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An Efficient Multiplierless Approximation of the Fast
Fourier Transform Using Sum-of-Powers-of-Two
(SOPOT) Coefficients

S. C. Chan and P. M. Yiu

Abstract—This letter proposes a new multiplierless approx- be achieved with simple integer arithmetic. However, it is very
imation of the discrete Fourier transform (DFT) called the difficult to design such integer matrices when the transform
multiplierless fast Fourier transform-like (ML-FFT) transforma- length increases. Up to now, only order-8 integer FFT [8] and

tion. It makes use of a novel factorization to parameterize the .
twiddle factors in the conventional radix-2" or split-radix FFT  Order-16 integer DCT [7] have been reported. The proposed

algorithms as certain rotation-like matrices and approximates the Multiplierless FFT-like (ML-FFT) transformation is based
associated parameters using the sum-of-powers-of-two (SOPOT)on the SOPOT representation of the twiddle factors in the
or canonical signed digits (CSD) representations. The ML-FFT conventional FFT algorithms using a special parameterization
converges to the DFT when the number of SOPOT terms used f e rotation-like matrices [3]. This parameterization allows
increases and has an arithmetic complexity ofO(N log, V) . . .
additions, where N = 2™ is the transform length. Design results us to implement both the forwgrd and inverse transform's with
show that the ML-FFT offers flexible tradeoff between arithmetic ~ the same set of SOPOT coefficients. Furthermore, by using the
complexity and numerical accuracy in approximating the DFT. periodic properties of the rotation-like matrix and the twiddle
Index Terms—Discrete Fourier transform (DFT), fast Fourier factors, the number of parameter_s to be optimized is reducgd
transform (FFT), radix- 2" decimation-in-frequency (DIF), by a factor of four and the dynamic range of the parameters is
sum-of-powers-of-two (SOPOT). limited between zero and one, greatly improving the numerical
property. Unlike integer-based transformations, multiplierless
transformations with length up to 1024 and higher can be
obtained without much difficulty, and they converge to their
HE DISCRETE Fourier transform (DFT) is an importanideal counterparts when the SOPOT terms used increases. The
tool in digital signal processing [1]. A treasure of fast algoproposed approach differs from the multiplierless DCT of [5]in
rithms such as the Cooley—Tukey fast Fourier transform (FFEhe parameterization used, which has the advantages of limited
the prime factor algorithm (PFA) FFT, and the Winogard FFT idynamic range and reduced number of parameters mentioned
available to compute efficiently DFT of different lengths. In thigarlier. Design results show that the proposed ML-FFT offers a
letter, a new multiplierless approximation of the DFT, calleflexible tradeoff between arithmetic complexity and accuracy
the multiplierless FFT-like transformation (ML-FFT), usingn approximating the DFT. Another point worth mentioning is
the radix2™ FFT algorithm and the sum-of-powers-of-twathat the proposed approach is also applicable to approximate
(SOPQT) or canonical signed digits (CSD) representatiogther sinusoidal transforms such as the four types of DCTs
is proposed. Generalization to the split-radix FFT (SR-FFBnd DSTs [4] and the discrete Hartley transform (DHT) [9].
algorithm is also possible. The present work is motivated Bhis letter is organized as follows, Section Il is devoted to
a recent interest in the efficient realization of fast transforme proposed ML-FFT algorithm, where its principle and the
algorithms using either integer [6]-[8] or SOPOT [3]-[Sparameterization of the rotation-like matrices into SOPOT
representations. The main objective is to provide efficiegbefficients are described. Section Il gives the design method
multiplierless approximation to sinusoidal transforms sucind several examples demonstrating its usefulness. Finally,
as the DFT, which can be implemented efficiently either isonclusions are drawn in Section IV.
software (say in microcontrollers with no on-chip multipliers,
etc.), hardware, or very large scale integrated circuits (VLSI). II. ML-FFT ALGORITHM
Integer FFT [6] and sinusoidal transforms [7], [8] are attractive .
Whe%l the tra[m]sform sizes are small, bec[al]Js[e ]the wordlen thhe DFTX[k] of a finite-length sequencel»] of length v
growth of the intermediate data can still be accommodated in
16-32 bits without rounding. As a result, high accuracy can

. INTRODUCTION

N—1
XK =Y apwifork=0,1,...,N-1 (21a)

n=0
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If Vis a power-of-two number, the DFT can be computed by tt©! \/ >< e o
radix—2" (n = 2, 4, 8, ...) or the split-radix FFT. Without loss x1 - L X
of generality, let us consider the decimation-in-frequency (Dllxm \\// ><>< Ws > Xl
FFT algorithm. From (2.1a), it can be shown that the even-nu AXX/ N\, W > W
bered frequency samples can be computed viaNf2)-point ! XXXX Wy ; > Xl
DFT of the sequencéz[n] + z[n + N/2] - W[} as follows: 4] /XX\ > X1
| | wNSL D] W
X[27] = Z -T[TL]WN X[6] / - \ ! /_\ W >< o > X[3]
n=0 7] Ny T 7 : —~—— > X
(N/2)—1
— Z a:[n]WQr"T Fig. 1. Flow graph for computing an eight-point DFT using the DIF radix-2
= ‘ FFT algorithm(Wy = e—7(7/N)),
(N/2)—1 is the rotation-like matrix that we are interested in and=
2r(n+(N/2)) s e . . -
+ > aln+ N/2WY (py +j - p:). The main difficulty in constructing a multiplierless
n=0 transformation using the SOPOT representatiaRois that the
(N/2)—1 coefficients of the matrix transformation and its inverse cannot,

= Z {z[n] + z[n + N/23WLT,. (2.2) ingeneral, be expressed in terms of SOPOT coefficientss
=0 andsin 6 in (2.4) are expressed directly in terms of SOPOT co-

Similarly, the odd-numbered frequency samples can be coﬁﬁf['c'ems’ say andf3, then the inverse of

puted as af/V/2)-point DFT of the sequencz(n) — z(n + . a B
N/2)] - WE} as shown in the following: Ry = { }

5 —«
Nl is
X[2r +1] = Z x[n]WX,(Q”"'l) . o 8
S~ -1
s
0 .
(N/2)—1 (rt1) a2+ 52 1 —a
= Z Wy As o and 3 are SOPOT coefficients, the terfa? + 52)~1/2
n=0 cannot, in general, be expressed as SOPOT coefficients. The
(N/2)—1 - N basic idea of the proposed ML-FFT is to parametefizeand
+ Z z[n + N/Z]W](\,’Jr Y+ N/2) its inverse as follows:
n=0 cos 6 sin @ .
(N2 0= [Sinﬁ — cos 9} =&y
= > {z[n] —z[n+ N/2YWE - WR,. (2.3)
o [1 —tan(9/2)} [ 1 0} [1 tan(9/2)} (2.5)
~lo 1 sinf 1] [0 -1 |7

WF is called the twiddle factor. IV is a a power-of-two

number, then the DFT can be reduced successively Using B)fce these factorizations & andR; " involve the same set of
above.decor.np05|t|on to gventual{)N/2) two-point DFTs. coefficients, i.e.sin @ andtan(#/2), they can be directly quan-
The arithmetic complexity i$v -log, N complex additions and tized to SOPOT coefficients to form

(N/2) - log, N complex multiplications (including possible

trivial multiplications). Fig. 1 shows the flow graph of the Ry~ Sy — {1 —/33} [ 1 0} {1 /30} 2.6)
eight-point DFT computed using the DIF FFT algorithm. The 0 1 ag 1] 10 -1

proposed ML-FFT algorithm approximates the twiddle faCtOv(/herea and 3, are, respectively, SOPOT approximations to
multiplication, which can be implemented as rotations, usin P ahgtm(e/ez) ha’vin the forrréy — Zt a.2% where
the SOPQOT representation and a certain parameterization 0 ° 9 T L=l OR2

S . . - g ap € {-1, 1}, bp e {—r, ..., =1,0, 1, ...,7}; ristherange
the rotation-like matrix. More pr_ec_lsel_y, let N (@ + .y) of the coefficients, and is the number of terms used in each
be a complex number. The multiplication ©fvith exp(—356),

. . coefficient. In practice, itis usually limited to a small number so
p = ¢ exp(—jf), can be written as that the multiplication can be implemented with limited number
Py cosf sinf T 1 0 T of additions and shifts. Since the coefficient multiplications are
[ } = [ } : [ } = [0 _J - I [ } now replaced by a limited number of additions, the transforma-
tion can be realized efficiently without multipliers. Interested
readers are referred to [3]-[5], [10] for more references on ef-
ficient realization of digital filters using SOPOT coefficients.
Direct application of (2.6) might lead to large dynamic range
_[cos®  sind for tan(6/2) whend is close tor. Although the factorization of
b= Ry in (2.5) is unique for a given value 6f the periodic property

i —sinf cosf Y Y

(2.4)

where

sinf —cosé
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of Ry can be utilized to construct slight variation of this factor- TABLE |
ization so as to reduce the dynamic range of the coefficients, a§ROBENIUS 'I;"Y)F;"JEOAF/IE*FEF'ETRECS’TN'!ADTI X &ZZi?;Amg:NG THEDFT
well as the number of parameters to be optimized. More pre-

cisely, it can be shown that the quantitils, Ry /2, Rx—o, Number of channels of the multiplier-less radix-2 FFT
R,/ 4, andR, ., can be expressed completely in terms of any - 32;%1;21311;01 64-;;135161 123;%11331161 256;1113]1;1161
H Y . terms - - = -
one of the following quantities: 7 terms 95 dB 85dB 76 dB 67 dB
Lo 01 6 terms -69 dB -63dB -57dB -50dB
7 7 5-terms -53dB -45dB -39dB 31dB
for ZS9< 5 R 9= [0 J "Ry - [1 0} (2.7a) 4-terms -20dB -14dB -3dB 2dB
7f 37 0 1 TABLE I
for 9 <0< 3 R9+7T/2 =R - [ -1 0} (2.7b) THE OBJECTIVE FUNCTION, THE FROBENIUSNORM, THE AVERAGE NUMBER

OF SOPOT ERMS, AND THE COMPUTATIONAL COMPLEXITY FOR
-1 0 1 0 8-, 16-, 32-, 64-AND 128-CHANNEL REAL-VALUED FFT AND
- g - 0 (270 )

3m
for i <O<w, Rr ¢g= 01 ML-FFT (MULT: M ULTIPLICATIONS; ADD.: ADDITIONS)

Computational | Computational

for 8> _ | 1 0 R 2.7d Average| complexity complexity Comquation.al
orv-m, er-l—@ = 0 1 c g ( : ) number |  using real- using real- complexity using
- Frobenius £ valued radix-2 | valued radix-4 S?fPQT "
) ) ) o ) ] ] ] ] NOl'l'n O FFT FFT coeiricients
Using these relationships, it is possible to lirditithin the SOPOT ADD. | ADD.

terms | MULT. | ADD. | MULT. | ADD. for for
radix-2 | radix-4

-64 dB 4.500 20 58 - - 84

rangel0, 7 /4]. Thus, the dynamic range of the parameterstol
approximated by the SOPOT representation is always limited™ s-
the rangd0, 1], and the number of parameters to be optimize c”;’;f’e’
can be reduced by a factor of four. The former allows us to lin channet
the dynamic range of the parameters even if the transform len 3>
is very large, resulting in better numerical property. The appro™ s+
imationsSs_ ~/2, Sx—s, Sz /24, aNdS 4 Of their respective C”I"Z”;e’
rotation-like matrices can be generated frSmby replacingR  channet

with S'in (2.7). As all the twiddle factors in the radix-2 DIF FFT

algorithm are jusF a subset of t.hose @n th%first stage, there a5, | (in decibels) obtained by directly rounding the coeffi-
altogetherV/2 twiddle factors, includingVy.. Using the pro- cients to the SOPOT representations without performing any
posed parameterization, which has two parameters per rotatiggyimization. It can be seen that the precision of the ML-FFT

there are approximately x (IV/8) parameters in al-point s girectly related to the number of SOPOT terms used, which
ML-FFT. The SOPOT twiddle factors for the radix-4, radix-8;, turn affects its arithmetic complexity. Table Il shodss;,

-53dB 4.250 68 162 36 146 252 224

-45 dB 4375 196 418 - - 756

-43 dB 4.738 516 1026 324 930 2094 1920

-41 dB 4.938 1284 | 2434 - - 6727

and split-radix ML-FFTs can be generated similarly. the average SOPOT terms, and the computational complexities
for the 8-, 16-, 32-, 64-, and 128-channel ML-FFT obtained
lll. DESIGNMETHOD AND EXAMPLES using the random search algorithm. The numbers of SOPOT

The random search algorithm proposed in [4] is used tgrms are limited to five to simplify hardware implementation,
perform the discrete optimization. More precisely, a randof]0Udh it is not necessary, say, in software implementation.
vector with all its elements bounded Byl is first multiplied 1 n€ arithmetic complexities of the radix-4 FFT and ML-FFT
by a scaling factors, and is added to the parameter vectdfre also shown as a comparison. It can be seen that the number
containing the real-valueds and fe. It is then quantized to Of additions required for the ML-FFT is approximately two

the nearest SOPOT coefficients. The objective function is thif1€s that of the radix-2 FFT algorithm for an averaged number
evaluated for this SOPOT candidate. The one with the b&ftSOPOT terms per coefficient of five. In general,fis

performance at a given number of additions is recorded. TH¥ average number of the SOPOT terms per coefficient, then

search continues until the maximum allowed number of trials &M (2.6), the arithmetic complexity of the rad2k- ML-FFT

exceeded. The scale factor controls the size of the neighborh@Prithm derived from a radig* FFT algorithm with an arith-
to be searched. A number of solutions with different tradeoff@€tic complexity of Myaqix—on (V) complex multiplications
between implementation complexity and performance are th@fdAradix—2» (V) complex additions is approximately
obtgmgd. Without loss of gener.allt.y, the Frobenius norm of th&\ﬁ_radix_w (N) = 35 - Myadineon (N) + 2 - Ayadin_an (V)
derivation of the ML-FFT from its ideal counterpart is used as

the objective function real additions. For simplicity, we have ignored those
trivial multiplications in the real-valued algorithm. As
N—1 N—1 . . an example, the radix-2 FFT algorithm has an arith-
Eopy = Z Z (fj,k_fj,k) . (fj,k—fj,k) (3.1) metic complexity of Magix—2(N) = (N/2) - logy N
Jj=0 k=0 and A.qix—2(N) = N - log,N. Then, the corre-

A sponding complexity of the ML-FFT algorithm is
where f; » and f; 5 are the(yj, k)th entries of the ML-FFT 3(N/2) - log, N + 2N - log, N real additions. Further
matrix and its ideal counterpart, respectively. Table | shovesving can be obtained by using the radix-4 (as illustrated in
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TABLE Il

THE SOPOT EFFICENTS OF THE32-CHANNEL ML-FFT

R, ao (sinf) o (tan(8/2))
Ry 210408495 404 L3497 94492
R, 15, 28408 04402 274923492
R, 21l 99 o7 1 944 92 121 910 5T 5y ol
Ryrs 27+2°+2°+2? 7t S22 )
TABLE IV
THE SOPOT EFFICENTS OF THEL28-CHANNEL ML-FFT
o a, (sinb) Po (tan(8/2))
Ry 242742710427 426 R e Ay
Ry | 2%+22+2°+2°+2° | 2B4+2242%42°+27
Ry R A 212294274964 23
R,/ B 1104 28 54 53 3T 512 L o7 51 52
Ry Sy 12 99403 2P o4 10 57 52
R 27 B T4 25 427 212410407 4 2% 4 22
Ry L2026 04403 210 T4 95 4 944 92
Ry 12 S22ttt 0? 2B BT Ty
Ry D D S 9B 59 57 _pa4 o1
Ry 2Pyt g? _2 g0 8 55 ol
R\ s R Sl (994 96y ol
R 22?2724+ AL Vil Y
Rz 212429426424+ 272 7 5% 2517340t
Ry 2220 %03+ 2249427428427
Risi18 270427 +27+2%+27 LR WAl e
R 22+27+2°+2°+ 27 2520 427+

16/128

Table Il) and the SR-FFT algorithms. The details are omitted

Frequency Response of 32-channei DFT

Magnitude in dB

-30 - 1

.40 il 1 1 1 1 L L L i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized frequency (in rad)

Fig. 2. Frequency response of the 32-channel ML-FFT using radix 2 DIF FFT
algorithm.

IV. CONCLUSION

A new multiplierless approximation of the FFT called the
multiplierless FFT-like transformation is proposed. It param-
eterizes the twiddle factors in the conventional ralix-or
split-radix FFT algorithms as certain rotation-like matrices and
approximates the associated parameters using the SOPOT or
canonical signed digits representations. The ML-FFT converges
to the FFT when the number of SOPOT terms used increases
and has an arithmetic complexity 6f(N log, N) additions,
where N = 2™ is the transform length. Design results show
that the ML-FFT offers flexible tradeoff between arithmetic
complexity and numerical accuracy in approximating the FFT.
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