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~ Abstract—Evoked potentials (EPs) are time-varying signals typ- on AF. It allows tracking of the dynamic variations of EP and
ically buried in relatively large background noise. To extract the  reduces the noise uncorrelated with the underlying signal. The
EP more effectively from noise, we had previously developed an ap- performance of ASE greatly depends on its reference signal.

proach using an adaptive signal enhancer (ASE) (Cheet al.,, 1995). .
ASE requires a proper reference input signal for its optimal per- Several reference signals have been tested. Vaz and Thakor [13]

formance. Ensemble- and moving Window_averages were former|y Used a f|n|te number Of Sine and COSine waves as the reference
used with good results. In this paper, we present a new method to input in the time domain. It was assumed that the signal is well
provide even more effective reference inputs for the ASE. Specif- defined in each recurrence with a constant number of reference
ically, a Gaussian radial basis func_tlon neural netwo_rk (RBFNN) inputs. Lagunaet al. [10] designed the reference input as a
was used to preprocess raw EP signals before serving as the ref- ™. " . . T

erence input. Since the RBFNN has built-in nonlinear activation unitimpulse sequence synchronized with the beginning of each
functions that enable it to ClOSG'y fit any function |'napping7 the recurrence. Th|S method takeS adVantage Of the faCt that EPs
output of RBFNN can effectively track the signal variations of EP. are responses that are time-locked to the stimulus. Mathemat-
Results confirmed the superior performance of ASE with RBFNN jcal proof shows that such a filter is equivalent to exponentially

over the previous method. weighted averages. Q&t al.[7] adopted a dynamic averaging
Index Terms—Adaptive signal enhancer (ASE), evoked poten- window to obtain a more meaningful reference.
tial, radial basis function neural network (RBFNN), SNR. All of the methods discussed above basically involve linear

operations. Obviously, the assumption of linearity for the
nervous system may not be always valid. Since at the single
. . cell level, it is well known that for identical stimuli, responses
E \(QKED pote_r_mals '(EPs) represent the gross elQCt“Cm 88f central neurons show jitter in latency and responses may
tivity of specific regions of the brain usually resulting fromsometimes fail to show up. Taking the possible nonlinear nature
sensory stimulation. Like many neural signals, the measuremgfithe system into consideration, neural networks that can
of EPsiis corrupted by noise as a result of the on-going activity grinsically cater to both linear and nonlinear characteristics
other brain cells known as electroencephalographic (EEG) age potentially more appropriate. Recently, the use of neural
tivity. The traditional method of ensemble averaging (EA) hasetworks with built-in nonlinear processing units has been
been widely used to extract EP from a noisy background. Hoyrowing in many areas of signal processing [8], [9], [19],
ever, a number of studies showed that EPs are nonstationary T@Q}_ In our previous work [9], a radial-basis-function neural
therefore, have characteristics that vary across stimulus triglshork (RBFNN) was successfully used to estimate the EP.
[14]-[18]. EA methods may, therefore, fail to track trial-to-trialrhe structure of the RBFNN is relatively simple with an output
variations both in latency and amplitude. ~ node that has a linear-in-weight property. Therefore, it repre-
Adaptive filtering has been widely used in biological signadents a good balance between performance and computational
estimation [2], [3], [5]-[7], [10]-[13]. The processing units incomplexity. Its powerful modeling capability allows it to learn
the conventional adaptive filter (AF) are linear in nature. Adagne |ocal representation of any nonlinear function. It has been
tive signal enhancer (ASE) represents a special approach baggslyn that RBFNN is capable of forming an arbitrarily close
approximation to any continuous function [21]. In our previous
work [9], RBFNN was utilized to extract an EP signal. It
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The higher the correlation between the reference input and tifelinear weights. In response to an input vecXy the out-
desired signal, the better is the signal estimation. Since RBFNts, 4 ;(X), of the hidden layer are linearly combined to form
can track signal variations with good SNR improvement [9], thibe network response that is processed with a desired response
output of RBFNN can form a better reference input for the ASPpresented to the output layer. The weights are trained in a su-
In this paper, a new ASE approach with an RBF prefilter is prgervised fashion using an appropriate linear learning method
posed. With the RBF combined as the prefilter of ASE, a nov@lMS algorithm). The LMS algorithm provides a bridge be-
adaptive EP estimation scheme is achieved to out-perform tiaeen linear adaptive algorithms and neural networks. Having
former algorithms that use RBF or conventional ASE. Simul& as an input, the following formula represents the output of a
tion and real data analysis showed that this new method is BBFNN that hasV hidden nodes:|
fective in tracking EP variations across trials and allows fast EP N
measurement in many time-critical circumstances. y(X) = Z w;h;(X). @)

j=1

Il. MATERIALS AND METHODS
o A radially symmetric Gaussian RBF was adopted as the

A. Principle of ASE activation function for the hidden nodes [9]. The response of

Standard ASE has two inputs: the primary input that contaiRBFNN is related to the distance between the input and the
a signalsg plus noiseng, and the reference input that contains aentroid associated with the basis function.
signalsy, related to but not necessarily having the same wave-The LMS algorithm was used to optimize the weight vector
form assg, plus a noiser;. The noiseng andn; are assumed adaptively [1]. Assuming background noises are white and un-
unrelated to each other and to both signals. The ASE iterativeglated to the EP signal, the improvement of SNR at steady state
adjusts its impulse response via an adaptive algorithm so thag., after several time constants) is described as [9]
after convergence, the difference between the filter outjund N_1

desired responsgis minimized. ASNR ~ —— 37200 5 (8)
We used the well-established LMS algorithm for AF [1], [4]. Zugpem 2(M — 1)/
Its recursive formula is wherel is the number of data points in each recorded trial of

the EP signaly,,; is the step size parameter atidias setto 0.8,

Wht1 = Wi+ 2pepy () an experimentally obtained value. As can be seen from (8), the
where improvement of the SNR has an upper bound since we have to
make a trade-off between the convergencegated the number
e =di — Yk (2) of hidden nodesV. RBFNN, therefore, tracks the trial-to-trial
and changes in EP by the nonlinear RBFs that fit dynamically the
ve = XTWy = WXy 3) EP variations via an adaptive algorithm. Additional details on

RBFNN are presented in a previous paper [9].

The filter input vector is defined as i i
C. ASE With RBF Prefilter
Xi = [on 2rm1 T2 - zp—gn]h (4) As described above, in order to establish good tracking
ability, the quality of the reference signal is the most critical
factor. Since EP is heavily contaminated with background EEG,
Wi = [wor, wix wo - w(Qfl)k]T (5) itis hard to obtain a good reference signal. In our previous
work [5], we used a moving window average (MWA) and
wherek; is the time index@ the number of adaptive weights, andensemble average (EA) to construct the reference input for the
p the factor that controls stability and the rate of convergenc&SE. The improvement of EA on SNR is proportional to the
Usually .« is governed by the following condition: square root of the number of tria{sn) being averaged, i.e.,
ASNR ~ +/m. Assuming a white background noise, and
oP, (6) raw EP signals with a SNR of10 dB, m needs to exceed
m 100 for the SNR to be improved to 0 dB. With,,; = 0.1,
where P, is the power of the reference input. After conversy = 10, M = 100, and3 = 0.8, in the RBFNN, the SNR can
gence, the output of ASE can estimate the signal componentioéoretically be improved as much as 2 dB. This means that
the primary input as long as is highly correlated withs,. The each single output of RBFNN is sufficiently good enough to be
SNR of the reference input should be larger than 0 dB to achieteken as the reference input.
good performance [3]. In this paper, we use RBFNN as a pre-Fig. 1 shows the structure of the new adaptive EP signal en-
filter to get an even better reference input especially when SNfancer. The EP preenhanced by the RBFNN is given by the
is low. weighted sum ofV evenly distributed RBF$; (; = 1 to N),
, _ ri(k) = YI_, wip;(k) wherei andk denote, respectively,
B. Gaussian RBFNN for EP Prefilter the trial number and time index corresponding to tfestim-
The RBFNN is a multilayer feed-forward neural network condlus. Assuming a null mean in the background noise which is
sisting of an input layer of source nodes, a layer of nonlineatatistically uncorrelated with the underlying EP signal compo-
hidden units that operate as kernel nodes and an output lagents;(k), thenr;(k) tracks the underlying EP using LMS al-

The weight vector is defined as

o<k
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gorithm by minimizing the error signal (k) = d;(k) — r;(k),
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lll. RESULTS Fig. 2. Adaptive procedures of ASE ifdicates trial number). (A) Primary
. . inputs of ASE (SNR= —20 dB). (B) Underlying simulated BAEP signals. (C)
In our previous work [5], an ASE, with MWA as a referencesome resuits of ASE with MWA. (D) Some estimated BAEP signals by ASE

input, can achieve single EP tracking at SNRs of raw data as |@ith EA. (E) Results of RBFNN. (F) Adaptive processing results of ASE with
as—10 dB. With lower SNRs (e.g-20 dB), tracking degrades RBFNN:
significantly because more trials are required for averaging with

the moving window. In such cases, EA is used to obtain theA
reference input. Since EA averages all EP records before the
ASE processing, it is no longer a real-time method. Moreover,

if the EP signal varies greatly across trials, the reference input
obtained with EA will result in large distortions affecting the
performance of ASE.

MWA (real-time mode).
The primary input is

d; = trial(%) i=q+1,q+2,..., L. (11)

The reference input is

i—1
A. Comparison in Performance T, = 1 Z trial(j) (12)
Before applying our new method to real EP estimation, com- ©j-icgr
puter simulations were carried out. A realistic brainstem audi-
tory EP (BAEP) obtained from a human by averaging 2000 re- B)
sponse trials was used as the signal in the simulation. To this

BAEP, simulated EEG noise is added before its presentation as

whereq is the window length.
EA (nonreal-time mode).
The primary input is

the primary input of ASE. The SNR of the primary input is set d; = trial(i) i=1,2,3 ..., L. (13)
at—20 dB. The simulated on-going EEG is produced by the fol-
lowing formula [5]: The reference input is

EEG, = 4_§9 zo: hyry 4 (9) T = b EL: trial(§) (14)

=5 ‘T L-1 4 -
F=1(#1)
wherer,, is a driven white noise process with a Gaussian distri- .
bution and the coefficients; have the following values: C) RBF prefllter. . .
The primary input is
hy=h_y, ho = 89, hy = 84, ho = 69,

hs = 44, hy =9, his = —36. d; = trial(i) i=p+1,p+2, ..., L (15)

The data set contains 1000 trials and each trial has 90 data The reference input is

points. i—1
The relative mean square error (MSE) was used to measure 7 = 1 Z rbfnn(s). (16)

the effectiveness of the method. The MSE is defined as A S

_ 2

MSE = % (10) The value of the convergence rate was determined from
S
[a%

wherey is the output of the ASE anglis the signal to be de- n=op © <1 (17)

tected. The performance of ASE was compared with various
kinds of reference inputs with or without RBFNN. The differentvhereF;,, is the mean power of the reference input. In the three
reference inputs include the following. ASE structures, the constamtwas set at 0.05. MWA could be
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Fig. 3. A comparison of the four ASE approaches based on MSEs.

Fig. 4. Error curves for RBFNN, ASE with MWA, ASE with EA, and ASE

: : : with RBFNN algorithms in an abrupt EP changing simulation. Insets are two
used with RBFNN prefilter to further improve the SNR. HOWsimulated underlying VEP signal, is the signal in first 500 trials and is the

ever, since RBFNN achieved good improvementin SNR, a smaljnal in last 500 trials.
window lengthp was desirable. In our casgwas selected as
three. In (16), the functiombfnn(j) represents the output of _ . -
RBFNN at thejth trial. The parameters of RBFNN were set a5 Performance of Tracking EP Signal Variation
follows: 1, = 0.05,N = 30,M = 90, and5 = 0.8. The performance of ASE with RBFNN prefilter in tracking
Fig. 2 illustrates the adaptive procedure of ASE in thEP signal variations across trials is investigated in this section.
example. Fig. 2(A) is the primary input consisting of a signah data set is first generated to simulate abrupt changes of EP
with additive EEG noise. Fig. 2(B) shows the underlying BAE®aveform. The simulated signals are the visual EPs (VEPS) ob-
signals. Note that the amplitude scale of the primary inptdined in a normal human subject. Simulated EEG noise from
of ASE is [-800, 800] while that of BAEP signal is{100, (9) is superimposed on the underlying signal to give the simu-
100]. The scales in the figure caption are relative scales. In tladed VEP a SNR of 20 dB. The data set consists of 1000 trials.
simulation, the scale only displays the relative amplitude of tfiéghe first 500 trials adopt signal (refer to the insets in Fig. 4)
simulated EP recordings and EP signal. In real data analysis, #8s¢he underlying signal. Then there is an abrupt change with the
relative scale could be easily transferred into a real scale (suemaining 500 trials adopting a different underlying sigral,
as voltage values) according to analog-to-digital specificationghe four algorithms of EP extraction described in Section I11-A
A relative scale has been used throughout this paper. The resaitsagain used and their tracking ability compared.
of ASE using MWA @ = 200) and EA are shown in Fig. 2(C) Fig. 4 shows the error curves. It is clear that the ASE with
and (D), respectively. Fig. 2(E) shows some results of RBFNRBFNN as prefilter can best track the signal variations. MSE of
and Fig. 2(F) the results of ASE with RBFNN prefilter£ 3). ASE with EA is significantly larger than that of either RBFNN
Since EP signal remains the same across trials, all of the abal@ne or ASE with RBFNN. Comparing results of ASE with ei-
four methods were found to detect the EP signal reasonakiyer EA or MWA, we noticed that although the result with MWA
well. To compare their performance more closely, their MSHsoks noisier than EA, in many trials its errors appear lower.
were calculated. Fig. 3 shows the variation of MSE again$his can be explained by a higher correlation between the signal
trial number. To compare the convergence rate, we moved ttemponent in the reference input and that in the raw data for the
MSE curve of ASE with MWA to the staring point of the othercase of MWA, but the SNR in the reference input is also lower.
curves. From Fig. 3, it is clear that the convergence rates &@r the EA as reference input of ASE, if the signal waveform
similar for the four algorithms. Actually, the performances aofthanges significantly across trials, EA will degrade the correla-
the algorithms are also similar except for ASE with MWAtion of the signal components between the reference input and
The poorer performance of ASE with MWA comes from thé¢he primary input. Another interesting point is the poorer per-
poor SNR of the reference input since averaging of 200 tridisrmance of ASE with MWA at the transitional period (from
is not large enough to make a sufficiently good reference. Aral 501 to 700, ay = 200) when the signal in the reference
increased window length improves the SNR at the expenseimbut changes from; to s,. The error at that duration is higher
signal tracking ability (see Section IlI-B). The limiting casahan other periods. Since bathands, signals are in the MWA
of MWA in this simulation is actually EA. ASE with EA can window, the mixture of two signal components may cause less
provide good EP estimation mainly because of a constant Erelation between the reference and the primary inputs.
signal across trials. The performance of ASE with RBFNN is a From the above, it was found that ASE with MWA might not
slightly better than RFBNN alone or ASE with EA. Howeverbe suitable for signal tracking under poor SNR conditions. Since
the difference is not significant. a poor SNR in the raw data requires a longer window to form
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Fig. 6. Isometric view of BAEP traces from a human subject.

In this case, the EP signal was deterministic across trials. The

ool | number of trials was 1000. Four filtering algorithms were used
ASE+RBF to process the simulated recordings. MSEs were calculated trial
08y / by trial. The last 200 MSEs of were averaged to get an aver-
07l N aged MSE at different noise levels using each algorithm. For
H ASE with MWA algorithms, the length of the moving window
€ 08¢ is set from 100 to 500 in increments of 50 trials at each noise
§ 05l level and the best result is shown in Fig. 5. The parameter
2 ASE+EA ASE with RBFNN was varied from 5 to 30 in increments of
g04r five and the best result is shown in Fig. 5. Fig. 5(a) gives the
O3l / comparison in performance by averaged MSE at different noise
ASE+MWA levels. It is clear that MSEs of both RBF and ASEBF are
02r o smaller than that of ASE with EA and ASE with MWA at all
0.1k : RBF the noise levels. When the SNR becomes poorer MSE increases
. . ‘ ‘ . . ‘ ‘ very quickly with ASE+EA and ASE-MWA while the perfor-
0 -5 A0 15 20 25 30 35 40 mance of RBFNN and ASE with RBFNN is relatively better. To

SNR (dB)

quantitatively assess filter performance, correlation coefficients
were calculated between the original signal and the averaged

Fig. 5. Performance comparison for the four algorithms at different noise dsi | which f df . he |
levels. (a) Average MSEs. (b) Correlation coefficients for the four algorithmsl €COnstructed signal, which was formed from averaging the last

200 processed trials. Fig. 5(b) shows the correlation coefficients
a reference input with a good SNR. However, a longer windo® different noise levels. The distortions become significant for
will degrade the ability of EP tracking. Therefore, ASE witf*SE with MWA and ASE with EAwhen SNR is below20 dB.
EA may not be good enough to track signal variations since EA'€ performance of RBENN and ASE with RBFNN remains

will lower the signal correlation between the reference input aftgtter- However, if the SNRis very poor, (i.e-40 dB or less)
the primary input. It is difficult to find an optimum window of €v€n RBFNN and ASE with RBFNN introduce marked distor-

MWA since it is usually not possible to gatpriori knowledge tions. For thosg recordings yvith very poor SNRs more trials are
on the variation of EP signal and SNR in a raw recording. TH§€ded to achieve more reliable estimates of the signal.

length of window is, therefore, estimated on the basis of exper-
imental results. As discussed in a previous paper [9], RBFNN
is a method that is suitable for estimating EP and its transient ) , i i )
changes that are not knovarpriori. The above simulation fur- 1 this section, ASE with RBFNN is used to estimate BAEP

ther illustrates this point by showing the better performance gpm actual recordings of a_human Subject and to monitor_ S0-
ASE with RBFNN as a prefilter. motosensory evoked potential (SEP) changes from a rabbit.

IV. REAL EP DATA ACQUISITION AND PROCESSING

C. Comparison on Performance at Different Noise Levels A. Human BAEP Estimation

The simulated signal and EEG noise were the same as SecFhe click stimulus used to evoke the BAEP was 0.1 ms in du-
tion llI-A. Different SNR for simulated EP recordings were creration, and delivered at a rate of 10/s, with a peak level of 100-dB
ated to compare filter performance at different noise levels. TB®L. The EP response was sampled at 10 kHz. The first 9 ms
SNR range was varied from40 dB to 0 dB in 5-dB increments. of the poststimulus response (corresponding to 90 data points)
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0 500 1000 1500 2000 Fig 8. ASEFRBFNN analysis of SEP in an ischemia spinal cord injury
No. of trials model. The figure presents seven sets of SEP traces, each set consisting of

51 separate traces. The SEPs are presented consecutively as recorded prior to

Latency variation cross trials injury (trace number 1 to 51), at the two recording periods during occlusion

M (trace number 52 to 153) and at the four postocclusion intervals (trace number
154 to 357).
sV
T W

jury model. Anesthesia was initially induced with 1.5% sodium
pentobarbital injection (1.5 ml/kg, intravenously). Additional
doses were given as necessary. After anesthesia, a pair of SEP
y T Y recording electrodes was inserted to the animal’s skull. A needle
stimulus electrode was applied to the hind paw. Baseline SEP
Mo was recorded prior to injury. The infrarenal abdominal aorta
mww%w was then occluded. After 40 min the clamp on the aorta was
removed. SEPs were recorded at 15 and 30 min after occlusion,
and 20, 40, 60, and 120 min after disocclusion. All the data were
recorded using an ADC board with a resolution of 8 bits. The

. . ) sampling rate was 5 kHz.

-

[ w

Time (ms)

w

0 500 1069 1500 2000 Fig. 8 shows the SEP trace variations for all the trials recorded
No. oftrials before, during and after occlusion using the ASE with RBFNN
Fig. 7. Trace of the amplitude and latency variation of BAEP from a humd':r\lgo't'th_m' The figure presents seven sets of SEP traces, each set
subject. consisting of 51 separate traces. The SEPs are presented con-

secutively as recorded prior to injury (trace number 1 to 51),
was used for BAEP estimation. Conventional EP recording prgt the two recording periods during occlusion (trace number 52

cedures, such as electrical and acoustic shielding, were usefPtd>3) and at the four postocclusion intervals (trace number
reduce interference and noise. 154 to 357). The SEP waveform prior to injury has a prominent

A total of 2000 trials of BAEP were recorded from gP€ak between 100 and 200 ms. At the 15 and 30 min during oc-
25-year-old subject. For ASE the step sjzevas calculated clusion-recording interval (trace number 52 to 153), the peak
according to (17) withe = 0.05. For RBFNN prefilter, the clearly disappeared. After the occlusion is removed the peak
following parameters were sei,; — 0.05, N — 30, M — gradually returns to its prior to injury level (trace #154 through

90, and3 = 0.8. Fig. 6 shows some isometric views of BAER®7)-
across trials. It is clear that the BAEP signal varies in both
amplitude and latency from trial to trial. Normally, there are five V. CONCLUSION

peaks in the early BEAP (see marks in the figures). Using therps research shows that ASE with RBFNN as a prefilter is
ASE with RBFENN approach the time and amplitude variationg,yjicable to the real-time detection of EP signals. We have
of the five peaks can be tracked across trials. Fig. 7 shows traggs rined a method of ASE and have used it to determine the
of the amplitude. and latency variation of BAEP from a humagagp signal in human subjects in [7]. The key to ASE for
subject. The variations of latency are relatively small and sloygcking signal variations is the choice of the reference input. It
while the peak amplitudes show larger variations across trialfas peen shown [3] that the improvement in SNR at the output
) . o of ASE is proportional to the SNR at the reference input. The
B. Experimental Spinal Cord Monitoring Study signal component of the reference input should be highly cor-
The study subject was a mature rabbit. The purpose of thedated with that of the primary input, although not necessarily
experiment was to study an ischemia induced spinal cord imaving the identical waveform. A MWA is a simple method for
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obtaining a good reference input for processing event-related7] W. Qiu, F. H. Y. Chan, F. K. Lam, and P. W. F. Poon, “Brainstem audi-

bioelectric signals. However, when SNR of raw recordings is tory evokgd potential measgrgmentusing adaptive signal enhancement,”
. . Australasian Phys. Eng. Sci. in Medol. 17, no. 3, pp. 131-135, 1994.
low (i.e.,—20 dB or less), the window should be long enoughto (g; ks m. Fung, F. H. Y. Chan, F. K. Lam, J. G. Liu, and P. W. F. Poon

obtain a reasonable SNR in the reference input. Unfortunately,
a long window length will degrade the tracking ability of ASE.
Slmul_atlon results showed that MWA is not suitable for con- evoked potential estimatorfed. Biol. Eng. Computvol. 37, pp.
structing the reference input needed for the ASE to track the  218-227, 1999.
signal variation under very poor SNR conditions. EA is an alter{10] P-Laguna, R. Jane, O. Meste, P. W. Poon, P. Caminal, H. Rix, and N.
. hod that can be used to obtain a reference input with V. Thakor, “Adaptive filter for event-related bioelectric signals using an
nat!ve metho u X I Input wi impulse correlated reference input: Comparison with signal averaging
a high SNR. When the raw SNR is low, EA needs hundreds or  techniques,|EEE Trans. Biomed. Engvol. 39, pp. 1032-1044, 1992.
thousands of trials before ASE can be effectively used to esti41] P. G. Madhavan, *Minimal repetition evoked potentials by modified
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