less-than-unity eigenvaluespat n = 1)
implies stable limit cycles corresponding to all other tilt factor
tuples(¢, n). Stability of the one-time switching or change of
transition flow can then be assured by testing if all the back-
mapped DOAs form an overlapped regionBthat contains all
the stable, back-mapped fixed-points. In fact, the set of back-
mapped fixed-points in respective subsystems reveals that ex-
treme trajectory switching must occur wheérand/orp make Fig. 8. lllustration of the (back-mapped) trajectory switching as on the
their farthest jumps from 0 to 1 or otherwise. And that the {Vﬁ’tirh%ag“gﬁa((""b))Z?aet;tlg“rf]j‘g’glcehg\ﬁt?ﬂﬁ]goss'b'e nstability due to a second
DOAs guarantee the stability of intermediate switching (i.e.,
change of¢ and/orn being less than one) provided extreme ] . ) . ]
switching is stable. In other words, the stability of a one-tim@ack to the right fixed-point will render the trajectory unstable
limit cycle switching can be assured by testing if the trajectofjcause itis now outside the DOA of the right fixed-point. Sub-
at one extremity converges to those stable limit cycles at ottR§auently, to ensure dc stability, it is required that the DOAs

extremities, i.e., within the DOAs of them. This is done by firsf different fixed-points to be at least close enough such that
back-mapping the stable fixed-point (&, or P,) onto P, as- trajectory changes are always encompassed by all DOAs, as in

signing it as the initial condition and subjecting it to anothdfd- 8(P)-
transition flow to see if it converges to the new limit cycle. The ) ) -
notation to denote a trajectory switching frde¢qu) to B- Convergence of Practically Changing Transition Flow
F(P¢2,P,,2) is In practical> A modulators, the integer fly-time constraint
P lends itself to certain modifications from the continuous-time
¢:d1 = oy mim —m|F (P¢‘ ’P"‘) ’ (47) analysis. For example, the fly-times in Fig. 6(e) now need to
Fig. 7(a) and (b) show the example ®f: 0 — 1|F P()?Pl) be quanti_zed an_d it i.s easy to see that near the dc input bound
the negative fly-time is always quantized to one. In other words,
o . - actical discrete trajectories will tend to converge to those limit
extreme switching to be tested are summarized in Fig. 7(¢). : : . o .
e PR cles of unity negative fly-time, as highlighted by the bold lines
The test of switching & P07P0) '_S not negded (den_otedin the same plot. Fig. 9 shows some examples of tilt factor tu-
by broken arrows) because by starting a trajectory®owith  ples recorded in real, discrete trajectories on the fly, demon-
F (P07Po> assumption, it simply means that the trajectorytrating this inversely proportional relationship betweeand
will stay there forever and is, therefore, stable. The bound @nA lower v may have more than one level of quantization as
u, denoted by, below which all fixed-points are within the in Fig. 9(b) and (d). For a positive input, ¢ is dependent on
DOA of one another, is tabulated in Table I. n (and vice versa for a negativg, for example, whem = 0
Fig. 8 illustrates why this convergence analysis of one-timgmust be equal to 1 anfldecreases whepincreases. During
change in transition flow is not sufficient to ensure dc stabilitgtable dc operation near the bound, whilearies randomly be-
In terms of trajectory intersections being mapped back fR),m tween 0 and 1 to satisfy the integer positive fly-time constraint,
onto P, Fig. 8(a) shows that for a one-time switching, wheg will take on values near those of the fixed-points with an in-
two fixed-points are within the DOA (mapped onR) of each teger negative fly-time.
other, they will converge asymptotically to one another if the tilt Fig. 8(b) suggests that the worst-case trajectory switching oc-
factor tuple is changed. But in the case of constantly changingrs when the trajectory is constantly switching between ex-
transition flow as in the case of real, discrete-tim& modu- treme fixed-points. This is justified by simulation showing that
lators requiring integer fly-times, a trajectory may eventuallinstability occurrence is preceded by tilt factor tuples alternating
become unstable. For example, in the numbered sequencaear the two ends of the series of fixed-points with unity nega-
Fig. 8(a), the transition flow changes from the right (triangulatjve fly-time. In view of this, a special computer algorithm for
fixed-point toward the left (square) fixed-point. But before thgenerating state trajectories is used to investigate discrete-time
convergence is complete, another transition flow change, sdg, stability. It works in a way that for a positive input 7 is

o]
=<

for the fourth-order modulator in Fig. 6. The nine cases
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Fig. 9. Tilt factor tuples recorded for re&lA modulators QSR = 64, maximum NTFgain = 1.5, optimized NTF zeros, 2500 tuples for each figure) under
different dc inputs: (a),(b) fourth-order and (c),(d) fifth-order.

an input parameter (which varies randomly in practice), whikents the process from settling on any fixed-points. For a lower
¢ is determined from the integer negative fly-time constraint. (0 < u < &) where negative fly-time can be quantized to
It, therefore, represents a hybrid algorithm that is partially comtegers larger than one, the corresponding fixed-points are situ-
strained by the integer negative fly-time, and partially dependeated in between the fixed-points (and associated DOAS) of unity
on the user input for the positive fly-time (which is not necesiegative fly-time and the above worst-case analysis still applies.
sarily an integer but at least one). The worst-case switching $@nally, considering the circular or oscillating nature of trajec-
quence, studied in terms of the trajectory intersectionsf?@n tories in each decomposed subsystem, it is easy to verify that a
mapped back td, is found by starting a trajectory on one endjlobal trajectory is bounded in the whole state space provided
of the series of fixed-point of unity negative fly-time withset it is bounded on the Poincaré sections. In other words, when
for the other end. While the trajectory is evolvimgs constantly falls belowé,, a PIS is formed. dc stability can then be assured
alternated between the two extremes (0 and 1) such that the faai-any discrete trajectories starting within this PIS, or more
jectory, ifitis ever convergent, is farthest stretched. Experimergpecifically, near those fixed-points of unity negative fly-time.
show that suchy switching sequence is easy to locate and is #or dc inputs abové,, trajectories as given by the algorithm
fact a periodic sequence. The artificial manipulation, therefomnmay not be bounded due to possible couplings from second or
simulates the worst-caggvariation which will rarely occur, if higher order return maps. Trajectories taking on specific paths
not impossible, in practice. Subsequently, it is found that themeay travel beyond the attractive region and become unstable.
exists a modulator inpuf; (0 < & < &) below which the

trajectory behavior o is always bounded even under the con©- Numerical Examples and Results

trived, worst-case changesijnPractical trajectory intersections  Example fourth- and fifth-order modulators are used for
on P, with initial conditions near the fixed-points of unity neg-exposition in Fig. 10 where only the first second-order de-
ative fly-time, will then collapse into this bounded, worst-caseomposed subsystem is shown. Visualization is provided for
region (effectively a PIS) due to the attraction of intermediatge trajectory intersections aR back-mapped fronP,. The
fixed-points corresponding t@ between 0 and 1. In an actualbehavior in other subsystems as well as for the intersections
modulator, the intractability in the transition flow, however, preback-mapped fron,, onto P all look alike and are omitted
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Fig. 10. Converging trajectory intersections Bn(shown for the first second-order subsystems of the fourth- and fifth-order modulators in Figs. 5 and 6) by

the computer algorithm: (a),(b) for different valuesroith initial conditions frome¢ : 0 — 1|F(150., P,); (c,(d) one-time switching between the two extreme
fixed-points; (e),(f) the corresponding worst-case bounds or stable domains (dotted lines) together with 5000 simulated intersections.

for simplicity. Fig. 10(a) and (b) show that by fixing at of different orders and maximum NTF gains are designed
different values, the state trajectories are all convergent with optimized NTF zeros using thAY design toolbox [3]

the corresponding fixed-points of unity negative fly-time foat OSR = 64. The maximum eigenvalue magnitudes of their
u = &. Fig. 10(c) and (d) illustrate trajectory convergenctangent linear manifolds, assuming boundary transition flow
of a one-time switching from one extreme fixed-point td(P;, P;), against different dc inputs are tabulated in Table I.
another. Fig. 10(e) and (f) show the worst-case bounds (staiblee simulated dc bounds and the corresponding theoretical
domains) found by varying; as described and the actuabounds, namely; for continuous-time ané, for discrete-time
trajectory intersections obtained from simulation, verifyingettings as discussed before, are given. Also shown are the
the enclosure by the bounds (d?). Finally, 15 modulators estimated SNRs for a sine wave input of amplitdesituated
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in the middle of the baseband, confirming the advantage off4]
using higher order modulators for higher resolution. It can
be observed from the table that relying on the s}ability of [5]
the farthest stretched boundary transition fl&¢P,, P1) is
unreliable since the dc input bounds, thus, estimated (where
the maximum eigenvalue magnitude just reaches unity) ShOV\{G]
an increasing trend when modulator order is greater than four,
contradicting the decreasing trend borne out by simulation and{
experience. Moreover, eigenvalues of unit magnitude canno
even be found fof (P, P;) in third-order modulators. The
application of the proposed stability analysis eliminates suchlél
contradiction and produces a theoretical dc bogincbonsistent

with and, due to its worst-case assumption, more conservativeo]
than the simulated dc bound. The discrete trajectories in
practice, depending on their initial conditions, may never reachq,
this worst-case trajectory and a bound betwégrand ¢; is
expected. It should be stressed that no amount of simulatiof]
can guarantee dc stability since a modulator can go unstable
even after a million simulation steps as we have observed. I112]
contrast, derivation of the dc bourd is a one-off process in 13
finite time. Interestingly, all the simulated bounds are slightly
larger than¢;. This demonstrates both the possible pitfalls of[14]
simulation and the safety margin provided by the proposed
approach in dc bound estimation. [15]

VII. CONCLUSION [16]

This paper has presented an analytical investigation of thg7]
state trajectory behavior and dc stability of high-or@etler >
2), LP XA modulators with distinct unit circle NTF zeros. Al- 18]
gebraic difficulties arising from the highly nonlinear quantizer
function have been tackled through combining and generalizing®!
the techniques of state-space decomposition, continuous-time
embedding, and Poincaré map analysis. The study of both evefzo]
and odd-order modulators has been presented in a unified and
scalable manner. It has been shown that a high-order moduIat&rl]
system can be decomposed into second- and first-order subsys-
tems, thus facilitating graphical interpretation and analysis. Sys-
tems of nonlinear equations have been established for the |ch_2]
tion of embedded state-space limit cycles using efficient numei23]
ical methods. It has been revealed that a necessary condition for
dc stability requires the overlapping of DOAs associated with4
all types of transition flow and the inclusion of all stable limit
cycles within this overlapped region. A special computer algo-[25]
rithm has been written to solve for the sufficient condition for dc
stability under the regime of constantly changing transition flow[26]
presentin real, discrete-timeA modulators. Numerical exam-
ples featuring modulators of different orders and maximum NTI‘—W]
gains have been given to illustrate the results.
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