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Abstract—n this paper, we survey the techniques for images. In an IBR system with depth maps, such as three-di-
image-based rendering (IBR) and for compressing image-based mensional (3-D) warping [53], and layered-depth images (LDIs)
repres?mat'oni‘. U.n"ke;]. H%d'tt)'ona' tI:ree-fdtlrr]nensmna_l |<(3_D) [76], LDl trees [11], etc., the model consists of a set of images of
computer graphics, in which 3-D geometry of the scene is known, ! : . .
IBR rt)echnigqugs render novel vie?/vs direc){ly from input images. & SCeNe and their associated depth maps. The §urface light f_|eld
IBR techniques can be classified into three categories according [88] is another geometry-based IBR representation that uses im-
to how much geometric information is used: rendering without ages and Cyberware scanned range data. When depth is avail-
geometry, rendering with implicit geometry (i.e., correspondence), able for every point in an image, the image can be rendered from
and rendering with explicit geometry (either with approximate any nearby point of view by projecting the pixels of the image
or accurate geometry). We discuss the characteristics of these . . S
categories and their representative techniques. tq their proper 3-D Iocat|oqs and_re—prolectmg thgm onto a new

IBR techniques demonstrate a surprising diverse range in their Picture. For many synthetic environments or objects, depth is
extent of use of images and geometry in representing 3-D scenesavailable. However, obtaining depth information from real im-
We explore the issues in trading off the use of images and geometry ages is hard even with state-of-art vision algorithms.
by revisiting plenoptic-sampling analysis and the notions of view  "gyme IBR systems do not require explicit geometric models.
dependency and geometric proxies. Finally, we highlight compres- . .
sion techniques specifically designed for image-based representa-Rather' they re.zquu.’e featurg corresp(_)ndence between images.
tions. Such compression techniques are important in making IBR For example, view interpolation techniques [12] generate novel

techniques practical. views by interpolating optical flow between corresponding
Index Terms—image-based modeling, image-based rendering points. On the other hand, view morphing [75] results in in-be-
(IBR), image-based representations, survey. tween camera matrices along the line of two original camera

centers based on point correspondences. Computer vision
techniques are usually used to generate such correspondences.
At the other extreme, light-field rendering uses many im-
MAGE-BASED modeling and image-based rendering (IBRjges, but does not require any geometric information or cor-
technigues have received much attention as a powerful altegspondence. Light-field rendering [43] produces a new image
native to traditional geometry-based techniques for image syf-a scene by appropriately filtering and interpolating a pre-ac-
thesis. These techniques use images rather than geometrguited set of samples. The Lumigraph [22] is similar to light-
primitives for rendering novel views. Previous surveys relatdi¢ld rendering, but it uses approximated geometry to compen-
to IBR have suggested characterizing a technique based on Isaig for nonuniform sampling in order to improve rendering per-
image centric or geometry centric it is. This has resulted farmance. Unlike light field and Lumigraph where cameras are
the image-geometry continuum of image-based representatiptaced on a two-dimensional (2-D) grid, the concentric mosaics
[33], [41]. (CMs) representation [77] reduces the amount of data by cap-
For didactic purposes, we classify the various rendering tedb¥ing a sequence of images along a circle path. In addition, it
niques (and their associated representations) into three caigss a very primitive form of a geometric impostor, whose ra-
gories, namely: 1) rendering with no geometry; 2) renderir@jal distance is a function of the panning angle. (A geometric
with implicit geometry; and 3) rendering with explicit geometryimpostor is basically a 3-D shape used in IBR techniques to
These categories, depicted in Fig. 1, should actually be viewigtprove appearance prediction by depth correction. It is also
as a continuum rather than absolute discrete ones since ther&ka@vn as geometric proxy.)
techniques that defy strict categorization. Since light-field rendering does not rely on any geometric im-
At one end of the rendering spectrum, traditional texture mapestors, it has a tendency to rely on oversampling to counter un-
ping relies on very accurate geometric models, but only a fed@sirable aliasing effects in output display. Oversampling means
more intensive data acquisition, more storage, and higher redun-
dancy.
. . , What is the minimum number of images necessary to enable
Manuscript received November 1, 2001; revised June 27, 2003. - . . .
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<4— Less geometry More geometry ——»
Rendering with Rendering with Rendering with
no geometry implicit geometry explicit geometry
Light field Lumigraph LDIs Texture-mapped models
Concentric mosaics Transfer methods 3D warping
Mosaicking View morphing View-dependent geometry
View interpolation View-dependent texture

Fig. 1. Categories used in this paper, with representative members.

number of sample images, and the rendering resolution. Chai TABLE |

et al. showed in their plenoptic-sampling analysis [9] that the TAXONOMY OF PLENOPTIC FUNCTIONS
minimum sampling rate is determined by the depth variation of Dim. | Year | View space | Name
the scene. In addition, they showed that there is a tradeoff be- - - -

) 7 1991 free Plenoptic function
tween the number of sample images and the amount of geometry 5 1995 Troo Plenoptic modeling
(in the form of per-pixel depth) for antialiased rendering. 4 | 1996 | bounding Lighthield/

Since image-based representations are typically image inten- box Lumigraph
sive, compression becomes an important practical issue. Com- 3 1999 | bounding | Concentric Mosaics
pression work has been traditionally carried out in the image circle _ i
and video communities, and many algorithms have been pro- 2 | 1994 fixed Cylindrical/Spherical

pomt panorama

posed to achieve high compression ratios. Image-based repre-
sentations tend to have more local coherence than regular video
because the captured appearance is that of the same static scepgjelson and Bergen [1] considered one of the tasks of
However, they also have a significantly more complicated strugarly vision as extracting a compact and useful description
ture than regular video because the neighborhood of image safnthe plenoptic function’s local properties (e.g., low-order
ples may not be along a single axis (time axis only for regulgerivatives). It has also been shown by Weetgal. [87] that
video). For example, the Lumigraph is four-dimensional (4-Djight source directions can be incorporated into the plenoptic
and it uses a geometric impostor. Image-based representatifigtion for illumination control. By removing two variables,
also have special requirements of random access and selegfiy@ + (therefore, static environment) and light wavelength
decoding for fast rendering. As Sections II-VIl will reveal, gepcMillan and Bishop [57] introduced the notion of plenoptic
ometry has been used as a means for encoding coherency @@geling with the five-dimensional (5-D) complete plenoptic
compressing image-based representations. function

The remainder of this paper is organized as follows. Three
categories of IBR systems, with no, implicit, and explicit Ps = P(Vy,Vy, V2,0, 6). 2)
geometric information are, respectively, presented in Sec- , i . ,
tions -1V, The tradeoffs between the use of geometry angd | "€ Simplest plenoptic function is a 2-D panorama (cylin-
images for IBR are weighted in Section V. The issue Cqucal [13] or spherical [84]) when the viewpoint is fixed as fol-

compression for IBR, with examples of light fields and CMs9WS:

is discussed in Section VI. We also discuss compact represen- Py = P(6, ). 3)
tation and efficient rendering techniques in Section VII, and '
provide concluding remarks in Section VIIl. A regular rectilinear image with a limited field-of-view can be

regarded as an incomplete plenoptic sample at a fixed viewpoint.
IBR can be viewed as a set of techniques to reconstruct a con-
tinuous representation of the plenoptic function from observed

In this section, we describe representative techniques for réfiscrete samples. The issues of sampling the plenoptic function

the characterization of the plenoptic function. are important research topics in IBR. As a preview, a taxonomy

of plenoptic functions is shown in Table I.
The cylindrical panoramas used in [57] are 2-D samples of the
plenoptic function in two viewing directions. The two viewing
The original seven-dimensional (7-D) plenoptic functiomlirections for each panorama are panning and tilting about its
[1] is defined as the intensity of light rays passing througbenter. This restriction can be relaxed if geometric information
the camera center at every 3-D locatidn., V,, V.) at every about the scene is known. In [57], stereo techniques are applied
possible anglgd, ¢), for every wavelengthh, at every timet, on multiple cylindrical panoramas in order to extract disparity
ie., (or inverse depth) distributions. These distributions can then be
used to predict appearance (i.e., plenoptic function) at arbitrary
P; = P(V,,V,,, V., 0,4, )\, ¢). (1) locations. Similar work on regular stereo pairs can be found in

Il. RENDERING WITH NO GEOMETRY

A. Plenoptic Modeling
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| 1 The P, = P(u,v,s,t) two-plane parameterization is just

light ray one of many for light fields. Other types of light fields include
v Pluv.s.1) spherical or isotropic light fields [7], [24], sphere-plane light
fields [7], and hemispherically arranged light fields with geom-

etry [51]. The issue of uniformly sampling the light field was in-
/O vestigated by Camahort [6]. He introduced an isotropic parame-
terization that he calls the direction-and-point parameterization
(DPP), and showed that while no parameterization is view inde-
pendent, only the DPP introduces a single bias.
Buehleret al. [5] extended the light-field concept through

object

\ a technique that uses geometric proxies (if available), handles
g unstructured input, and blends textures based on relative angular
\u position, resolution, and field-of-view. They achieve real-time
rendering by interpolating the blending field using a sparse set
of locations.
Fig. 2. Representation of a light field.
C. CMs
[39], where correspondences constrained along epipolar geom©bviously, the more constraints we have on the camera loca-
etry are directly used for view transfer. tion (V, Vy, V), the simpler the plenoptic function becomes.
If we want to capture all viewpoints, we need a complete 5-D
B. Light Field and Lumigraph plenoptic function. As soon as we stay in a convex hull (or, con-

It was observed in both light-field rendering [43] and Lumiyerselyj viewing from a convex hull) free of occluders, we have
graph [22] systems that as long as we stay outside the con\"?‘eﬁ'D light f|e|(_j. I we_do not transiate 6.“ aI_I, we have a Z'D.
hull (or simply a bounding box) of an objettwe can sim- Panorama. An interesting 3-D parameterization of the plenoptic

plify the 5-D complete plenoptic function to a 4-D Iight-fieldfuncnon’ galled CMs [77],_Wa§ proposeq by Shum and He; herg,
plenoptic function the sampling camera motion is constrained along concentric cir-

cles on a plane.
Py = Plu.v.s.1) @) By constraining camera motion to planar concentric circles,
AR CMs can be created by compositing slitimages taken at different

where (u,v) and (s,t) are parameters of two planes of théocations of each circle. CMs index all input image rays natu-

bounding box, as shown in Fig. 2. Note that these two plan@lyinthree parameters: radius, rotation angle, and vertical ele-

need not be parallel. There is also an implicit and importa}’]?t'on' Novel views are rendered by combining the appropriate

assumption that the strength of a light ray does not chan tured rays in an efficient manner at rendering time. Although
along its path. For a complete description of the plenopt Lertical distortions exist in the rendered images, they can be al-
function for the bounding box, six sets of such two-plan gviated by depth correction. CMs have good space and compu-

would be needed. More restricted versions of Lumigraph ha(?éional efficiency. Compgred _With a light field or Lumigraph,.
also been developed by Sloanal. [81] and Katayamat al. CMs have much smaller file size because only a 3-D plenoptic

[37]. Here, the camera motion is restricted to a straight line. funct|on.|s constructed. .
The principles of light-field rendering and Lumigraph Most importantly, CMs are very easy to capture. Capturing

are the same, except that the Lumigraph has the additio%yIS s as easy as _capturing atr_aditional_ panorama, except that
(approximate) object geometry for better compression afdIs require more lmagsls. BSth|mpIy (sjpllzmln%an off—centtllered

appearance prediction. In the light-field system, a capturing fgmera Ogl\j r]?tary tal &, um and re [ I] vlvgre.a Lgkto
is designed to obtain uniformly sampled images. To reduce {Hanstruct gMorda reat scene wghapg;(f)_anate)é i min. Like

aliasing effect, the light field is pre-filtered before rendering’?anorama.s’ S do notrequire the ditticult modeling process
A vector quantization (VQ) scheme is used to reduce tf?é recovering geometric and photometr_lc scene mod_els. vet
amount of data used in light-field rendering, while achievin Ms provide a muqh rlcher user experience by alloyvln_g the

random access and selective decoding. On the other hand, fig’ (o move free_ly in a circular region and observe significant
Lumigraph can be constructed from a set of images taken frd)rﬂra.”ax and Ilg_htlng. change;. (qua!lax refers to the apparent
arbitrarily placed viewpoints. A re-binning process (in this casE ?rt]'ve change in objepttloc_?r'[llon W|th|nfa scetng due tos ch(a:rlzl?e
resampling to a regular grid using a hierarchical interpolatidﬂ eti:amtgrafwewpom .')t Ie ea|§t63 0 Cﬁ‘p lt,!rlng Makes s
scheme) is, therefore, required. Geometric information is us¥éeY adra(_: Ve for Ta;g virtua refa| y appiica '(?rgM is sh

to guide the choices of the basis functions. Due to the use,oiRen ering of a lobby scene from capture S IS shown

geometric information, the sampling density can be reducéH.Fig' 3. A .rebinned GM at the rotation center is shov_vn "?
Note that we place the Lumigraph in the category of “nb9- 3(a), while two rebinned CMs taken at exactly opposite di-

geometry” because it is primarily image based, with geomet ctions are shown in Fig. 3(b) and (c), respectively. It has also
playing a secondary (optional) role ’ een shown in [67] that such two mosaics taken from a single

rotating camera can simulate a stereo panorama. In Fig. 3(d),
IThe reverse is also true if camera views are restricted inside a convex huitrong parallax can be seen between the plant and poster in the
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Fig. 3. Rendering a lobby. Rebinned CM: (a) at the rotation center, (b) at the outermost circle, and (c) at the outermost circle, but looking étietlokregjms
of (b). (d) Parallax change between the plant and poster.

rendered images. More specifically, in the leftimage, the posterin order to reduce accumulated registration errors, global
is partially obscured by the plant, while the poster and plant édignment through block adjustment is applied to the whole
not visually overlap in the right image. This is a significant visequence of images, which results in an optimally registered

sual cue that the camera viewpoint has shifted. image mosaic. To compensate for small amounts of motion
parallax introduced by translations of the camera and other
D. Image Mosaicing unmodeled distortions, a local alignmerteghostiny tech-

ique [80] warps each image based on the results of pairwise
c?gal image registrations. Combining both global and local
eaélgnment significantly improves the quality of image mosaics,
A

mosaic is constructed by registering multiple regular images. b bling th i £ tull vi ; :
For example, if the camera focal length is known and fixed, o Sreby enabiing the creation ot Iull view panoramic mosaics
ith handheld cameras.

can project each image to its cylindrical map and the reIatioWA ¢ lated spherical f the full vi
ship between the cylindrical images becomes a simple transla- h esse aIS' s4p _Ie:\rr]lca map ot the Iufl view panoramfa
tion. For arbitrary camera rotation, one can first register the int- shown 1n Fig. 4. Thréé panoramic image sequences of a

ages by recovering the camera movement before convertin wldmg Iqbby were taken W.'th the camera on a tripod t".ted
a final cylindrical/spherical map. at three different angles. 22 images were taken for the middle

Many systems have been built to construct cylindrical a quence, 22 images for the upper sequence, and ten images

spherical panoramas by stitching multiple images together, e, ' the top sequence. The camera motion covers more than

[13], [52], [57], [83], and [84], among others. When the came O-thirds of the vie_win_g sphere, in_cluding the top. . )
motion is very small, it is possible to put together only small Apart from blending images to directly produce wider fields

strips from registered images, i.e., slit images (e.g., [68] afl view, one can use the multiple imgges to generqte higher res-
[98]) to form a large panoramic mosaic. Capturing panoram8 t.|on panoramas as \{veII (e.g., using maximum-likelihood al-
is even easier if omnidirectional cameras (e.g., [60] and [61]) gpnthms [25] or learnt image models [8]).

fisheye lens [91] are used.

Szeliski and Shum [84] presented a complete system for con-
structingpanoramic image mosaidsom sequences of images. There is a class of techniques that relies on positional
Their mosaic representation associates a transformation matiixrespondences across a small number of images to render
with each inputimage rather than explicitly projecting all of theew views. This class has the teimplicit to express the fact
images onto a common surface, such as a cylinder. In particuthat geometry is not directly available; 3-D information is
to construct a full view panoramaratational mosaiaepresen- computed only using the usual projection calculations. New
tation associates a rotation matrix (and optionally a focal lengthipws are computed based on direct manipulation of these
with each input image. Aatch-based alignmeraigorithm is positional correspondences, which are usually point features.
developed to quickly align two images given motion models. The approaches under this class are view interpolation, view
Techniques for estimating and refining camera focal lengths anerphing, and transfer methods. View interpolation uses gen-
also presented. eral dense optic flow to directly generate intermediate views.

A complete plenoptic function at a fixed viewpoint can b
constructed from incomplete samples. Specifically, a panora

Ill. RENDERINGWITH IMPLICIT GEOMETRY
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Fig. 4. Tessellated spherical panorama covering the north pole (constructed from 54 images).

The intermediate view may not necessarily be geometricallyln a more recent work, Aliaga and Carlbom [2] describe an
correct. View morphing is a specialized version of view inteiinteractive virtual walkthrough system that uses a large network
polation, except that the interpolated views are always geomet-omnidirectional images taken within a 2-D plane. To con-
rically correct. The geometric correctness is ensured becausstofict a view, the system uses the closest set of images, warps
the linear camera motion. Transfer methods are also produiliem using precomputed corresponding features, and blends the
geometrically correct views, except that the camera viewpointsults.

can be arbitrarily positioned.
C. Transfer Methods

A. View Interpolation Transfer methods (a term used within the photogrammetric
community) are characterized by the use of a relatively small
capable of reconstructing arbitrary viewpoints given two inp qqtmhber of |magzs \{{wth the atppllcatlin of g?om?”c cons trz;unts
images and dense optical flow between them. This meth jgther recovered at some stage or ”‘_"N"’”O”) 0 reproject
age pixels appropriately at a given virtual camera viewpoint.

works well when two input views are close by so that visibility X .
e geometric constraints can be of the form of known depth

ambiguity does not pose a serious problem. Otherwise, flo | i e ol traintbet s of i
fields have to be constrained so as to prevent foldovers. Y@'ues &t €ac p_|>_<eep|po ar constraintetween pairs ot im-
es, otrifocal/trilinear tensorsthat link correspondences be-

addition, when two views are far apart, the overlapping par"i’éJ triolets of i The view int lati dvi
of two images may become too small. Chen and William&Ween triplets of images. The view interpolation and view mor-

approach works particularly well when all the input imageghl?r?ogsethods above are actually specific instances of transfer

share a common gaze direction, and the output images gy . .
9 P g %aveau and Faugeras [40] use a collection of images called

restricted to have a gaze angle less thah 90 . S )
Establishing flow fields for view interpolation can be dif'fi—rEference views and the principle of the fundamental matrix

cult, particularly for real images. Computer vision techniqu g produce_wrtual VIEWS. The new ylewp0|nt, which is c_hosen
such as feature correspondence or stereo must be employed. jpteractively choasing the positions of four conirol image

Chen and Williams' view interpolation method [12] is

of

synthetic images, flow fields can be obtained from the knowP!NtS: 1 computed using a reverse-mapping or raytracmg
depth values. process. For every pixel in the new target image, a search is

performed to locate the pair of image correspondences in two
reference views. The search is facilitated by using the epipolar
constraints and the computed dense correspondences (also
From two input images, Seitz and Dyer’'s view morphingnown as image disparities) between the two reference views.
technique [75] reconstructs any viewpoint on the line linking Note that if the camera is only weakly calibrated, the recov-
two optical centers of the original cameras. Intermediate viewesed viewpoint will be that of a projective structure (see [20]
are exactly linear combinations of two views only if the camerf@r more details). This is because there is a class of 3-D projec-
motion associated with the intermediate views are perpendicuii@ns and structures that will result in exactly the same reference
to the camera viewing direction. If the two input images are nghages. Since angles and areas are not preserved, the resulting
parallel, a pre-warp stage can be employed to rectify two inpuiewpoint may appear warped. Knowing the internal parameters
images so that corresponding scan lines are parallel. Accoodthe camera removes this problem.
ingly, a post-warp stage can be used to un-rectify the intermedfatrilinear tensor, whichisa 8 3 x 3 matrix, is known for a
diate images. Scharstein [74] extends this framework to camssd of three images, then given a pair of point correspondences in
motion in a plane. He assumes, however, that the camera paramo of these images, a third corresponding point can be directly
eters are known. computed in the third image without resorting to any projection

B. View Morphing
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Fig. 5. Example of visualizing using the trilinear tensor. The left-most two images are the reference images, with the rest synthesized aiesrpdiaty. v

computation. This idea has been used to generate novel vieawsender nearly all viewpoints. An image can be rendered from
from either two or three reference images [3]. any nearby point of view by projecting the pixels of the original
The idea of generating novel views from two or three refmage to their proper 3-D locations and re-projecting them onto
erence images is rather straightforward. First, the “referendiie new picture. The most significant problem in 3-D warping is
trilinear tensor is computed from the point correspondences th@w to deal with holes generated in the warped image. Holes are
tween the reference images. In the case of only two referertiee to the difference of sampling resolution between the input
images, one of the images is replicated and regarded as &he outputimages, and the disocclusion where part of the scene
“third” image. If the camera intrinsic parameters are knowiis seen by the output image, but not by the input images. To fill
then a new trilinear tensor can be computed from the knowmholes, the most commonly used method is to map a pixel in
pose change with respect to the third camera location. The nihe input image to several pixels size in the output image. This
view can subsequently be generated using the point correspprocess is calledplatting
dences from the first two images and the new trilinear tensor.1) Relief Texture:To improve the rendering speed of 3-D
A set of novel views created using this approach can be seemiarping, the warping process can be factored into a relatively
Fig. 5. simple pre-warping step and a traditional texture-mapping
step. The texture-mapping step can be performed by standard
graphics hardware. This is the idea behind relief texture, a
IV. RENDERING WITH EXPLICIT GEOMETRY rendering technique proposed by Oliveira and Bishop [66]. A
iﬂﬂlar factoring approach has been proposed by Sleadé
a two-step algorithm [76], where the depth is first forward
arped before the pixel is backward mapped onto the output

In this class of techniques, the representation has direct 2
information encoded in it, either in the form of depth alon
known lines of sight, or 3-D coordinates. The more tradition
3-D texture-mapped model belongs to this category (not dgage.

scribed here since its rendering uses the conventional grapfgc ) MuIt'ipIe-Centgr-of—Projection (.M COP) Imagesthe .
pipeline). -D warping techniques can be applied not only to the tradi-

: : : ional perspective images, but also multiperspective images as
In this category, we have 3-D warping, layered depth ima ona .
(LDI) rendering, and view-dependent texture mapping. 3- ell. For exa“?p'e* Rademgcher and l_3|shop [72] proposed to
warping is applied to depth per-pixel representations such rggder novel views by warping MCOP images.

sprites. LDIs are extensions of depth per-pixel representatiggs
since they can encode multiple depths along a given ray. . i , , ) ,
View-dependent texture mapping refers to mapping multiple To deal with the disocclusion artifacts in 3-D warping, Shade

texture maps to the same 3-D surface and averaging thelial- proposed LDI [76] to store not only what is visible in the
igput image, but also what is behind the visible surface. In their

colors based on the current viewpoint relative to the samplE’tP ' g -
viewpoints. paper, the LDI is constructed either using stereo on a sequence
of images with known camera motion (to extract multiple over-
. lapping layers) or directly from synthetic environments with
A. 3-D Warping bping fay ). y ynthet . .
known geometries. In an LDI, each pixelin the inputimage con-
When the depth information is available for every point in oniins a list of depth and color values where the ray from the pixel

or more images, 3-D warping techniques (e.g., [56]) can be usatkrsects with the environment.

LDI Rendering
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Though an LDI has the simplicity of warping a single image,
it does not consider the issue of sampling density. Cledrad,.
[11] proposed LDI trees so that the sampling rates of the refer-
ence images are preserved by adaptively selecting an LDl in the
LDI tree for each pixel. While rendering the LDI tree, only the
level of LDI tree that is the comparable to the sampling rate of
the output image need to be traversed.

Depth and
texture
information

C. View-Dependent Texture Mapping

Texture maps are widely used in computer graphics for
generating photo-realistic environments. Texture-mapped
models can be created using a computer-aided design (CAD)
modeler for a synthetic environment. For real environments,
these models can be generated using a 3-D scanner or applying
computer vision techniques to captured images. Unfortunately,
vision techniques are n(_)t_rOb_u_St enough to rec_over aCC“rEHIg"t 6. Plenoptic sampling. Quantitative analysis of the relationships among
3-D models. In addition, it is difficult to capture visual effectsnree key elements: depth and texture information, number of input images, and
such as highlights, reflections, and transparency using a singiedering resolution.
texture-mapped model.

Tp obtain these visual effects of a reponstructed architectu%niﬁcanﬂy complicates this analysis, and is typically ignored.
environment, Debeveet al. [16] used view-dependent teXtureNonrigid effects would very likely result in higher image

mapping to render new views by warping and compositing S&Ys mpjing requirements than those predicted by analyses that
eral inputimages of an environment. This is the same as Conv?d?iore such effects.

tional texture mapping, except that multiple textures from dif-

ferent samp!ed vu_awpomts are warped to the same surface %rll g. More specifically, they were interested in determining the
averaged, with weights computed based on proximity of the ¢ Gmber of image samples (e.g., from a 4-D light field) and the
rent viewpoint to the sampled viewpoints. A three-step view-dé- ’

Rendering
resolution

Image
samples

hai et al. [9] recently studied the issue glenoptic sam-

dent text . thod | dlaterb mount of geometric and textural information needed to gen-
pendent texture-mapping method was also proposead laterby Resie 5 continuous representation of the plenoptic function. The

bevecet al.[15] to further red_uce the computatior)ql (.:(.)St and tPollowing two problems are studied under plenoptic sampling:
have smoother blending. This method employs visibility Prepra; finding the minimum sampling rate for light-field rendering

cessing, polygon-view maps, and projective tgxtqre mapping, 2) finding the minimum sampling curve in the joint image
More recently, Buehleet al. [5] apply a more principled way Fmd geometry space
n .

f blending textur n relative angular ition, r . . . .
of blending textures based on relative angular position, reso Chai et al. formulate the question of sampling analysis as

tion, and field-of-view. a high-dimensional signal-processing problem. Rather than at-
tempting to obtain a closed-form general solution to the 4-D
V. TRADEOFFBETWEEN IMAGES AND GEOMETRY light-field spectral analysis, they only analyze the bounds of the
Rendering with no geometry is expensive in terms of as_pectral support of the light-field signals. A key observation in
L g wi 9 y P . is paper is that the spectral support of a light-field signal is
quiring and storing the database. On the other hand, using X1 g . :
ounded by only the minimum and maximum depths, irrespec-

plicit geometry, while more compact, may compromise OUtpH{/e of how complicated the spectral support might be because

visual quality. Thus, an important question is, what is the rightf depth variations in the scene. Given the minimum and max-

. . . . . o)
m'X.Of image samphng size a_nd quallty of geometric mfori-mum depths, a reconstruction filter with an optimal and con-
mation required to satisfy a mix of quality, compactness, an ; ; o . )
4 ; ant depth can be designed to achieve antialiased light-field ren-

speed? Part of that question may be answered by analyzing e%ng.
nature of plenoptic sampling. The minimum sampling rate of light-field rendering is ob-
tained by compacting the replicas of the spectral support of the
sampled light field within the smallest interval after the optimal

Many IBR systems, especially light-field rendering [22]filter is applied. How small the interval can be depends on the
[43], [77], have a tendency to rely on oversampling to countdesign of the optimal filter. More depth information results in
undesirable aliasing effects in output display. Oversamplitighter bounds of the spectral support, thus a smaller number
means more intensive data acquisition, more storage, and mofrenages. Plenoptic sampling in the joint image and geometry
redundancy. Sampling analysis in IBR is a difficult problenspace determines the minimum sampling curve, which quantita-
because it involves unraveling the relationship among thréeely describes the relationship between the number of images
tightly related elements: the depth and texture information afhd the information on scene geometry under a given rendering
the scene, the number of sample images, and the renderi@gplution. This minimal sampling curve can serve as one of
resolution, as shown in Fig. 6. The presence of nonrigttie design principles for IBR systems. Furthermore, it bridges
effects (such as highlights, inter-reflection, and translucenayie gap between IBR and traditional geometry-based rendering.

A. Plenoptic-Sampling Analysis
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There are a number of techniques that can be applied to re-
duce the size of the representation; they are usually based on
local coherency either in the spatial or temporal domains. Sec-
tions V-B-D describe some of these techniques.

B. View-Dependent Geometry

Another interesting representation that trades off geometry
and images is view-dependent geometry, first used in the con-
text of 3-D cartoons [71]. We can potentially extend this idea
to represent real or synthetically generated scenes more com-
pactly. As described in [36], view-dependent geometry is useful
to accommodate the fact that stereo reconstruction errors are
less visible during local viewpoint perturbations, but may show
dramatic effects over large view changes. In areas where stereo
datais inaccurate, they suggest that we may well represent these
areas with view-dependent geometry, which comprises a set of
geometry extracted at various positions (in [71], this set is man-
ually created).

View-dependent geometry may also be used to capture vi-
sual effects such as highlights and transparency, which are likely
to be locally coherent in image and viewpoint spaces. This is
demonstrated in the work described in [23], in which structure
from motion is first automatically computed from input images
acquired using a camera following a serpentine path (raster style
left to right and top to bottom). The system then generates local
depth maps and textures used to produce new views in a manner
similar to the Lumigraph [22]. The important issue of automati-
cally determining the minimum amount of local depth maps and
textures required has yet to be resolved. This area should be a
fertile one for future investigation with potentially significant
payoffs.

%3. Dynamically Reparameterized Light Field

ce.

Recently, Isaksert al. [26] proposed the notion of dynam-
ically reparameterized light fields by adding the ability to vary

Minimum sampling rate and minimum sampling curves are ithe apparent focus within a light field using variable aperture
lustrated in Fig. 7. Note that this analysis ignores the effects @td focus ring. Compared with the original light field and Lumi-
both occlusion events and nonrigid motion.

As shown in Fig. 7(a), a minimum sampling rate (i.e., t

and maximum depths of the scene are known. Fig. 7(b) illu
trates that any sampling point above the minimum sampli
curve is redundant. Reference [9, Fig. 11] demonstrated t
the rendered images with five sampling points (of the number
of images and the number of depth layers) above the minimdfi
sampling curve are visually indistinguishable. Such a minimui
sampling curve is also related to the rendering resolution,

shown in Fig. 7(c).

graph, this method can deal with a much larger depth variation

h@ the scene by combining multiple focal planes. Therefore, itis
rﬁuitable not only for outside-looking-in objects, but also for in-

g_de—looking—out environments. When multiple focus planes are

ermine which focus plane is used during rendering.
hile this method does not need to recover actual or approx-
ate geometry of the scene for focusing, it does need to as-

IJTlged for a scene, a scoring algorithm is used before rendering to

gn which focus plane to be used. The number of focal planes
geded is not discussed. This light-field variant exposes another
actor that needs to be considered in the tradeoff, i.e., the ability
to vary the apparent focus on the scene (the better the focus/de-

Isakseret al.[26] did a similar analysis in frequency domairyoc s effect required, the more image samples needed). It is not

in the context of their work on dynamically reparameterizeg‘jm:)nﬂy clear, though, how this need can be quantified in the
light fields. Here, they were concerned about the effect of vaki; geoff.

able focus and depth-of-field on output quality. Zhang and Chen

[94] extended the IBR sampling analysis by proposing a gener-

Geometric Proxies

alized sampling strategy to replace the conventional rectangufar
sampling in the high dimensional signal space. Their analysisMany approximated geometric models, or geometric proxies
was performed in continuous and discrete spatial domains. have been proposed in various IBR systems in order to reduce
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DIMENSION OF COMPLEXITY/
PLENOPTIC FUNCTION COMPRESSION
RATIO
EASE OF RANDOM
ACCESS
. WAVELET
5D | Plenoptic Video
4D : Light Field/ ;
Humigraph - DCP/DCT |
3D Panoramic Concentric
Video Mosaic vQ
2D Panorama -
DYNAMIC STATIC COMPRESSION METHODS

SCENE SCENE

Fig. 8. Comparison of different image-based representation and compression methods in terms of their complexity. The ease of random aceesstiverease
dimension of plenoptic function decreases, while the complexity and potential for compression both increase with the dimension. DCP refersttm@CP me
while DCT is the DCT (see Section VI).

the number of images needed for antialiased rendering. Lighirect application of traditional compression algorithms,
field, dynamically reparameterized light field, and CMs havieowever, usually results in sub-optimal performance. Providing
used simple planar surfaces. The Lumigraph used an appriaadom access to the compressed data for real-time rendering
imated model extracted using “shape-from-silhouette.” The another important and unique problem of IBR compression.
unstructured Lumigraph work demonstrated that realistic retdnlike video coding, which supports random access at the
dering can be achieved, although the proxies are significanglicture or group of picture (GOP) level, higher dimensional
different from the true models. The image-based visual huBR representations such as 3-D CMs requires random access
[54] is another geometry proxy that can be constructed aatithe line level, whereas the 4-D light field and Lumigraph
updated in real time. require random access at the pixel level. As most existing
Acquiring an adequate geometric proxy is, however, difficuttompression algorithms employ entropy coding (such as
when the sampling of light field is very sparse. The geometriduffman or arithmetic coding) for better compression ratio, the
proxy, albeit approximate, needs to be continuous because ev®mnbols after compression are of variable sizes. It is, therefore,
desired ray must intersect some point on the proxy in order to @ery time consuming to retrieve and decode a single line or
tablish the correspondence between rays. Traditional stereopixel from the compressed data if there is no such provision for
construction unfortunately cannot provide accurate enough geandom access.
metric proxies especially at places where occlusion happensln addition, it is often impossible to decode the complete bit
Scam light-field rendering [93] has been recently proposed stream of a high dimensional representation in main memory
build a geometric proxy using only sparse correspondence. for rendering due to its large data sizes. For example, the 3-D
CMs of the lobby scene (Fig. 3) require 297 MB of RAM. To
VI. COMPRESSION OHBR REPRESENTATIONS overcome this problem, VQ [77], [78] or just-in-time (JIT)
decoding [44], [96] is usually used. Only those lines required

Thus f_ar, we have discussed the characteristics of vargyy rendering are decoded online from the compressed images.
types of image-based representations, as well as renderlnq_\; ndom access mechanisms at the “line level” are, therefore
sues. Itis clear thatimage-intensive representations such as | Lded to locate and decode individual compressed’line imagé.
fields, Lumigraphs, and CMs are capable of photo-realistic refnese problems are even more pronounced in higher dimen-
dering, but this is achieved at the expense of large storage Lhal representations such as the light field and Lumigraph.

transmission bandwidth. To overcome these problems, a S iger the 4-D light field of the Buddha statue [43], which

nificant amount of work has been done on effective Compregsgjqts of 35 32 array of images, each having a resolution of

sion and transmission of image-based representations. Altho x 256 with 24-bit per pixel. The total amount of storage is
image and video compression have been studied extensively 389 vB. Decoding the entire light field into the main memory

many advanced algorithms and international standards are ngw

. e i thus, prohibitive, especially when the resolution gets in-
available [27}-[31], there are specific important requirements H?easingly higher. Similar problems exist in the transmission of
IBR that need to be addressed.

image-based representations. Techniques to support selective
transmission/reception and a scalability data stream are, thus,
of paramount importance. A simple comparison of different

First of all, image-intensive representations are usualijage-based representations and compression methods in terms
densely sampled higher dimensional signals (see Table I). Thafitheir complexities, compression ratios, and ease of random
data sizes are huge, but their samples are highly correlatadcess is shown in Fig. 8.

A. IBR Requirements
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B. Different Compression Approaches Blocks kM to (k+1)M-1 line L to be retrieved
In general, there are two approaches to reduce the data size
image-based representations. The first one is to reduce their ( Block0 | Block M
mensionality, often by limiting viewpoints or sacrificing some
realism. Light fields and CMs are such examples. The secon siock 1
approach is more classical, namely, to exploit the high corre.
lation (i.e., redundancy) within the representation using wave
form coding or other model-based techniques. The scene geol
etry may be used explicitly or implicitly. The second approact ‘

Block
2M

can further be classified into three broad categories, which ar{ Block

M-1

1) pixel-based methods; 2) disparity compensation/predictio
(DCP) methods; and 3) model-based/model-aided methods. ~ Mosaic Image «

In pixel-based methods, the correlation between adjacel.. Il blocks o be retrieved
image pixels is exploited using traditional techniques such Big. 9. Accessing a liné in a mosaic image.
VQ and transform coding. Very little geometry information,
however, is used. In the DCP methods, scene geometry
utilized implicitly by exploiting the disparity of image pixels, [ ~“f
resulting in better compression performance. (Disparity refe] - 2M-1
to the relative displacement of pixels in images taken in adjace
physical locations.) It is somewhat similar to motion of object: Blocks to be
in video coding and they have been used in coding stereoscoj retrieved
and multiview images [4], [42], [45], [59], [64], [65], [70],
[82], [92]. Since the disparity is related to the object depth, a ‘ """" t
well as the viewing geometries, these methods also implicitl —
use the scene geometry to improve their coding performance Array of pointers to starting
In contrast, model-based/model-aided approaches [50], [51] pﬂ'_qm”"g o gm"_p of blocks _ _
recover the geometry of the objects or scene in coding tﬁlg 10. Accessing the required group of blocks using a set of pointers.
observed images. The models and other information such as

prediction residuals [50] or view-dependent texture maps [51 Eixel—pased methc_)ds!n the Origif‘a' vyork on CMs [77],
are then encoded. It is clear that an image-geometry trade with a fixed vector size is used to simplify the random access
also exist in IBR compression problem. The compression ratio reported was 12: 1. (Levoy and

Pixel-based thod t0 impl tand. i Hanrahan [43] were the first to employ VQ to overcome the
Ixel-based methods are easy to Implement and, In SOf 4o m aecess problem in light fields). The fixed size of the
cases, the random access problem is usually less complica; “index allows quick access to the required pixel data from

However, their compression performance is limited compar compressed light field or CMs for rendering. It also makes

with the other approaches. The model-based/mo_del—a|_ I-time decoding possible because VQ decoding involves only
methods have the potential to offer higher compression ratigg, e tahle look up. A compression ratio of 6: 1 to 23: 1 was
and other functionalities such as model deformation. On thg, e in [43] for light fields at good reconstruction quality.
other hand, it requires the acquisition of 3-D models, and thg,ever, the compression ratio of simple VQ is rather limited;
encoding and decoding algorithms are more complicated. SifCgiil also be unable to cope with future generations of image-
this paper discusses compression techniques of image-basggh representations with extensive synthetic, as well as real-
representations, details on geometry compression [17] &fid scenes. The solution is to combine the pixel-based method
model acquisition (which can be found elsewhere) are omitteglith the DCP method.

We first review techniques for encoding IBR representations pcp methods:In [78] and [79], Shurret al. proposed an

Compressed Data of the Mosaic Image

of static scenes. MPEG-like algorithm to support random access of CMs at the
line level. This is illustrated in Fig. 9, where a CM is encoded
C. Compression of Static IBR Representations by a block-based technigue such as the discrete cosine transform

(DCT). Other coding schemes such as the wavelet transform can

We start with compression techniques for CMs since itdso be used with appropriate modifications.
random access problem is the easiest to illustrate. The blocks (of size 1& 16) are scanned vertically so that a

1) CMs: As described in Section II-C, CMs are constructedet of vertical lines is completely contained in a group of con-
from images captured using a forward-displaced rotatirsgcutive blocks. In order to retrieve a vertical lihethe com-
camera. A novel view is reconstructed by retrieving appropriapeessed data of macroblockd/ to (k + 1)M — 1 have to be
vertical lines from these images. Compression techniques walicoded. A set of pointers to the starting locations of each ver-
well for this representation because the images are highigal group of macroblocks is used to provide line-level random
correlated. Most of these techniques are based on pixel-baaedess, as shown in Fig. 10. These pointers can either be deter-
or DCP. They also have a special mechanism to support randommed or stored in an array prior to rendering, or they can be em-
access at the line level. bedded in the compressed bit streams. The last option avoids the



1030 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 11, NOVEMBER 2003

creation of the pointer array each time when a new set of CMgate a 2-D array of images of the scene. Since adjacent light-
is loaded into the memory, but this is accomplished at the efield images appear to be shifted relative to each other, there is
pense of a slightly lower compression ratio. The 4-D light fieldonsiderably redundancy in the 4-D data set. In additional to
faces the same problem of having to encode additional data leitmventional pixel- and disparity-based methods, a number of
to enable more efficient access to pixel data. model-based/model-aided algorithms that explicitly explore the
To further improve the compression efficiency, the DCP tecBeene geometry were proposed.
nique is applied to the sequence of mosaic images [77]. Mosaic Pixel-based methodsEarlier approaches on light-field
images atregular intervals are chosen as I-pictures and codedintumigraph compression were mostly based on conventional
dependently, while images in-between are coded as B-pictungixel-based methods. The original work of Levoy and Hanrahan
P-pictures are not used due to their inter-dependencies, whidB] used VQ to provide random access in light fields; DCT
complicates real-time rendering. The pointers structure is usastling [58] and wavelet coding [38], [69] were subsequently
to index the vertical group of blocks in the I- and B-pictures. Farsed. More recentlyy, DCP and model-based/model-aided
the lobby sequence, good quality reconstruction can be achieveethods were proposed to achieve a higher compression ratio
at a compression ratio of 65 using six B-pictures between tviar storage and transmission.
consecutive I-pictures, and real-time rendering can be achieved DCP methods:Disparity compensated prediction, as with
on a Pentium |1 300 desktop PC. CMs, can be applied to predict one light-field image from the
A similar MPEG-like algorithm, called the reference bloclothers. Thisis illustrated in Fig. 11, where the array of light-field
coder (RBC), was proposed in [95]. The mosaic images are clasages is divided into |- and P-pictures. The P-pictures can
sified as anchor (A) and predicted (P) frames. A-frames are ine predicted by disparity compensation from the nearest en-
dependently encoded in a similar manner as the I-picturesdaded I-pictures, which are evenly distributed. An example is
MPEG-2, while the P-frames are encoded using DCP with rdfie V-coder described in [47] and [49], which is based on the
erence to the surrounding A-frames. The P-frame in RBC dift.263 video-coding algorithm. Like conventional video coder,
fers from the P-pictures of MPEG-2 in that it refers only to ththe P-images are divided into ¥616 blocks. Eight different
A-frames to facilitate random access. In addition, a two-levebding modes are incorporated to efficiently exploit the charac-
hierarchical table is embedded in RBC for indexed bit streat@ristic of the light field. Mode selection was determined using
access. The compression ratio is slightly better than direct applirate-constrained approach and was solved using the method
cation of MPEG-2 after taking into account the regular pannirgf Lagrange multipliers. Prior to rendering, the lI-images are de-
nature of the image sequence. An interesting feature of RBCcizded and kept in local memory to provide instantaneous access
the extensively used of data caches to reuse previously decottealow-resolution version of the light field. However, rendering
macroblocks, which improves rendering speed. The renderisigeed may be adversely affected if the compressed light field
system is able to run smoothly on a Pentium Il 300 desktop Pi€.decoded online. This is because random access of light rays
The RBC was also the first algorithm that enabled the onlir{pixel) is not available.
streaming of CMs [97]. Recently, Tong and Gray [85] combined disparity compen-
The application of wavelet transform to the compression shtion prediction (DCP) and VQ (HDCP) and proposed a hier-
CMs was studied in [46], [89], and [90]. Potential advantageschical light-field coder. The 2-D array of light-field images
of wavelet transform are its higher coding performance angldivided into layers, with the lowest layer being vector quan-
ability to provide resolution and quality scalabilities. Directized without any prediction. Images in higher layers are pre-
3-D wavelet transform coding [40], however, yields a perfodicted from images in the lower layers using DCP. The predic-
mance only comparable to that of MPEG-2. By using a smdibn residuals are again vector quantized and different coding
rebinning approach to align successive images in a CM, thedes are incorporated to improve coding efficiency. To facil-
wavelet-based approach produces very encouraging resuttde random access, the residuals and disparities are not en-
which outperforms the MPEG-2 based algorithm by 3.7 dBopy encoded. Moreover, the predictive coded images are di-
on average. The success of the rebinning method is due tovitded into regions, and each is associated with a 4-B offset to
ability to exploit the redundancy of multiple mosaic imagesupport random access. Significantly better compression rates
arising from the disparity of image pixels. were obtained for the “Buddha,” “Dragon,” and “Lion” light
The rendering operation is, however, complicated by the lofiglds, compared with using simple tree-structure VQ (TSVQ).
filter support of the wavelet transform (compared with block TheD-coder, which was also proposed in [48] and [49], relies
transforms). In fact, decoding a given pixel involves decodinmn disparity compensation of light-field images. The four corner
other adjacent pixels. To overcome this problem, the progressirreages in the image array are first encoded as I-images. Their
inverse wavelet synthesis (PIWS) method [89] only perforntisparity maps are then estimated and Huffman coded. From
the necessary inverse calculations to reconstruct the coefficitrd encoded corner images and their disparity maps, the center
used in the current view. With extensive cache usage, PIWS wamge, and then the images midway between any two corner-
able to perform real-time rendering. A multiresolution subbarithages, are predicted. The residuals, if any, are DCT coded.
coder using nonlinear filter bank [62] has also been proposeditbese nine encoded images are then used to divide the image
overcome the long filter support of wavelet transform for praarray into four quadrants, each of which is recursively encoded.
gressive transmission. Due to the hierarchical nature of the D-coder, the decoding of
2) Light Fields and LumigraphsThe light field and Lumi- the image pixels is very time consuming. This slows down the
graph sample the plenoptic function in a 2-D plane and gerendering speed if the compressed data is decoded online.
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Fig. 11. DCP in light-field compression.
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Zhang and Li [96] have also extended the reference bloskt partitioning in hierarchical trees (SPIHTs) 4-D wavelet
coding to the encoding of Lumigraph using multiple referenamdec. On the other hand, model-aided predictive coding [50]
frame (MRF) prediction. Disparity compensation is applied tmakes use of geometry information to morph and predict new
the 2-D light-field array instead of the one-dimensional (1-Djiews from already encoded images. The prediction residuals
image sequence in CMs. As with I-images in [49] and [85hre encoded using DCT-based coding. Like the hierarchical
certain images in the light-field array are chosen as the anclight-field coder in [85], a decimated version of the spherical
frames (A frames), which serve as references for predicting thght-field array are encoded as intra- or I-pictures, and they
remaining P images. A two-level index table is incorporated interve as references for predicting images at the next layer. By
the bit stream for quick access to individual picture and maasfranging the images in a hierarchical manner, a multiresolution
roblocks. Like CMs, this reduces the compression ratio. Atrapresentation of the image data is obtained which facilitates
compression ratio of 100 : 1, the overhead incurred is 10%. Theogressive rendering and decoding. Both algorithms encode
overhead increases to 30% when the compression ratio readhesgeometry of the objects using the embedded mesh coding
160:1. A caching scheme is also incorporated to speedup (B#MC) in which the vertex coordinates and mesh connectivity
rendering. are jointly encoded to provide better scalability and improved

Model-based/model-aided methodi: has been shown performance. Experimental results showed that the model-aided
that 3-D scene geometry can improve coding efficiency amgproach is more robust to variations of the geometric models.
rendering quality considerably [14], [88]. The model-based
coding (also known as texture-based coding) proposed in [§2] Compression of Dynamic IBR Representations
makes use of the scene geometry to convert the images fronThe image-based representations discussed thus far are asso-
a spherical light field to view-dependent texture maps. Thesgted with static scenes. There is a significant amount of work in
maps exhibit greater inter-map correlation than the originglereoscopic video coding, which are mostly based on disparity
images and are more effectively encoded using a modifieggmpensation [65]. However, the compression and transmission
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Fig. 12. Compression of 4-D SDLF.

of general dynamic IBR representations are not well studiestream in a P-field are predicted using spatial prediction from
This is largely attributed to the logistical difficulties in capturingadjacent P-picture in the main stream, and the forward motion
and transmitting of dynamic representations, which inherenttpmpensation from the reference I- or P- fields in the same sec-
involves huge amounts of data. Nevertheless, the ability ohdary stream. Pictures from the secondary stream in B-field
image-based techniques in creating photorealistic imagesaoé predicted using spatial prediction and forward/backward
real scenes has stimulated a lot of interest in constructing sensation compensation. To address the random access problem,
systems for capturing dynamic environments from multiplpointers were embedded into the compressed data stream.
viewpoints. Examples are the Stanford University, Stanfor8jmulation results using an 16-camera synthetic SDLF showed
CA, Multicamera Projeétand the Carnegie—Mellon University,an improvement of 2 dB in peak signal-to-noise ratio (PSNR)
Pittsburgh, PA, Virtualized Reality Project [32]. The goal of théor the disparity/motion compensation scheme over direct
Multicamera Project is to build an array of 128 video cameragpplication of MPEG2 algorithm to individual streams.
using low-cost CMOS camera, inexpensive lens, and otherAnother interesting 3-D dynamic IBR representation with
processing and compression hardware. A prototype system wathmuch lower data requirement is the panoramic video or
six cameras was reported [86]. The Virtualized Reality Projetitne-varying environment map [13]. A panoramic video is a
uses a set of synchronized cameras, and allows the vieweséguence of panoramas created at different time instants, which
virtually fly around and watch the event from new positionsan be used to capture dynamic scenes at a stationary location
This is made possible by reconstructing 3-D (octree) modelsat in general along a path with a 360ield-of-view. The
every frame offline. resolution of a panoramic video may be large, which would
More recently, Charet al. [10] proposed a disparity andpose a number of problems for transmission, digital storage,
motion compensated compression algorithm for the simplifiethd rendering. For example, a 204868 panoramic video
dynamic light fields (SDLFs), where videos were taken at regat 25 frames/s would require 112.5 MB/s of digital storage or
larly spaced locations along a line. This is illustrated in Fig. lffansmission bandwidth.
for three videos sequences, called a group of field (GOF). Aln [63], each panoramic video frame is divided into tiles of
modified MPEG-2 video compression algorithm is used temaller size to support selective decoding. As shown in Fig. 13,
provide random access to individual pictures. There are twoe frame of the panoramic video “Cafeteria” is divided into
types of video streams in the SDLF: main and secondary videia smaller tiles of the same size. A panoramic video is thus
streams. Main video streams are encoded using the MPE@dttitioned into six separate subvideos, each of which can be
algorithm, which can be decoded without reference to otheompressed by the MPEG-2 algorithm. In virtual walkthrough
video streams. The light-field images captured at the sampplications, the appropriate portion in these tiles will be di-
time instants as the I-pictures in a main stream constitute @attly rendered to emulate virtual camera panning and zooming.
I-field. Similarly, P- and B-fields are defined as the light-fieldf the whole panorama has a 36fkeld-of-view, then the max-
images containing respectively the P- and B-pictures of tiraum viewing angle of each tile will be 60Taking into account
main video stream. Pictures from the secondary stream in the possibility of overlapping, at most, two adjacent tiles have
I-field are encoded using disparity or spatial prediction from the be decoded simultaneously to support a user’s view &f 60
reference I-picture in the I-field. Pictures from the secondamo handle the tile switching when the user changes the viewing
angle, a random access mechanism, as shown in Fig. 14, was
2[Online]. Available: http://graphics.stanford.edu/projects/array/ incorporated into the compressed data stream to facilitate fast
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Fig. 13. Frame 8 of the panoramic video sequence “cafeteria.”

be effective and compelling. It would be very challenging to
efficiently compress and transmit them.

We predict that future virtual reality and gaming systems will
rely heavily on image-based representations to render photo-re-
alistic real-world scenes. Realistic-looking synthetic scenes that
are expensive to render may be prerendered instead and stored
Fig. 14. Multiplexing of the tiles (streams) in the MPEG2 compressed> Mage-based representations in such systems as well. How-
panoramic video. ever, before such systems become a reality, the high level of in-
teractivity associated with 3-D gaming will have to be enabled.

tile seeking. Here, each tile is encoded by the MPEG-2 standdfdS 1S @ challenging and interesting topic that will need to be
with a GOP consisting of one I-picture, two P-pictures, and fo@deduately addressed. . _ _
B-pictures. If a tile switching is required during the decoding of N @ddition, the amount of digital data associated with fu-
the P- and B-pictures inside a GOP, it can only begin in the ndfe IBR representations will become so large that selective de-
GOP because the I-pictures of the new tiles in the current GGRAINg. reception, and streaming techniques for transmission
might not be available. Therefore, the separation of the I-piill Play @ major role in their processing. This again calls for
tures should not be very large. In the current example, the maePhisticated random access methodology to retrieve these com-
imum delay during tile switching is 0.28 s, assuming a franfiPnents with wide range of characteristics.

rate of 25 frames/s. Interested readers are referred to [63] for

other applications of panoramic video and issues of transmis- VII. DISCUSSION

sion over high-speed network. IBR is an area that straddles both computer vision and com-
o puter graphics. The continuum between images and geometry is

E. Future Directions and Challenges evident from the IBR techniques reviewed in this paper. How-

Table Il summarizes the various IBR compression methodser, the emphasis of this paper is more on the aspect of ren-
described earlier. Despite the significant progress achievéering and not so much on image-based modeling. Other im-
in IBR compression over the last few years, many researphrtant topics such as lighting and animation are also not treated
problems still remain. We envision that the data compressibere.
and transmission of the various image-based representationBue to the large amount of data used to represent the 4-D
described in this paper and related representations (such adtimetion, light-field compression is necessary to make it prac-
compression of LDIs [18]) will continue to be important issuesical. This is possible because of the high spatial coherency
in IBR research. For example, the integration of model-basathong all the inputimages. Some of the challenges in IBR com-
coding with traditional video coding approaches for light fielghression such as rendering directly from compressed streams
compression [21], [50], [51] is an interesting area of researctand producing more efficient scalable and embedded represen-

Methods for capturing, compression, and transmission t@itions are briefly mentioned in Section VI-E.
dynamic IBR functions have not been well explored yet. Inthisreview, IBR techniques are divided based on how much
The panoramic video, as discussed earlier, is a 3-D dynargieometric information has been used, i.e., whether the method
image-based representation that is relatively simple to manigses explicit geometry (e.g., LDI), implicit geometry or corre-
ulate. As a result, this representation will be easier to use spondence (e.g., view interpolation), or no geometry at all (e.g.,
a commercial setting. Dynamic generalizations of the liglight field). Other methods of dividing IBR techniques have also
field and Lumigraph, which we called the plenoptic videdyeen proposed by others, such as on the nature of the pixel in-
will likely involve scores of synchronized videos for them tadexing scheme [33].
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TABLE |

SUMMARY OF IBR COMPRESSIONTECHNIQUES (NOTE: DCP = DISPARITY COMPENSATION PREDICTION, VQ = VECTOR QUANTIZATION,,
MRFP = MULTIPLE REFERENCEFRAME PREDICTION, MB = MACROBLOCK)

STATIC SCENES (Concentric Mosaics:

Random access at line level)

References Method Random access Compress. ratio | Remarks

[77] VQ Simple Low Simple, fast, rendering

[38], [69] Haar wavelet decomp. Tree of wavelet coeffs. | Moderate Scalable bit stream

and thresholding to speedup data access

[78] Modified MPEG-2 Pointer to line of MB High Real-time rendering

RBC [44], [95] Modified MPEG-2 Simple (pointer) High Real-time cache to enhance speed

[46], [89], [90] Wavelet Complicated High Less rendering speed. Real-time with cache
enhancement [89]. Good compression
efficiency using smart rebinning [90].

STATIC SCENES (Light Field: Random access at pixel level)

References Method Random access Compress. ratio | Remarks

[43] VQ Simple Low Simple, fast rendering

HDCP [85] DCP, VQ Pointer to regions High Simple, fast rendering

V-coder [47], [49] | DCP, DCT-based coding | Complicated High

D-coder HDCP using disparity Complicated Slightly inferior Possible to interpolate intermediate

[48], [49] map, DCT-based coding to V-coder missing picture

RBC [44], [96] Modified MPEG-2, 2-level index table High Real-time rendering. Also for Lumigraph

MRFP

compression. Significant overheads of
indexing at high compression ratio.

Model-aided Approx. 3D geometry Complicated Better than MBC
coder (MAC) [50] | model and DCP
Model-based Use scene geometry to Random access to High Supports progressive decoding. Graphics

coder (MBC) [51]

convert images to texture

arbitrary texture

hardware can be used to accelerate

maps, which are coded segments rendering.
using a modified SPIHT
algorithm [73]
DYNAMIC SCENES (Panoramic Video: Random access at tile level)
Reference Method Random access Compress. ratio | Remarks
[63] Modified MPEG-2 B-pictures in MPEG-2, | High Panoramas divided into tiles for
pointers to tiles selective decoding and reception
DYNAMIC SCENES (Simplified Dynamic Light Field: Random access at line level)
Reference [ Method [ Random access [ Compress. ratio | Remarks
[10] | Modified MPEG-2, DCP | Pointers to line of MB_ | High |
A. Challenges only small strips from registered images, i.e., slit images (e.g.,

There remain many challenges in IBR, including the fol®8] and [98]) to form a large panoramic mosaic. Capturing
lowing. panoramas is even easier if omnidirectional cameras (e.g., [61]

a) Efficient representation\What is very interesting is the 2"d [60]) or fisheye lens [91] are used. _
tradeoff between geometry and images needed to use for ant 1S: however, very difficult to construct a continuous 5-D
tialiased IBR. The design choices for many IBR systems wef@MPlete plenoptic function [35], [57] because it requires
made based on the availability of accurate geometry. PlenoptR!Ving the difficult feature correspondence problem. To date,

sampling provides a theoretical foundation for designing IBRP On€ has yet shown a collection of 7-D complete plenoptic
systems. functions (authoring a dynamic environment with time-varying

Both light-field rendering and Lumigraph avoid the featurd9nting conditions is a very interesting problem).

correspondence problem by collecting m

any images with

known camera poses. Due to the size of the database (even gtefyo Scenarios
compression), virtual walkthroughs of a real scene using light

fields have not yet been fully demonstrated.

IBR can have

many interesting applications. Two scenarios,

b) Rendering performanceHow would one implement in particular, are worth pursuing:
the “perfect” rendering engine? One possibility would be to

a) Large environmentsMany successful techniques, e.g.,

adapt current hardware accelerators to produce, say, an appligkt field, CMS, have restrictions on how much a user can
imate version of an LDI or a lumigraph by replacing it withchange his viewpoint. QuickTime VR [13] is still popular for
view-dependent texture-mapped sprites. The alternative is to dBewcasing large environments despite the visual discomfort
sign new hardware accelerators that can handle both conveadsed by jumping between panoramas. While this can be al-
tional rendering and IBR. An example in this direction is th&viated by having multiple panoramic clusters and enabling
use of PixelFlow to render image-based models [55]. Pixelflogingle degree of freedom (DOF) transitioning between these
[19] is a high-speed image-generation architecture that is basdasters [34], the range of virtual motion is nevertheless still
on the techniques of object-parallelism and image compositionsstricted. To move around in a large environment, one has to
c) Capturing: Panoramas are relatively not difficult tocombine image-based techniques with geometry-based models
construct. Many previous systems have been built to constritbrder to avoid excessive amount of data required.
cylindrical and spherical panoramas by stitching multiple  b) Dynamic environmentstntil now, most of IBR sys-
images together (e.g., [13], [52], [57], [83], and [84]). Wherems have been focused on static environments. With the devel-
the camera motion is very small, it is possible to put togethepment of panoramic video systems, it is conceivable that IBR
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can be applied to dynamic environments as well. Two issuegs]
must be studied: sampling (how many images should be cap-
tured), and compression (how to reduce data effectively). [16]

VIII. CONCLUDING REMARKS

We have surveyed recent developments in the area of IBI%Y]
and, in particular, categorized them based on the extent of usts]
of geometric information in rendering. Geometry is used as Fuo]
means of compressing representations for rendering, with the
limit being a single 3-D model with a single static texture. While
the purely image-based representations have the advantage, ﬂ;f]
photorealistic rendering, they come with the high costs of data
acquisition and storage requirements. We have also surveyét}]
development in compression techniques for image-based rep-
resentations, with examples of CMs and light fields. [22]

Demands on realistic rendering, compactness of representa-
tion, speed of rendering, and costs and limitations of compute[53]
vision reconstruction techniques force the practical represen-
tation to fall somewhere between the two extremes. It is clear
from our survey that IBR and the traditional 3-D model-base 24]
rendering techniques have complimentary characteristics that
can be capitalized. As a result, we believe that it is importani25]
that future graphics rendering hardware and video technologPéG]
be customized to handle both the traditional 3-D model-based

rendering as well as IBR.
[27]
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