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DC Stability Analysis of High-Order, Lowpass��
Modulators With Distinct Unit Circle NTF Zeros
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Abstract—This paper presents an analytical approach to the in-
vestigation of the dc stability of high-order (order 2), low-
pass (LP)�� modulators with distinct noise transfer function
(NTF) zeros on the unit circle. The techniques of state-space di-
agonalization and decomposition, continuous-time embedding and
Poincaré map analysis are combined and extended. It is revealed
that high-order �� modulators can be transformed and decom-
posed into second- and first-order subsystems. The investigation,
coupled with efficient numerical methods, generalizes itself to dif-
ferent types of transition flow and provides theoretical insight into
the state trajectory and limit cycle behavior. It is shown that es-
timation of dc input bounds based solely on the boundary transi-
tion flow is inadequate. A procedure utilizing the information from
different transition flow assumptions and the discrete nature of a
modulator is introduced for locating the stable dc input bounds of
practical, discrete-time�� modulators.

Index Terms—dc stability, ��, embedding, nonlinear dynam-
ical systems, Poincaré map,��, state space.

I. INTRODUCTION

DESPITE the widespread deployment of modulators
[1], [2] in modern electronic products, the theoretical un-

derstandings of high-order modulators have
been lagging behind. Much of the modulator design work still
relies heavily on extensive computer simulation [3]. Among the
longstanding unresolved issues, modulator stability remains a
major topic which is especially critical for the conditionally-
stable high-order modulators. Numerous attempts to tackle the
stability problem are either limited to second-order modulators
or bound to be too conservative for higher order systems. This
paper presents an analytical, nonlinear dynamical approach to
the dc stability study of a class of high-order, lowpass (LP)
modulators with distinct noise transfer function (NTF) zeros on
the complex unit circle. Special attention is paid to the deriva-
tion of stable dc input bounds.

The incentive for pursuing high-order modulators, even
though they are more prone to instability, is the high signal-to-
noise ratio (SNR) or “resolution” achievable without an overly
high oversampling ratio (OSR) [2]. Single-bit modulators
are usually preferred over their multibit counterparts due to their
inherent linearity and higher tolerance of analog component im-
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perfections. The assumption of distinct unit circle NTF zeros
encompasses a large class of modulators including those in
the popular cascade-of-resonators structure [4], [5] with opti-
mized, distributed NTF zeros to boost the SNR by several bits
[3]. Baseband or LP modulators with NTF zeros about dc are
studied in this paper as dc stability is only meaningful in the
context of these modulators. Stable bandpass modulators that
accept inputs centered about some carrier frequencies can, how-
ever, be obtained from stable LP prototypes through appropriate
transformations [2].

Current attempts to analyze the stability of modulators
can mainly be classified into linear and nonlinear approaches.
Linear methods [6]–[9] suffer from their approximation nature
and deficiency to explain phenomena such as chaos and limit
cycles present in the practical, discrete-time modulators. Non-
linear methods [10]–[20], though capable of providing rigorous
theoretical treatment and explaining some of the intricate phe-
nomena, are largely constrained by their complexity and poor
scalability. A recent computational approach of Schreieret al.
[21]–[23] that proves stability by locating a positively invariant
set (PIS) also faces the barrier of exponential grow in its com-
putational complexity and the results are too conservative when
modulator order grows beyond three.

By generalizing the matrix diagonalization framework of
Steiner and Yang [24] and its subsequent application to stability
analysis [25]–[27], this paper addresses the case of state-space
transition matrix with complex-conjugate eigenvalues that are
present in many practical modulators utilizing distinct NTF
zeros on the unit circle [2], [3]. It is shown that these modulators
can be transformed into second- and first-order subsystems
coupled through the only nonlinearity, namely, the quantizer
function. With this simplification, it is possible to apply the
continuous-time embedding technique of Wang [10], [12]
(which used to give complicated formulas even for third-order
modulators) to obtain straightforward continuous-time trajecto-
ries for modulators of arbitrary orders. The boundary transition
flow assumption in the Poincaré map analysis of Wang is also
waived and all possible limit cycles corresponding to different
types of transition flow are obtained via efficient numerical
methods [28 Ch. 10]. Fixed-point stability is analyzed with
closed-form tangent linear manifolds. Criteria for dc stability of
practical, discrete-time modulators are derived by utilizing
the properties of the decomposed subsystems and the concept
of overlapped domains of attraction (DOAs, also basins of
attraction [18]). The stable dc input bound or overload limit
[23] thus obtained provides a solid proof, which is lacking so
far, for the dc stability of the modulators under consideration.
It is also a crucial parameter for LP modulator design
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because it specifies the maximum dc input for which the mod-
ulator can correctly “modulate” into its output bitstream. As
nominal inputs into LP modulators are slow time-varying
signals relative to the oversampling rate, and in the limiting
case dc signal, dc input bound gives a meaningful figure for
determining the safe input range. Furthermore, dc bound is
shown to be tighter than that for conventional ac signals [3]
and, therefore, can also be sensibly regarded as the worst-case
bound.

This paper is organized as follows. Section II begins with a
state-space formulation and transforms a modulator into
a representation with the least amount of coupling. The diag-
onalization and decomposition methods of Steiner and Yang
[24] are extended to transition matrices having complex con-
jugate eigenvalues as a result of the distinct NTF zeros. Con-
tinuous-time embedding [12] is then applied to obtain expres-
sions for the time evolution of state trajectories. Section III em-
ploys piecewise linear analysis to investigate the dynamics of
decomposed second-order subsystem(s) and a first-order sub-
system present in odd-order modulators only. Systems of non-
linear equations for locating the fixed-points under different
transition flow assumptions are established in Section IV. Such
equations allows for the application of efficient numerical al-
gorithms based on a class of quasi-Newton methods. Section V
gives the closed-form tangent linear manifold that characterizes
the stability of a fixed-point and its associated limit cycle. Sec-
tion VI discusses the DOA associated with a stable limit cycle.
This concept, along with the properties of the coupled subsys-
tems and the discrete-time constraint, is then utilized to devise
a testing procedure for finding the stable dc input bound of a
practical modulator. Numerical results of fifteen mod-
ulators are also given. Finally, Section VII draws the conclusion.

II. STATE-SPACETRANSFORMATION AND EMBEDDING

This section describes two important techniques for the
state-space manipulation and continuous-time modeling of a
discrete-time modulator. They represent extension of the
diagonalization and decomposition technique of Steiner and
Yang [24] and the embedding process of Wang [12]. For brevity,
only a fourth- and a fifth-order LP modulators with distinct

unit circle NTF zeros are exemplified but the procedures are
readily extendable to modulators of arbitrary orders. The
cascade-of-resonators architecture is chosen for illustration due
to its popularity and favorable properties like unit circle NTF
zeros and better robustness than other architectures [4], [5].

A. Discrete System Similarity Transforms

With respect to Fig. 1, and following a similar ap-
proach as in [29], we define the state-vector

and . The state-space
representation of a parameterizedth-order modulator is

(1)

Here, is the sign function whose output is1 when
and 1 when 0. The bracketed superscripts denote the

number of similarity transforms the state vectors or matrices
have undergone. Specifically, for our example in Fig. 1 where

4 and 5, see (2) at the bottom of the page. Note, that (2)
depicts the case of an odd-order system ( 5). For an even-
order modulator ( 4), the elements outside the delimiting
lines are simply dropped, for example, the rightmost column
and bottommost row in , the last element in , etc.
This convention of combined representation of even- and odd-
order systems will be followed throughout this paper. Next, by
substituting and considering the special structure of

, the first equation of (1) is rewritten as

(3)

Examining Fig. 1, the NTF zeros are just the poles of the
transfer function from to with zero input ( 0). In other
words, musthave eigenvalues corresponding
to the distinct NTF zeros and is diagonalizable by a nonsingular
matrix whose columns consist of the eigenvectors of

, resulting in

(4)

(2)
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(a)

(b)

Fig. 1. Two example�� modulators in parameterized cascade-of-resonators structures: (a) fourth-order, (b) fifth-order.

where

...
...

(5)

Here, is the number of second-order subsystems. The bolded
’s stand for zeros apart from the diagonal. The’s (by conven-

tion ) correspond to the distinct NTF zero frequencies.
It can be verified that the elements in other state matrices are
also complex conjugate pairs. To visualize the dynamics (graph-
ically) it is desirable to work with real state variables. This is
achieved by a similarity transform that separates the real and
imaginary parts of the conjugate elements, namely

...
...

(6)

Such transform produces

(7)

with

...
...

(8)

The elements in all state matrices are made real by this transfor-
mation. Now the state-space representation is transformed into
parallel second-order subsystems plus an additional first-order
subsystem for odd-order modulators. In this block-diagonal
form, the state variables of every subsystem become almost
decoupled, interacting only through the quantizer function

. By detailing the second equation in (7)

(9)

The second line of (9) is a sum of dot products which represent
the projections of the state variables of every second-order sub-
system onto the vectors formed by every element pair in,
namely , . A further transfor-
mation and simplification is to rotate and scale the coordinate
system of each second-order subsystem so that these vectors
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Fig. 2. Normalization process by rotating to the new coordinate systemx , y .

become the unit vectors in the conventional upward sense (see
Fig. 2), and to scale to unity for odd-order modulators.
This process, denoted as thenormalizationprocess, is done by
the normalization matrix defined as

...
...

(10)

where ’s are as determined in Fig. 2. An interesting property
of the transformation by is that it has no effect on . This
is sound because only the coordinate system of every second-
order subsystem is changed but not its nature. Summarizing

(11)

where

(12)

Equations (1), (4), (7), and (11) all describe the samemod-
ulator because (and, therefore, the modulator output) is in-
variant. The only distinction lies in the different choices of the
state vectors. The second equation in (11) corresponds to the hy-
perplane that divides the state space into two regions, called
the positive half-planePHP and the negative half-planeNHP,
wherein the quantizer outputs, denoted by, are 1 and 1,
respectively.

The global dynamics of a practical modulator is reviewed
in Fig. 3. Employing the convention of Wang [12], mode-
and mode- distinguish the positive and negative states of the
quantizer output. First, a practical modulator (usually im-
plemented with switched-capacitors) is a sampled-data system
and its state trajectory undergoes discrete mapping as shown in
Fig. 3(a). The dynamics is affine within each half-plane and the
trajectory, being solvable by linear techniques, follows certain
rules until it crosses . If continuous trajectory is assumed, the
quantizer output changes sign (and so do the dynamics) when
the trajectory hits exactly on. However, the discrete constraint
in practice will carry the trajectory somewhere beyond (and in-
clusive of) where it stays for one and only one time instance,
known as thetransition point, before changing dynamics. The
dynamics is then governed by another set of rules in the oppo-
site half-plane and the cycle repeats. The two shaded wedges

in Fig. 3(b), bounded by and the far end boundaries and
, denote the possible regions for transition point occurrence.

These wedges are called the positive and negative transition
wedges and . In reality the transition may take place any-
where on and (within and ) where , are
called the and tilt factors for obvious reasons. Both and

reduce to when and approach zero.

B. Embedding and Transition Flow

Embedding [12] refers to the construction of a set of con-
tinuous differential equations whose solution, in the form of a
continuous-time trajectory as in Fig. 3(c), contains every point
along the discrete trajectory. Such formulation results in con-
tinuous-time functions that are easier to handle analytically. To
embed an arbitrary order discrete-time system given by (11), we
consider a continuous-time counterpart

(13)

where the subscriptstands for continuous-time. Assuming
and is known, the exact solution of the first equation

(13), e.g., see [30]

(14)

where stands for matrix exponential. Supposeand
remain constant during the time interval , then at
the next time instance

(15)

Mapping (15) to (11) and noting the identity
where denotes matrix logarithm

and is a diagonal matrix, the embedded, continuous-time
matrices are

...
...

(16)

According to (15), a unit time step advancement (i.e., increasing
by 1) in the continuous-time trajectory corresponds to a hop to

the next state in the discrete-time trajectory.
Next, consider the extra first-order subsystem in an odd-order

modulator, and assuming (the
subscript is omitted from for reasons that will become
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(a) (b)

(c) (d)

Fig. 3. Conceptual drawings of the nonlinear dynamics: (a) a discrete trajectory, (b) transition wedges and Poincaré sections, (c) continuous trajectory, and (d)
limit cycle, fixed-points, and an associated domain of attraction (DOA).

clear later), and
, then from (13) and (16)

for
for .

(17)

For properly designed modulators, and are of opposite
signs and, therefore, represents an “oscillating” quantity
under normal operation of the odd-order modulator.For conve-
nience, we denote a matrix or vector after dropping the terms out-
sidethedelimiters(for thecaseofodd-ordermodulators)byatilde
sign, [see (16)], is theblock-
diagonalmatrixafteromitting the last rowandcolumnof,and

is without etc. It should be stressed that this tilde
sign is immaterial for even-order modulators wherein ,

etc.AspointedoutinSectionItheanalysisassumesacon-
stantinput .Thisenablesfurthersimplificationof(13)throughas-
signing another continuous-time state-vector which is a dis-
placement of , namely

(18)

As a result the second equation in (13) can be verified to be equal
to

(19)

where is the identity matrix of appropriate dimension. In
the third line of (19) the superscripts for the discrete system
matrices are omitted because the bracketed value is invariant
under similarity transforms. Referring to Fig. 1, this value,
denoted by a constant , is the forward-path resonator dc gain
[ignoring the last branch in an odd-order modulator which is
not part of a resonator, i.e., by putting in
Fig. 1(b)] from to with 0. Therefore, we end up with
a much simplified system of equations as in (20), shown at
the bottom of the page. It can be seen that the state equations
are piecewise linear with respect to the sign of the quantizer
output , which changes only when the trajectory

crosses .

for
for

(for odd-order modulators only).
(20)
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As mentioned, the state space is divided into
two halves, called the positive half-plane

for and

negative half-plane
for . The exact solution in each half-plane, with
the help of (14), can be solved using linear techniques to
give (21) at the bottom of the page. It can be seen that the
solution consists of a part corresponding to the second-order
subsystem(s) and an extra part for the first-order subsystem
in odd-order modulators. The initial point (at ) within a
particular half-plane is denoted as . The quantizer output
remains constant (i.e., 1 or 1) as increasescontinuously
until the trajectory hits on certain or , whereupon is
reset to zero and this transition point serves as the newfor
the new trajectory with opposite sign of.

The role of continuous-time embedding is to “fill in” the
states in between consecutive discrete states by assuming con-
tinuous or infinitesimal evolution of trajectory, i.e.,being a
nonnegative real number. Subsequently, by restrictingto be
nonnegative integers, (21) also describes the discrete trajectory
provided the starting condition in a half-plane is known.
The discrete trajectory continues until it crosses and departs
from . The transition point, at which the sign ofis reversed,
is assigned as the new and is reset to zero and incre-
mented by unit steps again. Although (21) gives the closed-form
solution for the trajectory in each half-plane, it is not very in-
formative regarding the stability of the modulator because
for the discrete-time case the transition points are intractable
analytically. To circumvent this uncertainty, (21) is interpreted
as individual continuous-time subsystems coupled through the
quantizer function under a certaintransition flow, i.e., values of

and are presumed [see Fig. 3(c)]. Fig. 3(d) shows the pos-
sible continuous-time limit cycle and fixed-points, denoted by

and , arising from a particular transition flow. For a stable
fixed-point a DOA (lying on or ) exists around it where
nearby trajectories are attracted toward the fixed-point.

III. PIECEWISELINEAR ANALYSIS

This section shows that every second-order subsystem can be
interpreted as circular trajectories orbiting about two centers in
opposite half-planes. Renaming in (21) as which is

called thetransition matrix, it can be deduced that, see (22) at
the bottom of the page. Hence the first equation in (21) can be
decomposed into separate second-order subsystems, namely

(23)

. By regarding as the usual and
-coordinates, it can be seen that (23) represents two circular

trajectories orbiting in a counter-clockwise sense with an “an-
gular speed” . The distinct NTF zeros (therefore, finite’s)
ensure that the subsystems are nontrivial. When , the
center of the trajectory is at , and that for

is flipped about the origin to .
It is also apparent from the first equation in (21) that the cen-
ters for individual second-order subsystems are aggregated in
the vectors for trajectories inPHP and for tra-
jectories inNHP. Recalling the conditions forPHP andNHP
following (20), it becomes clear why the normalization process
in (10) is important for ease of visualization as the criteria now
depend on the sum of the-coordinates (if regarding the pos-
sible first-order subsystem as a vertically oscillating quantity) of
individual subsystems being above or below . Also, for tra-
jectories of the second-order subsystems inPHP (NHP), their
centers are inNHP (PHP). This is necessary for functional
modulators because otherwise trajectories may remain perma-
nently in a particular half-plane, i.e., the modulator output
is tied to 1 or 1.

Fig. 4(a) and (b) show a typical second-order and a first-
order subsystem. Fig. 4(a) illustrates the circular trajectories and
Fig. 4(b) shows the oscillating nature of the possible first-order
subsystem against time. The positioning of the half-plane cen-
ters in Fig. 4(a) can vary as long as they are symmetric about the
origin. In particular, there are two horizontal lines in each sub-
system, called the positive threshold line and the negative
threshold line , due to the coupling effect from other subsys-
tems. They represent the values whose respective sums satisfy
the condition for the trajectories to be on the hyperplane, i.e.

(24)

for
for

(for odd-order modulators only).
(21)

... (22)
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Fig. 4. Decomposed subsystems: (a) second-order; (b) first-order; (c), (d) limit cycles in subsystems; (e), (f) two interacting second-order subsystems in a
fourth-order�� modulator.

where gives the total number of decomposed sub-
systems inclusive of second-order and first-order ones. The pos-

itive threshold lines denote the thresholds across which a trajec-
tory enters thePHP and the negative threshold lines denote the
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thresholds for entering theNHP. After crossing these lines, a
trajectory go on for and more time step (i.e., rotate for
and more radians in a second-order subsystem or travel for

and more distance in a first-order subsystem) onto
and , denoted as and

, respectively. Strictly speaking, the parame-
ters and should be included in the notations of and
but for simplicity they are omitted and should be clear from the
context. Referring to Fig. 4(a), it can be verified that

(25)

and

(26)

for . And for the first-order subsystem when
is odd

and (27)

Here, another expression for is the floor function
.

Since the boundaries and inside and are obtained
through mapping by and time step forward about ap-
propriate half-plane centers, their equations can be derived by
recognizing that when states on or (i.e., and )
are mapped and time step backward, they will land on

. This yields (28) and (29) shown at the
bottom of the page.

The transition flow occurring on and is denoted as
. Wang [10], [12] has investigated the special case of

the intuitively farthest stretched , called theboundary
transition flowcorresponding to . In nonlinear con-
text the two planes, and , , , are chosen to
be thePoincaré sections(see [31]). The successive mapping of
states, namely, a two-step return map

(30)

is known as the first return or Poincaré map. This mapping
reduces the system dimension by one because only states on
the Poincaré sections are of concern. A (global) limit cycle
of exists if a continuous closed-loop trajectory
can be found resulting in two fixed-points, and , on
the two chosen Poincaré sections and as in Fig. 3(d).

This requires finding closed-loop trajectories in all subsystems
whose state variables satisfy (24)–(27), as is shown in Fig. 4(c)
and (d). The stability of these fixed-points and their associated
limit cycles is then investigated through the tangent linear
manifolds about them.

For an th-order modulator, there are second-order
subsystems interacting with each other wherein different sub-
systems have different arrangements of half-plane centers. The
trajectories of all second-order subsystems will be traveling in
a sense that they counteract each other. Fig. 4(e) and (f) show
the two second-order subsystems resulting from a fourth-order
modulator. For example, inPHP the trajectory of the first
subsystem is traveling upward to while that of the second
subsystem is going downward to till they cross the threshold
lines and penetrate for more time step intoNHP, where-
upon the dynamics changes and proceeds by the rules ofNHP
accordingly. For an odd-order modulator, there are
subsystems with the last one being a first-order subsystem
that interacts with the other second-order subsystems in a sim-
ilar manner. Fig. 5 shows a practical, discrete-time fifth-order
modulator under stable and unstable operations. The state vari-
ables are first transformed into and viewed by the subsystem
framework. In an unstable modulator, the integrator outputs all
evolve toward infinity but in Fig. 5(e) and (f) one subsystem
remains bounded. This is so because the state variables are in
the decoupled, transformed state space. When the state vari-
ables are transformed back to the integrator outputs (coupled
subsystems), all of them will go to infinity as is observed
in real cases. A major difference and difficulty in practical

modulators is that the trajectory is discrete and never
falls exactly onto any continuous-time limit cycle, making the
exact transitions intractable. Wang’s work on third-order
modulators argues that the discrete trajectories are close to the
neighborhood and mostly within the space encompassed by
the intuitively farthest stretched limit cycle. The
modulator is predicted to be stable when is stable.
Excellent match with experimental results are observed for
the third-order examples.

Nonetheless, uncertainty remains because there is no proof
as to the existence of stable fixed-points and limit
cycle will guarantee stable discrete trajectories. In real modu-
lators, the transition may take place anywhere withinand
with intractable values of and instead of exactly on and

. Simulation of some modulators shows that
though the stable limit cycles produced by , if they

or (28)

or (29)
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Fig. 5. Simulation of a discrete-time fifth-order�� modulator (OSR = 64, maximum NTFgain = 1.5, optimized NTF zeros): (a)–(d) discrete trajectories
under stable operation (u = 0.42, zero-state initialx , 1000 runs) where bold lines represent the stableF(P̂PP ; �PPP ) limit cycle; (e),(f) discrete trajectories leading
to unstable operation (u = 0.63, zero-state initialx , 2300 runs).

ever exist, generally encircle the discrete trajectories, there are
frequent occasions that the discrete trajectories go beyond this
encirclement [see Fig. 5(b)–(d)]. Counterexamples are easily
found where the discrete trajectories eventually go unbounded
despite the existence of stable . It is this intricate na-
ture that renders the stability analysis of modulators highly
difficult, especially for high-order modulators since graphical
interpretation would become much more complicated. In the

following sections, stability of the general case , ,
is investigated. It is shown that in practical modula-

tors, discrete trajectories going beyond the stable limit cycle, if
any, of is a natural case. And that the existence of
stable fixed-points for all types of transition flow serves only as
a necessary condition for stable dc operation. Sufficient condi-
tion for dc stability and the procedures for finding the stable dc
input bounds are presented in Section VI.
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IV. FIXED-POINT LOCATION BY NUMERICAL ANALYSIS

Locating the fixed-points and their associated limit cycles
under different transition flow assumptions is a critical step
toward stability analysis of modulators. The limit cycles
approximate the locus of the discrete trajectories exhibited
by practical modulators. An unstable (repelling) limit cycle
implies unstable operation of the modulator. The inverse is not
necessarily true as discrete trajectories cannot fall exactly onto
the stable limit cycles and additional criteria for dc stability are
needed. The nonlinearity introduced by the quantizer function
makes it difficult to solve for the fixed-points algebraically so
numerical methods are utilized. The fixed-points are found
by recognizing that the positive and negativefly-times(which
are the time that a trajectory spends in thePHP and NHP,
respectively) of all subsystems, when coupled together, must
be equal.

First, for the limit cycle in a second-order subsystem, it turns
out that the two threshold lines completely characterize the
fixed-points and subsequently the fly-times. Given and ,
the fixed-points of (denoted by asterisks in Figs. 4
and 5) for each second-order subsystem, with the help of (25)
and (26) and the fact that the fixed-points and the half-plane
centers must form into a symmetrical kite shape [Fig. 4(c)],
can be solved by two simultaneous equations as in (31) shown
at the bottom of the page, for , (note that the
parameters , , , and are known parameters for
a second-order subsystem). Hence the positive and negative
fly-times [ and in (32)] can be obtained through
dividing the angles sustained about each half-plane center [
and in Fig. 4(c)] by the corresponding , see (32) at the
bottom of the page, where and is the
angle function of a complex quantity. Combining (31) and
(32), it is obvious that the fly-time functions can be expressed
as nonlinear functions of the threshold line values. For the
first-order subsystem in an odd-order modulator, the same

dependence on threshold line values also applies. From (27),
its fixed-points are

and (33)

and the fly-times

(34)

Similarly, combining (33) and (34), it is straightforward to see
that the fly-time functions can be represented in terms of the
threshold line values and .

In general, an th-order modulator can be decomposed into
subsystems. Finding the fixed-points or global limit

cycle when these individual subsystems are coupled is equiv-
alent to solving for the following set of
nonlinear equations in terms of the threshold line values,

(the unknowns) such that
all subsystems give the same fly-times: see (35) shown at the
bottom of the page. In order words, the objective is to find the
vector
that gives . But from (24), the last two elements in
are functions of the other elements, namely

(36)

Substituting them back into (35), there are eventually
equations with the same number of unknowns that

can be solved by standard numerical methods.
The Broyden’s method (a quasi-Newton method, Ch. 10,

[28]) is chosen for this purpose due to its reduced compu-
tational complexity and superlinear convergence. The initial
guess of solution to kick off the Broyden’s algorithm can be
easily estimated from simulation. From the solution of(for
a global limit cycle), parameters like subsystem fixed-points
and fly-times are readily obtainable by back-substituting the

(31)

(32)

where

(35)
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threshold line values into (31)–(34). Fig. 6(a)–(e) present these
numerical results for an example fourth-order modulator against
all types of transition flow. Note that by adjusting the initial
condition in the Broyden’s algorithm, two sets of fixed-points
can be found. Borrowing results from Section V, it is shown that
the “inner” set stands for stable fixed-points while the “outer”
set represents unstable fixed-points (also, respectively, called
foci and saddles in second-order subsystems, [32]). For the
first-order subsystem, the fixed-points (in only one dimension)
and threshold line values are structured similarly and is not
shown here to limit the length of this paper. Loosely speaking,
it can be seen that there exists a region, constituting the DOA,
between the inner stable limit cycles and the outer unstable
limit cycles wherein trajectories, if started with an appropriate
initial condition, will be “repelled” back to the stable limit
cycles. Trajectories going beyond the unstable fixed-points
will swirl away and result in instability (unbounded) or even
chaotic behavior (bounded). It can also be seen from Fig. 6(a)
and (b) that has the “least-forgiving” stable limit
cycle showing the smallest attractive region.

V. STABILITY VIA TANGENT LINEAR MANIFOLD

A standard technique of evaluating the stability of the fixed-
points of is to investigate the tangent linear mani-
folds (lying on and ) about them. Such approach requires
the availability of closed-form, autonomous (time-independent)
algebraic functions for the trajectory evolution within each half-
plane. Previous expressions derived for high-order mod-
ulators are very complicated and are difficult, if not impos-
sible, to formulate into algebraic functions. Even the expres-
sions for third-order modulators contain exceedingly compli-
cated parameters [12]. Nonetheless, the approach introduced in
Sections II–IV offers a comprehensible, scalable solution to any
modulator order.

Realizing that the Poincaré map of , denoted by
, is a two-step return map

, two sets of expressions governing the tra-
jectories inPHP and NHP are required. Starting withPHP,
and applying the interpretation of a high-order system as cou-
pled second-order subsystems and an additional first-order sub-

system for odd-order modulators, the following functions for
are defined. The first set of functions is related

to the circularity of the trajectories in second-order subsystems,

(37)

for ,. The second set of functions describes the
fly-time difference of every two adjacent subsystems

(38)

for or for odd-order modulators. Finally
there are two equations quantifying the “exactness” ofand

on and , namely, (39) and (40) shown at the bottom
of the page. Both (39) and (40) become zero whenand
land exactly on and . Clearly, about the fixed points
and , (37)–(40) all go to zero, i.e.

for (41)

As mentioned, the Poincaré section analysis reduces the
system dimension by one. By setting (39) and (40) to zero
it is possible to derive the differentials of and
in terms of and

, respectively, such
that for an even , see (42) shown at the bottom of the page,
and whereas for an odd, (43) see shown at the bottom of the
page. Next, by partially differentiating the rest of the equations
in (41) with respect to and , and substituting back
and by the results in (42) or (43), we arrive at

(44)

where the th element of the matrix
is and similarly that of is . The elim-
ination of and is possible because they are functions
of the other state variables on the Poincaré sections.

Likewise, another set of equations inNHP, which is the coun-
terpart of (41), can be obtained by swapping the symbols
and , reversing the half-plane centers in (37) and changing
into functions in (38). Subsequently, defining

, for we have

(45)

(39)

(40)

(42)

(43)
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Fig. 6. Example embedded fourth-order�� modulator (u = 0.523,OSR = 64, maximum NTFgain = 1.5, optimized NTF zeros): (a),(b) fixed-points of
different types of transition flow; (c),(d) threshold line values corresponding to stable fixed-points; (e) Positive and negative fly-times for stable limit cycles; (f)
maximum eigenvalue magnitude for the tangent linear manifolds of stable fixed-points.

where the th element of the matrix
is and similarly that of is . Now

combining (44) and (45) and evaluating the matrices at the fixed-
points

(46)

For compactness, we denote .
Stability of the fixed-points can then be assured if all the eigen-

values of have magnitude less than unity ([12], [32]). Clearly
the formulations introduced in this section are scalable to sys-
tems of any order. Fig. 6(f) shows the maximum eigenvalue
magnitude of against different tilt factors for the set of stable
fixed-points in Fig. 6(a) and (b). Also, it can be easily deduced
that for , is equal to while that for ,
is equal to [see Fig. 6(e)]. Accordingly, for simple rational in-
puts such as 1/3, 1/2, 3/5, 2/3, etc., stable limit cycles (even in
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Fig. 7. (a),(b) Illustration of the trajectory change of� : 0! 1jF(P̂PP ; �PPP ) for the fourth-order modulator in Fig. 6, (c) the nine tests for the limit cycle switching.

some cases when the boundary transition flow is unstable) with
integer fly-times can be found at where
is one. These limit cycles represent theoretically stable limit cy-
cles for the real, discrete-time modulators, but due to noise
and component tolerance they are impossible to maintain in re-
ality and quickly diverge to other trajectories.

In summary, for an th-order system, we have equations
describing the circular trajectories of second-order subsystem(s)
within a half-plane. There are equations equating the fly-
times of these circular trajectories and in case of odd-order mod-
ulators there is one additional equation equating the fly-times of
the last second-order subsystem and the first-order subsystem.
Finally, there is one pair of equations that can be combined to
one for the Poincaré sections. Therefore, there are totallyin-
dependent equations for generating the tangent linear manifold.

VI. DC STABILITY FOR DISCRETE-TIME MODULATORS

This section presents the dc stability criteria and derivation
of dc input bounds for practical, discrete-time modulators.
Because the dynamics is symmetric about the modulator

dc input , a positive is assumed. The investigation begins
with the concept of overlapped DOAs of various stable, em-
bedded limit cycles featured in Sections II–V. Specifically, when

falls below a certain value, denoted by, it is found that every
fixed-point on the Poincaré section (and their associated limit
cycles) is within the DOAs of all other fixed-points. However,
the existence of such a “common” DOA only guarantees a stable
one-time switching from a continuous limit cycle to another. In
practice, the discrete nature of the state trajectory and its in-
tractable transition within the transition wedges prevent it from
falling exactly onto any continuous limit cycles. Instead, the
trajectory switches constantly between the DOAs of different
stable limit cycles that may eventually lead to instability. To
tackle the difficulty arising from the discrete constraint, it is first
revealed that only certain fixed-points (and their corresponding
limit cycles) are of interest whereupon all discrete trajectories
tend to converge. With the help of a special computer algorithm,
it is shown that for a below , a domain on
the hyperplane (where all trajectories must cross despite their
transition flow) can be found around these fixed-points such that
discrete trajectories cannot escape. Such domain constitutes a
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TABLE I
NUMERICAL RESULTS FOR15 DIFFERENTLP�� MODULATORSWITH OPTIMIZED NTF ZEROS ANDOSR = 64. EACH SIMULATED BOUND IS ESTIMATED BY THE

MODULATOR BEING STABLE WITHIN 2 SIMULATION STEPSWITH ZERO-STATE INITIAL CONDITIONS IN x

positively invariant set (PIS, Schreieret al. [21]–[23]) on ,
eventually guaranteeing dc stability.

As seen from Section V, a stable tangent linear manifold (i.e.,
all eigenvalues of magnitude less than unity) is accompanied
with each stable fixed-point or limit cycle of a particular transi-
tion flow. This implies that a DOA can be found or estimated (by

the Lyapunov’s methods, Ch. 5, [32]). The DOAs for different
stable fixed-points are lying on their corresponding Poincaré
sections. To unify the description all fixed-points and their as-
sociated DOAs, they are mapped back accordingly from the
Poincaré sections onto the hyperplanewhere all trajectories,
irrespective of the transition flow, must cross [cf. Fig. 3(d)].
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The description of all fixed-points and DOAs thereafter will al-
ways refer to their back-mapped versions onunless other-
wise stated. Also, all fixed-points/limit cycles refer to first-order
ones as obtained from the (first-return) Poincaré map, instead of
higher order return maps.

A. Convergence of a One-Time Change in Transition Flow

The simplified case of the stability of a one-time switching
from one stable limit cycle of a particular transition flow to
another is first investigated, i.e., whether a stable limit cycle
will converge asymptotically to another when the tilt factors,

are changed. Numerical analysis as in Fig. 6(f) shows
that for all properly designed modulators, a stable boundary
transition flow (i.e., less-than-unity eigenvalues at )
implies stable limit cycles corresponding to all other tilt factor
tuples . Stability of the one-time switching or change of
transition flow can then be assured by testing if all the back-
mapped DOAs form an overlapped region onthat contains all
the stable, back-mapped fixed-points. In fact, the set of back-
mapped fixed-points in respective subsystems reveals that ex-
treme trajectory switching must occur whenand/or make
their farthest jumps from 0 to 1 or otherwise. And that their
DOAs guarantee the stability of intermediate switching (i.e.,
change of and/or being less than one) provided extreme
switching is stable. In other words, the stability of a one-time
limit cycle switching can be assured by testing if the trajectory
at one extremity converges to those stable limit cycles at other
extremities, i.e., within the DOAs of them. This is done by first
back-mapping the stable fixed-point (on or ) onto , as-
signing it as the initial condition and subjecting it to another
transition flow to see if it converges to the new limit cycle. The
notation to denote a trajectory switching from to

is

(47)

Fig. 7(a) and (b) show the example of
for the fourth-order modulator in Fig. 6. The nine cases of
extreme switching to be tested are summarized in Fig. 7(c).
The test of switching to is not needed (denoted
by broken arrows) because by starting a trajectory onwith

assumption, it simply means that the trajectory
will stay there forever and is, therefore, stable. The bound on

, denoted by , below which all fixed-points are within the
DOA of one another, is tabulated in Table I.

Fig. 8 illustrates why this convergence analysis of one-time
change in transition flow is not sufficient to ensure dc stability.
In terms of trajectory intersections being mapped back from
onto , Fig. 8(a) shows that for a one-time switching, when
two fixed-points are within the DOA (mapped onto) of each
other, they will converge asymptotically to one another if the tilt
factor tuple is changed. But in the case of constantly changing
transition flow as in the case of real, discrete-time modu-
lators requiring integer fly-times, a trajectory may eventually
become unstable. For example, in the numbered sequence in
Fig. 8(a), the transition flow changes from the right (triangular)
fixed-point toward the left (square) fixed-point. But before the
convergence is complete, another transition flow change, say,

(a)

(b)

Fig. 8. Illustration of the (back-mapped) trajectory switching as on the
hyperplanePPP : (a) one-time switching and possible instability due to a second
switching and (b) stable multiple switching.

back to the right fixed-point will render the trajectory unstable
because it is now outside the DOA of the right fixed-point. Sub-
sequently, to ensure dc stability, it is required that the DOAs
of different fixed-points to be at least close enough such that
trajectory changes are always encompassed by all DOAs, as in
Fig. 8(b).

B. Convergence of Practically Changing Transition Flow

In practical modulators, the integer fly-time constraint
lends itself to certain modifications from the continuous-time
analysis. For example, the fly-times in Fig. 6(e) now need to
be quantized and it is easy to see that near the dc input bound
the negative fly-time is always quantized to one. In other words,
practical discrete trajectories will tend to converge to those limit
cycles of unity negative fly-time, as highlighted by the bold lines
in the same plot. Fig. 9 shows some examples of tilt factor tu-
ples recorded in real, discrete trajectories on the fly, demon-
strating this inversely proportional relationship betweenand
. A lower may have more than one level of quantization as

in Fig. 9(b) and (d). For a positive input, is dependent on
(and vice versa for a negative), for example, when 0
must be equal to 1 anddecreases whenincreases. During

stable dc operation near the bound, whilevaries randomly be-
tween 0 and 1 to satisfy the integer positive fly-time constraint,

will take on values near those of the fixed-points with an in-
teger negative fly-time.

Fig. 8(b) suggests that the worst-case trajectory switching oc-
curs when the trajectory is constantly switching between ex-
treme fixed-points. This is justified by simulation showing that
instability occurrence is preceded by tilt factor tuples alternating
near the two ends of the series of fixed-points with unity nega-
tive fly-time. In view of this, a special computer algorithm for
generating state trajectories is used to investigate discrete-time
dc stability. It works in a way that for a positive input, is
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Fig. 9. Tilt factor tuples recorded for real�� modulators (OSR = 64, maximum NTFgain = 1.5, optimized NTF zeros, 2500 tuples for each figure) under
different dc inputs: (a),(b) fourth-order and (c),(d) fifth-order.

an input parameter (which varies randomly in practice), while
is determined from the integer negative fly-time constraint.

It, therefore, represents a hybrid algorithm that is partially con-
strained by the integer negative fly-time, and partially dependent
on the user input for the positive fly-time (which is not neces-
sarily an integer but at least one). The worst-case switching se-
quence, studied in terms of the trajectory intersections on
mapped back to , is found by starting a trajectory on one end
of the series of fixed-point of unity negative fly-time withset
for the other end. While the trajectory is evolving,is constantly
alternated between the two extremes (0 and 1) such that the tra-
jectory, if it is ever convergent, is farthest stretched. Experiments
show that such switching sequence is easy to locate and is in
fact a periodic sequence. The artificial manipulation, therefore,
simulates the worst-casevariation which will rarely occur, if
not impossible, in practice. Subsequently, it is found that there
exists a modulator input below which the
trajectory behavior on is always bounded even under the con-
trived, worst-case changes in. Practical trajectory intersections
on , with initial conditions near the fixed-points of unity neg-
ative fly-time, will then collapse into this bounded, worst-case
region (effectively a PIS) due to the attraction of intermediate
fixed-points corresponding to between 0 and 1. In an actual
modulator, the intractability in the transition flow, however, pre-

vents the process from settling on any fixed-points. For a lower
where negative fly-time can be quantized to

integers larger than one, the corresponding fixed-points are situ-
ated in between the fixed-points (and associated DOAs) of unity
negative fly-time and the above worst-case analysis still applies.
Finally, considering the circular or oscillating nature of trajec-
tories in each decomposed subsystem, it is easy to verify that a
global trajectory is bounded in the whole state space provided
it is bounded on the Poincaré sections. In other words, when
falls below , a PIS is formed. dc stability can then be assured
for any discrete trajectories starting within this PIS, or more
specifically, near those fixed-points of unity negative fly-time.
For dc inputs above , trajectories as given by the algorithm
may not be bounded due to possible couplings from second or
higher order return maps. Trajectories taking on specific paths
may travel beyond the attractive region and become unstable.

C. Numerical Examples and Results

Example fourth- and fifth-order modulators are used for
exposition in Fig. 10 where only the first second-order de-
composed subsystem is shown. Visualization is provided for
the trajectory intersections on back-mapped from . The
behavior in other subsystems as well as for the intersections
back-mapped from onto all look alike and are omitted
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Fig. 10. Converging trajectory intersections onPPP (shown for the first second-order subsystems of the fourth- and fifth-order modulators in Figs. 5 and 6) by
the computer algorithm: (a),(b) for different values of� with initial conditions from� : 0 ! 1jF(P̂PP ; �PPP ); (c,(d) one-time switching between the two extreme
fixed-points; (e),(f) the corresponding worst-case bounds or stable domains (dotted lines) together with 5000 simulated intersections.

for simplicity. Fig. 10(a) and (b) show that by fixing at
different values, the state trajectories are all convergent to
the corresponding fixed-points of unity negative fly-time for

. Fig. 10(c) and (d) illustrate trajectory convergence
of a one-time switching from one extreme fixed-point to
another. Fig. 10(e) and (f) show the worst-case bounds (stable
domains) found by varying as described and the actual
trajectory intersections obtained from simulation, verifying
the enclosure by the bounds (on). Finally, 15 modulators

of different orders and maximum NTF gains are designed
with optimized NTF zeros using the design toolbox [3]
at 64. The maximum eigenvalue magnitudes of their
tangent linear manifolds, assuming boundary transition flow

, against different dc inputs are tabulated in Table I.
The simulated dc bounds and the corresponding theoretical
bounds, namely, for continuous-time and for discrete-time
settings as discussed before, are given. Also shown are the
estimated SNRs for a sine wave input of amplitudesituated
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in the middle of the baseband, confirming the advantage of
using higher order modulators for higher resolution. It can
be observed from the table that relying on the stability of
the farthest stretched boundary transition flow is
unreliable since the dc input bounds, thus, estimated (where
the maximum eigenvalue magnitude just reaches unity) show
an increasing trend when modulator order is greater than four,
contradicting the decreasing trend borne out by simulation and
experience. Moreover, eigenvalues of unit magnitude cannot
even be found for in third-order modulators. The
application of the proposed stability analysis eliminates such
contradiction and produces a theoretical dc boundconsistent
with and, due to its worst-case assumption, more conservative
than the simulated dc bound. The discrete trajectories in
practice, depending on their initial conditions, may never reach
this worst-case trajectory and a bound betweenand is
expected. It should be stressed that no amount of simulation
can guarantee dc stability since a modulator can go unstable
even after a million simulation steps as we have observed. In
contrast, derivation of the dc bound is a one-off process in
finite time. Interestingly, all the simulated bounds are slightly
larger than . This demonstrates both the possible pitfalls of
simulation and the safety margin provided by the proposed
approach in dc bound estimation.

VII. CONCLUSION

This paper has presented an analytical investigation of the
state trajectory behavior and dc stability of high-order

, LP modulators with distinct unit circle NTF zeros. Al-
gebraic difficulties arising from the highly nonlinear quantizer
function have been tackled through combining and generalizing
the techniques of state-space decomposition, continuous-time
embedding, and Poincaré map analysis. The study of both even-
and odd-order modulators has been presented in a unified and
scalable manner. It has been shown that a high-order modulator
system can be decomposed into second- and first-order subsys-
tems, thus facilitating graphical interpretation and analysis. Sys-
tems of nonlinear equations have been established for the loca-
tion of embedded state-space limit cycles using efficient numer-
ical methods. It has been revealed that a necessary condition for
dc stability requires the overlapping of DOAs associated with
all types of transition flow and the inclusion of all stable limit
cycles within this overlapped region. A special computer algo-
rithm has been written to solve for the sufficient condition for dc
stability under the regime of constantly changing transition flow
present in real, discrete-time modulators. Numerical exam-
ples featuring modulators of different orders and maximum NTF
gains have been given to illustrate the results.
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