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Abstract—Evoked potentials (EPs) are time-varying signals typ-
ically buried in relatively large background noise. To extract the
EP more effectively from noise, we had previously developed an ap-
proach using an adaptive signal enhancer (ASE) (Chenet al., 1995).
ASE requires a proper reference input signal for its optimal per-
formance. Ensemble- and moving window-averages were formerly
used with good results. In this paper, we present a new method to
provide even more effective reference inputs for the ASE. Specif-
ically, a Gaussian radial basis function neural network (RBFNN)
was used to preprocess raw EP signals before serving as the ref-
erence input. Since the RBFNN has built-in nonlinear activation
functions that enable it to closely fit any function mapping, the
output of RBFNN can effectively track the signal variations of EP.
Results confirmed the superior performance of ASE with RBFNN
over the previous method.

Index Terms—Adaptive signal enhancer (ASE), evoked poten-
tial, radial basis function neural network (RBFNN), SNR.

I. INTRODUCTION

E VOKED potentials (EPs) represent the gross electrical ac-
tivity of specific regions of the brain usually resulting from

sensory stimulation. Like many neural signals, the measurement
of EPs is corrupted by noise as a result of the on-going activity of
other brain cells known as electroencephalographic (EEG) ac-
tivity. The traditional method of ensemble averaging (EA) has
been widely used to extract EP from a noisy background. How-
ever, a number of studies showed that EPs are nonstationary and,
therefore, have characteristics that vary across stimulus trials
[14]–[18]. EA methods may, therefore, fail to track trial-to-trial
variations both in latency and amplitude.

Adaptive filtering has been widely used in biological signal
estimation [2], [3], [5]–[7], [10]–[13]. The processing units in
the conventional adaptive filter (AF) are linear in nature. Adap-
tive signal enhancer (ASE) represents a special approach based
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on AF. It allows tracking of the dynamic variations of EP and
reduces the noise uncorrelated with the underlying signal. The
performance of ASE greatly depends on its reference signal.
Several reference signals have been tested. Vaz and Thakor [13]
used a finite number of sine and cosine waves as the reference
input in the time domain. It was assumed that the signal is well
defined in each recurrence with a constant number of reference
inputs. Laguna,et al. [10] designed the reference input as a
unit impulse sequence synchronized with the beginning of each
recurrence. This method takes advantage of the fact that EPs
are responses that are time-locked to the stimulus. Mathemat-
ical proof shows that such a filter is equivalent to exponentially
weighted averages. Qiuet al. [7] adopted a dynamic averaging
window to obtain a more meaningful reference.

All of the methods discussed above basically involve linear
operations. Obviously, the assumption of linearity for the
nervous system may not be always valid. Since at the single
cell level, it is well known that for identical stimuli, responses
of central neurons show jitter in latency and responses may
sometimes fail to show up. Taking the possible nonlinear nature
of the system into consideration, neural networks that can
intrinsically cater to both linear and nonlinear characteristics
are potentially more appropriate. Recently, the use of neural
networks with built-in nonlinear processing units has been
growing in many areas of signal processing [8], [9], [19],
[20]. In our previous work [9], a radial-basis-function neural
network (RBFNN) was successfully used to estimate the EP.
The structure of the RBFNN is relatively simple with an output
node that has a linear-in-weight property. Therefore, it repre-
sents a good balance between performance and computational
complexity. Its powerful modeling capability allows it to learn
the local representation of any nonlinear function. It has been
shown that RBFNN is capable of forming an arbitrarily close
approximation to any continuous function [21]. In our previous
work [9], RBFNN was utilized to extract an EP signal. It
was assumed that EP responses could be modeled by a finite
number of Gaussian radial-basis functions (RBFs) with their
centers evenly distributed over time. The weights are adaptively
determined by minimizing the variance of the error signal using
the least mean square (LMS) algorithm. Since the RBFNN
is dynamically adjusted to changes in EP, the nonstationary
property of EP is catered to. Results of our previous work
confirmed the good tracking ability of RBFNN on EP.

Ferrara and Widrow [3] proved that in estimating signals, the
improvement in signal-to-noise ratio (SNR) at the ASE output
is proportional to the SNR at the reference input. Therefore, the
performance of ASE critically depends on its reference signal.
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The higher the correlation between the reference input and the
desired signal, the better is the signal estimation. Since RBFNN
can track signal variations with good SNR improvement [9], the
output of RBFNN can form a better reference input for the ASE.
In this paper, a new ASE approach with an RBF prefilter is pro-
posed. With the RBF combined as the prefilter of ASE, a novel
adaptive EP estimation scheme is achieved to out-perform the
former algorithms that use RBF or conventional ASE. Simula-
tion and real data analysis showed that this new method is ef-
fective in tracking EP variations across trials and allows fast EP
measurement in many time-critical circumstances.

II. M ATERIALS AND METHODS

A. Principle of ASE

Standard ASE has two inputs: the primary input that contains
a signal plus noise , and the reference input that contains a
signal , related to but not necessarily having the same wave-
form as , plus a noise . The noise and are assumed
unrelated to each other and to both signals. The ASE iteratively
adjusts its impulse response via an adaptive algorithm so that,
after convergence, the difference between the filter outputand
desired responseis minimized.

We used the well-established LMS algorithm for AF [1], [4].
Its recursive formula is

(1)

where

(2)

and

(3)

The filter input vector is defined as

(4)

The weight vector is defined as

(5)

where is the time index, the number of adaptive weights, and
the factor that controls stability and the rate of convergence.

Usually is governed by the following condition:

(6)

where is the power of the reference input. After conver-
gence, the output of ASE can estimate the signal component of
the primary input as long as is highly correlated with . The
SNR of the reference input should be larger than 0 dB to achieve
good performance [3]. In this paper, we use RBFNN as a pre-
filter to get an even better reference input especially when SNR
is low.

B. Gaussian RBFNN for EP Prefilter

The RBFNN is a multilayer feed-forward neural network con-
sisting of an input layer of source nodes, a layer of nonlinear
hidden units that operate as kernel nodes and an output layer

of linear weights. In response to an input vector, the out-
puts, , of the hidden layer are linearly combined to form
the network response that is processed with a desired response
presented to the output layer. The weights are trained in a su-
pervised fashion using an appropriate linear learning method
(LMS algorithm). The LMS algorithm provides a bridge be-
tween linear adaptive algorithms and neural networks. Having

as an input, the following formula represents the output of a
RBFNN that has hidden nodes:l

(7)

A radially symmetric Gaussian RBF was adopted as the
activation function for the hidden nodes [9]. The response of
RBFNN is related to the distance between the input and the
centroid associated with the basis function.

The LMS algorithm was used to optimize the weight vector
adaptively [1]. Assuming background noises are white and un-
related to the EP signal, the improvement of SNR at steady state
(i.e., after several time constants) is described as [9]

where is the number of data points in each recorded trial of
the EP signal, is the step size parameter andwas set to 0.8,
an experimentally obtained value. As can be seen from (8), the
improvement of the SNR has an upper bound since we have to
make a trade-off between the convergence rateand the number
of hidden nodes . RBFNN, therefore, tracks the trial-to-trial
changes in EP by the nonlinear RBFs that fit dynamically the
EP variations via an adaptive algorithm. Additional details on
RBFNN are presented in a previous paper [9].

C. ASE With RBF Prefilter

As described above, in order to establish good tracking
ability, the quality of the reference signal is the most critical
factor. Since EP is heavily contaminated with background EEG,
it is hard to obtain a good reference signal. In our previous
work [5], we used a moving window average (MWA) and
ensemble average (EA) to construct the reference input for the
ASE. The improvement of EA on SNR is proportional to the
square root of the number of trials being averaged, i.e.,

. Assuming a white background noise, and
raw EP signals with a SNR of 10 dB, m needs to exceed
100 for the SNR to be improved to 0 dB. With 0.1,

10, 100, and 0.8, in the RBFNN, the SNR can
theoretically be improved as much as 2 dB. This means that
each single output of RBFNN is sufficiently good enough to be
taken as the reference input.

Fig. 1 shows the structure of the new adaptive EP signal en-
hancer. The EP preenhanced by the RBFNN is given by the
weighted sum of evenly distributed RBFs to ,

where and denote, respectively,
the trial number and time index corresponding to theth stim-
ulus. Assuming a null mean in the background noise which is
statistically uncorrelated with the underlying EP signal compo-
nent , then tracks the underlying EP using LMS al-
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Fig. 1. The schematic diagram of ASE with RBFNN as a prefilter.

gorithm by minimizing the error signal ,
where is the recorded EP. Since has a high SNR and
is correlated with , it is a desirable reference signal.

III. RESULTS

In our previous work [5], an ASE, with MWA as a reference
input, can achieve single EP tracking at SNRs of raw data as low
as 10 dB. With lower SNRs (e.g., 20 dB), tracking degrades
significantly because more trials are required for averaging with
the moving window. In such cases, EA is used to obtain the
reference input. Since EA averages all EP records before the
ASE processing, it is no longer a real-time method. Moreover,
if the EP signal varies greatly across trials, the reference input
obtained with EA will result in large distortions affecting the
performance of ASE.

A. Comparison in Performance

Before applying our new method to real EP estimation, com-
puter simulations were carried out. A realistic brainstem audi-
tory EP (BAEP) obtained from a human by averaging 2000 re-
sponse trials was used as the signal in the simulation. To this
BAEP, simulated EEG noise is added before its presentation as
the primary input of ASE. The SNR of the primary input is set
at 20 dB. The simulated on-going EEG is produced by the fol-
lowing formula [5]:

where is a driven white noise process with a Gaussian distri-
bution and the coefficients have the following values:

The data set contains 1000 trials and each trial has 90 data
points.

The relative mean square error (MSE) was used to measure
the effectiveness of the method. The MSE is defined as

where is the output of the ASE and is the signal to be de-
tected. The performance of ASE was compared with various
kinds of reference inputs with or without RBFNN. The different
reference inputs include the following.

Fig. 2. Adaptive procedures of ASE (i indicates trial number). (A) Primary
inputs of ASE (SNR= �20 dB). (B) Underlying simulated BAEP signals. (C)
Some results of ASE with MWA. (D) Some estimated BAEP signals by ASE
with EA. (E) Results of RBFNN. (F) Adaptive processing results of ASE with
RBFNN.

A) MWA (real-time mode).
The primary input is

trial (11)

The reference input is

trial (12)

where is the window length.
B) EA (nonreal-time mode).

The primary input is

trial (13)

The reference input is

trial (14)

C) RBF prefilter.
The primary input is

trial (15)

The reference input is

(16)

The value of the convergence rate was determined from

(17)

where is the mean power of the reference input. In the three
ASE structures, the constantwas set at 0.05. MWA could be
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Fig. 3. A comparison of the four ASE approaches based on MSEs.

used with RBFNN prefilter to further improve the SNR. How-
ever, since RBFNN achieved good improvement in SNR, a small
window length was desirable. In our case,was selected as
three. In (16), the function represents the output of
RBFNN at the th trial. The parameters of RBFNN were set as
follows: 0.05, 30, 90, and 0.8.

Fig. 2 illustrates the adaptive procedure of ASE in the
example. Fig. 2(A) is the primary input consisting of a signal
with additive EEG noise. Fig. 2(B) shows the underlying BAEP
signals. Note that the amplitude scale of the primary input
of ASE is [ 800, 800] while that of BAEP signal is [100,
100]. The scales in the figure caption are relative scales. In the
simulation, the scale only displays the relative amplitude of the
simulated EP recordings and EP signal. In real data analysis, the
relative scale could be easily transferred into a real scale (such
as voltage values) according to analog-to-digital specifications.
A relative scale has been used throughout this paper. The results
of ASE using MWA ( 200) and EA are shown in Fig. 2(C)
and (D), respectively. Fig. 2(E) shows some results of RBFNN
and Fig. 2(F) the results of ASE with RBFNN prefilter ( 3).
Since EP signal remains the same across trials, all of the above
four methods were found to detect the EP signal reasonably
well. To compare their performance more closely, their MSEs
were calculated. Fig. 3 shows the variation of MSE against
trial number. To compare the convergence rate, we moved the
MSE curve of ASE with MWA to the staring point of the other
curves. From Fig. 3, it is clear that the convergence rates are
similar for the four algorithms. Actually, the performances of
the algorithms are also similar except for ASE with MWA.
The poorer performance of ASE with MWA comes from the
poor SNR of the reference input since averaging of 200 trials
is not large enough to make a sufficiently good reference. An
increased window length improves the SNR at the expense of
signal tracking ability (see Section III-B). The limiting case
of MWA in this simulation is actually EA. ASE with EA can
provide good EP estimation mainly because of a constant EP
signal across trials. The performance of ASE with RBFNN is a
slightly better than RFBNN alone or ASE with EA. However,
the difference is not significant.

Fig. 4. Error curves for RBFNN, ASE with MWA, ASE with EA, and ASE
with RBFNN algorithms in an abrupt EP changing simulation. Insets are two
simulated underlying VEP signal,s is the signal in first 500 trials ands is the
signal in last 500 trials.

B. Performance of Tracking EP Signal Variation

The performance of ASE with RBFNN prefilter in tracking
EP signal variations across trials is investigated in this section.
A data set is first generated to simulate abrupt changes of EP
waveform. The simulated signals are the visual EPs (VEPs) ob-
tained in a normal human subject. Simulated EEG noise from
(9) is superimposed on the underlying signal to give the simu-
lated VEP a SNR of 20 dB. The data set consists of 1000 trials.
The first 500 trials adopt signal (refer to the insets in Fig. 4)
as the underlying signal. Then there is an abrupt change with the
remaining 500 trials adopting a different underlying signal,.
The four algorithms of EP extraction described in Section III-A
are again used and their tracking ability compared.

Fig. 4 shows the error curves. It is clear that the ASE with
RBFNN as prefilter can best track the signal variations. MSE of
ASE with EA is significantly larger than that of either RBFNN
alone or ASE with RBFNN. Comparing results of ASE with ei-
ther EA or MWA, we noticed that although the result with MWA
looks noisier than EA, in many trials its errors appear lower.
This can be explained by a higher correlation between the signal
component in the reference input and that in the raw data for the
case of MWA, but the SNR in the reference input is also lower.
For the EA as reference input of ASE, if the signal waveform
changes significantly across trials, EA will degrade the correla-
tion of the signal components between the reference input and
the primary input. Another interesting point is the poorer per-
formance of ASE with MWA at the transitional period (from
trial 501 to 700, at 200) when the signal in the reference
input changes from to . The error at that duration is higher
than other periods. Since bothand signals are in the MWA
window, the mixture of two signal components may cause less
correlation between the reference and the primary inputs.

From the above, it was found that ASE with MWA might not
be suitable for signal tracking under poor SNR conditions. Since
a poor SNR in the raw data requires a longer window to form
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Fig. 5. Performance comparison for the four algorithms at different noise
levels. (a) Average MSEs. (b) Correlation coefficients for the four algorithms.

a reference input with a good SNR. However, a longer window
will degrade the ability of EP tracking. Therefore, ASE with
EA may not be good enough to track signal variations since EA
will lower the signal correlation between the reference input and
the primary input. It is difficult to find an optimum window of
MWA since it is usually not possible to geta priori knowledge
on the variation of EP signal and SNR in a raw recording. The
length of window is, therefore, estimated on the basis of exper-
imental results. As discussed in a previous paper [9], RBFNN
is a method that is suitable for estimating EP and its transient
changes that are not knowna priori. The above simulation fur-
ther illustrates this point by showing the better performance of
ASE with RBFNN as a prefilter.

C. Comparison on Performance at Different Noise Levels

The simulated signal and EEG noise were the same as Sec-
tion III-A. Different SNR for simulated EP recordings were cre-
ated to compare filter performance at different noise levels. The
SNR range was varied from40 dB to 0 dB in 5-dB increments.

Fig. 6. Isometric view of BAEP traces from a human subject.

In this case, the EP signal was deterministic across trials. The
number of trials was 1000. Four filtering algorithms were used
to process the simulated recordings. MSEs were calculated trial
by trial. The last 200 MSEs of were averaged to get an aver-
aged MSE at different noise levels using each algorithm. For
ASE with MWA algorithms, the length of the moving window
is set from 100 to 500 in increments of 50 trials at each noise
level and the best result is shown in Fig. 5. The parameterfor
ASE with RBFNN was varied from 5 to 30 in increments of
five and the best result is shown in Fig. 5. Fig. 5(a) gives the
comparison in performance by averaged MSE at different noise
levels. It is clear that MSEs of both RBF and ASERBF are
smaller than that of ASE with EA and ASE with MWA at all
the noise levels. When the SNR becomes poorer MSE increases
very quickly with ASE EA and ASE MWA while the perfor-
mance of RBFNN and ASE with RBFNN is relatively better. To
quantitatively assess filter performance, correlation coefficients
were calculated between the original signal and the averaged
reconstructed signal, which was formed from averaging the last
200 processed trials. Fig. 5(b) shows the correlation coefficients
at different noise levels. The distortions become significant for
ASE with MWA and ASE with EA when SNR is below20 dB.
The performance of RBFNN and ASE with RBFNN remains
better. However, if the SNR is very poor, (i.e.,40 dB or less)
even RBFNN and ASE with RBFNN introduce marked distor-
tions. For those recordings with very poor SNRs more trials are
needed to achieve more reliable estimates of the signal.

IV. REAL EP DATA ACQUISITION AND PROCESSING

In this section, ASE with RBFNN is used to estimate BAEP
from actual recordings of a human subject and to monitor so-
motosensory evoked potential (SEP) changes from a rabbit.

A. Human BAEP Estimation

The click stimulus used to evoke the BAEP was 0.1 ms in du-
ration, and delivered at a rate of 10/s, with a peak level of 100-dB
SPL. The EP response was sampled at 10 kHz. The first 9 ms
of the poststimulus response (corresponding to 90 data points)
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Fig. 7. Trace of the amplitude and latency variation of BAEP from a human
subject.

was used for BAEP estimation. Conventional EP recording pro-
cedures, such as electrical and acoustic shielding, were used to
reduce interference and noise.

A total of 2000 trials of BAEP were recorded from a
25-year-old subject. For ASE the step sizewas calculated
according to (17) with 0.05. For RBFNN prefilter, the
following parameters were set: 0.05, 30,
90, and 0.8. Fig. 6 shows some isometric views of BAEP
across trials. It is clear that the BAEP signal varies in both
amplitude and latency from trial to trial. Normally, there are five
peaks in the early BEAP (see marks in the figures). Using the
ASE with RBFNN approach the time and amplitude variations
of the five peaks can be tracked across trials. Fig. 7 shows traces
of the amplitude and latency variation of BAEP from a human
subject. The variations of latency are relatively small and slow,
while the peak amplitudes show larger variations across trials.

B. Experimental Spinal Cord Monitoring Study

The study subject was a mature rabbit. The purpose of this
experiment was to study an ischemia induced spinal cord in-

Fig. 8. ASE+RBFNN analysis of SEP in an ischemia spinal cord injury
model. The figure presents seven sets of SEP traces, each set consisting of
51 separate traces. The SEPs are presented consecutively as recorded prior to
injury (trace number 1 to 51), at the two recording periods during occlusion
(trace number 52 to 153) and at the four postocclusion intervals (trace number
154 to 357).

jury model. Anesthesia was initially induced with 1.5% sodium
pentobarbital injection (1.5 ml/kg, intravenously). Additional
doses were given as necessary. After anesthesia, a pair of SEP
recording electrodes was inserted to the animal’s skull. A needle
stimulus electrode was applied to the hind paw. Baseline SEP
was recorded prior to injury. The infrarenal abdominal aorta
was then occluded. After 40 min the clamp on the aorta was
removed. SEPs were recorded at 15 and 30 min after occlusion,
and 20, 40, 60, and 120 min after disocclusion. All the data were
recorded using an ADC board with a resolution of 8 bits. The
sampling rate was 5 kHz.

Fig. 8 shows the SEP trace variations for all the trials recorded
before, during and after occlusion using the ASE with RBFNN
algorithm. The figure presents seven sets of SEP traces, each set
consisting of 51 separate traces. The SEPs are presented con-
secutively as recorded prior to injury (trace number 1 to 51),
at the two recording periods during occlusion (trace number 52
to 153) and at the four postocclusion intervals (trace number
154 to 357). The SEP waveform prior to injury has a prominent
peak between 100 and 200 ms. At the 15 and 30 min during oc-
clusion-recording interval (trace number 52 to 153), the peak
clearly disappeared. After the occlusion is removed the peak
gradually returns to its prior to injury level (trace #154 through
357).

V. CONCLUSION

This research shows that ASE with RBFNN as a prefilter is
applicable to the real-time detection of EP signals. We have
described a method of ASE and have used it to determine the
BAEP signal in human subjects in [7]. The key to ASE for
tracking signal variations is the choice of the reference input. It
has been shown [3] that the improvement in SNR at the output
of ASE is proportional to the SNR at the reference input. The
signal component of the reference input should be highly cor-
related with that of the primary input, although not necessarily
having the identical waveform. A MWA is a simple method for
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obtaining a good reference input for processing event-related
bioelectric signals. However, when SNR of raw recordings is
low (i.e., 20 dB or less), the window should be long enough to
obtain a reasonable SNR in the reference input. Unfortunately,
a long window length will degrade the tracking ability of ASE.
Simulation results showed that MWA is not suitable for con-
structing the reference input needed for the ASE to track the
signal variation under very poor SNR conditions. EA is an alter-
native method that can be used to obtain a reference input with
a high SNR. When the raw SNR is low, EA needs hundreds or
thousands of trials before ASE can be effectively used to esti-
mate the EP signal. Thus, it is no longer a real-time approach
and can only be used when the EP does not change significantly
across trials.

A RBFNN consists of an input of source nodes, a single
hidden layer of nonlinear processing units, and an output layer
of linear weights. This structure makes RBFNN a very powerful
tool for solving both linear and nonlinear problems. Our pre-
vious work [9] has shown that RBFNN is a very good approach
for tracking signal changes. In this paper, the RBFNN is used as
a special prefilter to form the reference input of ASE. Simula-
tion studies showed that the performance of ASE with RBFNN
is better than both RBFNN and ASE with MWA or EA under
different SNR conditions.

The clinical relevance of the variation in response across stim-
ulus trials is not clear at this stage. Since the present study only
concentrates on implementing an effective method for signal
tracking. But one is tempted to speculate that at least under some
conditions tracking EP changes could be important: e.g., for
patients under critical care when their physiological conditions
may vary with time, or when the status of the patient may vary
under the influence of drugs like alcohol. A simple measure-
ment of EP amplitude or latency may not be sensitive enough to
reveal important changes. Early alarm systems may be designed
based on the findings of abnormal response variations. In addi-
tion, EP variations over time could be important in assessing
abnormal functions of the brain especially related to attentional
deficits in psychiatry.
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