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It follows that the unity-gain bandwidth is
I
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which is tunable by dc bias curreht This result is independent of the
body-effect. The class AB companding integrator circuit proposed ik€ast Mean M -Estimate Algorithms for Robust Adaptive
[9] can be modified for minimum supply voltage in the same way as Filtering in Impulse Noise
described here.
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VI. CONCLUSION

The present drive toward low-voltage, low-power electronics will Abstract—This paper proposes two gradient-based adaptive algorithms,
require translinear circuits capable of operating at minimum supgied the least meanM-estimate and the transform domain least mean
o . L -estimate (TLMM) algorithms, for robust adaptive filtering in impulse
voltage. This is made possible by exploiting the symmetry of nonsalikise A robust M -estimator is used as the objective function to suppress
rated MOS transistors, together with the exponential MOS-charact@fe adverse effects of impulse noise on the filter weights. They have a com-
istic in weak inversion. A technique of developing translinear circuitgutational complexity of order O(N) and can be viewed, respectively,
or o supl volag by alwing transistrs 0 G below saturatife i gty of e st e v e e ey
was proposed. The for_ward and_ reverse modes then becqme eql{ﬁ&éholds inqthe M-gestimato'r is also given. Simulation resglts shoev that
lent to saturated transistors. This transforms all TL loops into alt&fre TLMM algorithm, in particular, is more robust and effective than other
nating loops, providing two improvements. First, operation is extendedmmonly used algorithms in suppressing the adverse effects of the im-
to low-supply voltage. Second, accurate realization in a single substraiéses.
is enabled since this (V)-terms which represent the body-effect will  Index Terms—Adaptive filter, impulse noise suppression, least mean
cancel for the oppositely connected transistor-pairs in the loops. M -estimate algorithm (LMM), orthogonal transform, system identifica-
The following three basic circuit topologies were modified for low1ion, robust statistics.
supply voltage operation: 1) the balanced TL loop; 2) the alternating
TL loop; and 3) the instantaneous-companding integrator. The min-
imum value of supply voltage required for these circuit structures is
given by the sum of the transistor threshold voltage and the drain-sourcd he performance of conventional linear adaptive filtering algorithms
saturation voltage. Since the circuits will operate in weak inversiofi@n deteriorate significantly when the desired or the input signal is
bandwidth will be limited and the circuits will be sensitive to threshol§orrupted by impulse noise [1]-[8]. Nonlinear techniques are usually
matching. employed to reduce the adverse effects due to impulse noise. For ex-
The techniques proposed in this paper are presently being developBtPle, in the order statistic least mean square (OSLMS) [1] and the
further for low-voltage static and dynamic analog signal processin@fder statistic recursive least square (OSRLS) [2] algorithms, the esti-
Important properties with respect to bandwidth, noise, and errors diation of the instantaneous gradient weight vector is replaced by the

to transistor mismatching need to be studied. Experimental results of

fabricated circuits employing these techniques will be published in ayanyscript received August 2000; revised October 2000. This work was sup-
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output of the median filter. Another class of nonlinear techniques r * n, (n)
lies on nonlinear functions to limit the transient fluctuation in the est w
mation error. Typical examples in this class are the adaptive thresh xo(n) é
nonlinear algorithm (ATNA) [3] and the nonlinear RLS (N-RLS) [4] al- B E— Unknown +
gorithm. In the ATNA, a clipper function is applied to the error signa System do (n)
in the LMS algorithm to reduce its influence on the filter weights whe d(n)
the error signal is abnormally large, while in the N-RLS, a Huber func
tion is applied to the error signal in the RLS algorithm. In [5], a robus
mixed-norm (RMN) adaptive algorithm using a combinatiot.efand
L, norms as the objective function and the stochastic gradient mett /
was proposed. -
Recently, a new class of adaptive filtering algorithms base + Aday‘é Filter
on the concept of robust statistics has been proposed [6], [ y(n)
Instead of minimizing the weighted least squares error criteric x(n) e(n)

Jus(n) = Y7 A"7'e?(i), where0 < A < 1 is the forgetting 7],(7)
factor ande(7) is the estimation error, a weighted leddt-estimate
function criterion.J,(n) = 327, A" ~'p(e(i)) was proposed. In [6],

p(-) is chosen as a modified Huber function [9] and an RLS-likefig- 1. System identification structure.
algorithm, called the M-RLS algorithm, is derived. Later, in [7],

using the more general Hampel's three-part redescenifirgstimate as contaminated Gaussian (CG) noise or alpha-stable noise. Based

funguon [1.0], thg recursive least/-estimate (RLM) algorlthm Was on robust statistical estimation, the following objective function for
derived. Simulation results and mean convergence analysis Sho"g‘agptive filter is proposed:

that these two algorithms are effective in suppressing the adverse
effects of impulse noise. The convergence speed and steady-state error
are relatively unaffected by impulses, and the performance is similar
to that of the RLS algorithm in Gaussian noise alone. However, the ) . ) .
main drawback of such RLS-like algorithms is the large computation‘ﬂhere/’(') 'S, a robustM—lestlmate function for suppressing |mpuls?
complexity of O(N'?) per iteration. noise. In this paperp(_-) is chpsen as the_ more gene_ral Hampels
Motivated by the robustness of the M-RLS and RLM algorithméhree'part redescending/-estimate function, which is given as
we propose in this paper a new family of gradient-based adaptive féal_lows [10]:
gorithms for suppressing impulses with a lower computational com-

Iy 2 Elp(e(n))] @)

plexity of orderO(N). ple) :2

Instead of using the mean square objective functiafse = e’ /2, 0<le] <&
E[ez(n)]. to .develop Fhe LMSA-type algorlth.ms, the medhestimate Ele| — £2/2, €< le] < Ay
error objective function/r;, = E[p(e(n))] is used. HereE[-] and ¢ € £ (o] - Au)?
p(-) are, respectively, the expectation operator and Xhestimate 3 (Ax 4+ Ay) — 5 + 3 ﬁ, A <lel < A,
function. Two stochastic gradient based algorithms, called the least S ST a2
mean M-estimate (LMM)_and the tran_sform—domain least ‘mean §(A2 FA) - §_7 Ao < |e|
M -estimate (TLMM) algorithms, are derived. They can be viewed, 2 2

respectively, as the generalization of the conventional LMS and the @)
transform-domain LMS (TLMS) algorithms. The proposed algorithms

have a computational complexity of ordéX{ V). Simulation results Whereg. A, and A, are the threshold parameters. Functigr) is
show that they are more robust than the ATNA, OSLMS, and RMR real-valued even function. The advantage of thisestimate func-
algorithms in impulse noise environment. tion is that it is a piecewise approximation of the maximum likelihood

This paper is organized as follows. The LMM algorithm and th@stimator when the input and additive noises are modeled as a con-
TLMM algorithm are derived in Sections Il and Ill, respectively. Sectaminated Gaussian noise. Moreover, it reduces to the modified Huber
tion IV briefly describes the threshold parameter estimation and tfigction whenA, is equal toA, which was studied in [6]. The op-
computational complexity of the LMM and TLMM algorithms. Theirtimal weight vector can be determined by setting the first-order partial
performances are evaluated and compared with other algorithmsdgfivatives ot/s, in (1), with respect taw, to zero. This yields

simulations in Section V. Conclusions are drawn in Section VI.
El¢(e(n))x(n)] =0 (3)

II. LEAST MEAN M -ESTIMATE (LMM) A LGORITHM wherev(e) £ 9p(e)/de is called the score function, which is illus-

Let us consider the system identification problem shown itatedinFig. 2. For notational convenience, we define the weight func-
A

Fig. 1. The signalsz(n) and y(n) are, respectively, the input tiong(e) asq(e) = ¢(e)/e. Substituting:(n) = d(n) — w'x(n) into
and output signals of the linear transversal adaptive filter. THg) and after some manipulations, the following-estimate normal

estimation error is given by(n) = d(n) — w'(n — 1)x(n), e€quation is obtained:
where w(n) = [wi(n), wa(n), ..., wn(n)]" and x(n) =
[#(n), x(n — 1), ..., z(n — N + 1)]* are the weight vector and Rx,w =P, 4)

the input signal vector, respectively. Sign#il) is the reference or

the desired signal, and the supersctifig the transpose operator. Inwhere

practical applicationsy(r) andd(n) may be corrupted by interfer-

ence signalsys(n) andn,(n), respectively, which can be modeled Rx, 2 Elq(e(n))x(n)x"(n)]



1566 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 2000

wA of the filter weights. The problem of how the threshold parameters
A1, andA; should be chosen will be addressed in Section IV.

Ill. TRANSFORMDOMAIN LEAST MEAN M -ESTIMATE (TLMM)
ALGORITHM

The limitation of the LMS-type algorithms is their slow convergence

speed, especially when the input signal is heavily colored. The TLMS
> algorithm proposed in [12] greatly improves the convergence speed of
13 A A r the LMS algorithm. Various aspects of the TLMS algorithm and the
analysis of its performance can be found in [13]. The input sigta)
is first transformed by aiN' x V) orthogonal matrixQ to produce
N transform coefficients or outputsy(n, i),i = 1, ..., N. The
subscriptT” indicates the variables in the transform domain. Each of
the outputs is then normalized by its power estiméte:), which is
estimated ag?(n) = A\pp?(n — 1) + (1 — A\,)x%(n, i), where), is

a forgetting factor. LeX v (n) = [zr(n, 1), ..., zr(n, N)]' be the
e, 0< |e| <& (V x 1) vector containing:; (n, ). Then, one gets
Esgn(e), E<lef<a, Xry(n) = (A2’ X1 (n) = A7 QX (n) )
y(e) =+ & .
{(|e[-—A2) A_A :|sgn(e), A <le<4, whereX 7, (n) is the normalized input vectak? is an( N x N) diag-
! 2 onal matrix whoséi, 4)th element is equal tg?(n). This normaliza-
0, TAPS |e| tion is a simple and effective approach to reduce the eigenvalue spread

of the autocorrelation matriRz, x = E[x(n)x"'(n)] of x(n). From
Fig. 2. Score function of Hampel's three-part redescendidgestimate (8), the autocorrelation matrix Xy (n)is
function. !

R xq, =FE[X 1, (n) X7, (n)]
and =AT'QE[x(n)x'(n)]Q'A™"
P, 2 Elgq(e(n))d(n)x(n)] (5) = A_lQRF/‘ xQ A" 9)

are theM-estimate correlation matrix of(n) and theM-estimate If @ is chosen as the Karhunen—Loeve transform (KLTx6#) [13],
cross-correlation vector af(n) andx (n), respectively. They serve aWe haveRy, x, = Inxx. Itindicates thatR., x is diagonalized
similar purpose as the conventional correlation matrix of) and the by Q. Unfortunately, in practical applications, it is very computational
cross-correlation vector of (n) andd(n) in the Wiener filter. Since expensive to compute the KLT. Some suboptimal transforms such as
q(e(n)) depends om, (4) is a system of nonlinear equations. In whathe discrete cosine transform (DCT), the discrete Fourier transform,
follows, two robust stochastic gradient-based adaptive algorithms witRd the discrete Hartley transform are generally employed.
O(N') computational complexity are derived to solve this normal equa- We now consider the derivation of the transform domain least mean
tion. M -estimate algorithms. For an arbitrary weight veatgtthe gradient

In the proposed LMM algorithm, the mea¥ -estimate objective VeCtor of use = Ele?(n)] is
function.Jas, in (1) is minimized by updating the weight vectdfn )
in the negative direction of the gradient vec¥of.J1,) of J.:,,, which Vaw(Juse) = —2E[e(n)x(n)] = 2R, xw — 2Pg (10)

can be approximated by
whereRr x = E[x(n)x'(n)] andPr = E[d(n)x(n)] are autocor-

Vo lJusy) = 0, relation matrix ofx (n) and cross-correlation vector betwe&m ) and
wAmae ow x(n), respectively. The optimal solutian, of Jys).: satisfies
&~ Vup
; —w—= LRIV (s,
= 2 (pletm) Wort =@ = 3 B x Vol uas) )
=—q(e(n))e(n)x(n). (6) Premultiplying both sides of (11) b9 and simplifying, one gets
The weight vector is then updated as Qu,,, =Quw - QR xVu(Jusk)
. — O L AL AT tA—1y—1
(n) = w(n — 1) — 1T, = #(n — 1) + pg(e(n))e(n)x(n). =Qu-o A (ATRR, XA
@ . (A_le”,«(JIV[SE))~ (12)

wherey: is the step size parameter. Equation (7) can be viewed as a géasuming that the autocorrelation mat#; x is approximately di-
eralization of the LMS algorithm and is called the least m&&sesti- agonahzeld byQ a?d nlormallzed by the nolrmallzatlct)n process, we
mate algorithm. It can be seen that whem) is smaller thart, the haVe(AT QRy,QA™") = Inxy and (AT QRy QA7) =
weight functiong(e(n)) is equal to one and (7) becomes identical td ¥ x~- Lettingwr = Qw and using (12), the following is obtained:
the LMS algorithm. Wher(n) is larger thart, ¢(e(n)) starts to re- L2 _7

duce and is equal to zero whptin)| > A,. Thus the LMM algorithm W, opt RwWr — 5 AT QVw (Juse) & wr + A7 Qe(n)x(n)
effectively reduces the effect of large signal error during the updating =wr +Ae(n) X1 (n) (13)
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where the gradient vectdv ., (Jusk) is estimated from the instan- V. SIMULATION RESULTS
taneous MSE error a¥ ,,(Jmse) & —2e(n)x(n). Lettingwr =
wr(n) and denoting the stepsize for the gradient vectopby the
following weight-updating equation for the conventional TLMS algo
rithm is obtained:

The performances of the proposed LMM and the TLMM al-
gorithms are evaluated for the system identification problem
shown in Fig. 1 with impulsive interferences. The unknown
s system is modeled as an FIR filter with impulse response
wr(n+1) = wr(n) +pr A e(n)Xr(n). A4 w = (0.2, —0.4,06, —08, 1, —0.8, 0.6, —0.4, 0.2]. The
) . i i input signalz(n) is colored and is generated by passing a zero-mean
Inthe proposed TLMM algo_rlthm_, the gradle_ntvector IS estlma}ted fromwit variance W)hite Gaussian process through a linear time-invariant
the instantaneous robust d'Stort"m_(”)) asin the LM_M glgorlthm, filter with coefficients [0.3887, 1, 0.3887] [14]. The length of the adap-
Vi (Jurp) = —q(e(n))e(n)x(n). Using the first equation in (13), We e ey is set to nine = 9) and the initial values of the weights
then arrive at the following TLMM algorithm: are set to zerosu((0) = 0 andw7(0) = 0). The DCT is used as the
orthogonal transformation in the TLMS and the TLMM algorithms.

Xor(n)=QX(n) 15 The interference, (n) at the desired signal is modeled as a CG noise,
e(n) = d(n) —wr(n — 1)X1(n) (16)  which is given by, (1) = 174(1) + 1im(n) = ng(n) +b(n) x 0y, (n),
wr(n) =wr(n—1)+ %;LTA_Zq(e(n))e(n)XT(n). (17) wheren;,,(n) is the impulse noisey,(rn) andy.(n) are modeled
as independently identically distributed (i.i.d.) zero-mean Gaussian
Like the LMM algorithm, the weighting function(e(n)) in (17) will  noise with variancer; and o7, respectively, and(n) is a switch
reduce the effects of impulses in either the input or the desired signd@sjuence of ones and zeros, which is modeled as an i.i.d. Bernoull
on the filter weight update, resulting in better performance. random process with occurrence probability(b(n) = 1) = p, and
P.(b(n) = 0) = 1 — p,. The ratioy;,, = 0'?,,1/(75 = p,o’i./aﬁ
IV. PARAMETER ESTIMATION AND COMPUTATIONAL CompLEXiTY ~ determines the impulsive characteristic gf(n) [4], [15]. For a

] ) fixed value ofai, the larger the value of;,,, the more impulsive
The choice of the threshold parametérs\,, andA, for the func- 70(n) becomes. In the following simulationse, 6,, and fa,

tion p(-) is now addressed. Though the distribution of the estimatiof}e chosen to be 0.05, 0.025, and 0.01, respectively, so that we
error e(n) is in general unknown, it is assumed, for simplicity, tg,5ye respectively, 95% and 97.5% confidence to down weight the
be Gaussian distributed but corrupted with additive impulse noisgyor in the intervalse, A1] and [A1, As], and 99% confidence
By estimating the variance af(n) without impulses, it is possible {5 rgject it whene(n) > A,. The threshold parameters are ob-
to detect and reject the impulses itn). More specifically, the tineq according t&;(n) = erfe(Th/(V26.(n))) as follows:
probability of e(n) greater than a given thresholl, is given by . _ kebo(n) = 1.966c(n), Ay = ka,bo(n) = 2.246.(n),
[6, 61(n) = P{le(n)| > Tu} = erfe(Tn/(V25c(n))), where  ang A, = ka,é.(n) = 2.5764.(n), wheres.(0) = 0. The
ercf(x) = (2/\/@) [ e dxis the complementary error function signal-to-noise ratio (SNR) at the system output is defined as
andé.(n) is the estimated standard deviation of the “impulse freefNR = 10 10%‘10(030/03)7 Whereaﬁo is the variance oflo(n ).
error. Using different threshold parametérs, one can detect im- Example 1: Robustness and Convergence Performaiites ex-
pulses with different degree of confidence. E@té P.{le(n)] > £}, periment is carried out to evaluate the convergence speed and robust-
Oa, 2 P.{le(n)] > Ay}, andfa, 2 P.{le(n)] > Az} be the nessofthe proposed LMM and TLMM algorithms under contaminated
probabilities that(n) is greater tha, A, andA, respectively. By Gaussian noise. Performances of these algorithms are compared with
appropriate choice df¢, #a,, andfa,, the values of, A;, andA, the ATNA [3], RMN [5], OSLMS [1], and TLMS [12] algorithms. In
can be determined. The remaining problem is the robust estimatiaadition, the unknown system transfer functighis suddenly changed
of 6.(n). In [11], we examined a number of methods for estimatintp —w™ at time instant. = 7000 to evaluate the behavior of the algo-
&2(n). Simulation shows that the following robust recursive estimateithms when the system parameters change suddenly. Step sizes for the
for 2(n) is both effective and computational inexpensive various algorithms were chosen such that each algorithm produces the
same average excess mean squared error at convergence. The resulting
62(n) = X\,62(n — 1)+ Ci(1 = X\,)med 4.(n)) (18) step sizes for all algorithms are illustrated in Fig. 3. For the LMM and
TLMM algorithms, the forgetting factoA, and the window length
whereC, = 1.483(1 + 5/(N., — 1)) is a finite sample correction N,, are set to 0.99 and 14, respectively. The window lergth for
factor [9], Ac(n) = {e*(n), ..., e*(n — N, + 1)}, and ), is the the OSLMS algorithm is set to seven. For the TLMS and the TLMM
forgetting factor. Interested readers are referred to [7] and [11] foradgorithms, ), is set to 0.98. For illustration purposes, froam= 1
detailed comparison of the various estimation methodg fon). to 1490 and2801 to 9000, the interference consists of only Gaussian
The computational complexity of the proposed LMM and theoise; whereas from = 1500 to 2800, the contaminated Gaussian
TLMM algorithms is now briefly discussed. For the RLS algorithmnoise is used, which is generatedhyn) = n,(n) + b(n) * nw(n)
O(N?) arithmetic operations per iteration are required [14]. For theith p,. = 0.005 and~;,, = 300. To visualize more clearly the effect
RLM algorithm [7], O(N. log, N.,) more operations per iteration of impulses ind(n), their locations generated ltyn) are fixed and
are needed to compui@’(n). The LMM algorithm, on the other marked in Figs. 3 and 4 but their amplitudes are varied according to
hand, is an LMS-type algorithm that héX V') arithmetic complexity. 7..(n), which is generated independently in each run. Also, for sim-
Likewise, O( N, log, N.,) more operations are needed to computglicity in visualizing the effect of impulses in(rn), only one impulse
6Z%(n) per iteration. Thg N x N) orthogonal transformation in the is added tor(n) atn = 3350. The SNR is set to 35 dB. The mean
TLMM algorithm will require in generad)( N?) operations. However, squared errors (MSE) are obtained by averaging over 100 independent
fast recursive algorithm for computing the running DCT requires onlyns. The MSE results for the TLMM, LMM, TLMS, ATNA, RMN,
O(N) operations per iteration [12]. Therefore, the computationaihd OSLMS algorithms are plotted in Figs. 3 and 4. It can be seen that
complexity of the TLMM algorithm is of the orde®(N) together the LMM and the TLMM algorithms are robust to impulses appearing
with O(N,, log, N,,) more operations for computingZ(n) when in either the desired or input signals. The LMM algorithm, however,
the running DCT is used. converges slower than that of the TLMS and TLMM algorithms due to
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Fig. 3. MSE results versus time (Example 1)p, = 0.005, Ny = 14,  gjg 5 MMSE versus probability of the impulse of Example\2, = 9 and
SNR = 35 dB. (1) ATNA (plus); (2) RMN (square); (3) LMM (bold circle); (4) sNR = 35 dB.
TLMM (bold diagonal); (5) TLMS (triangle) and (6) OSLMS (hexagram) (D

(n), and | () indicate the locations of the impulses in the desired and the input

signals at time instant, respectively. Si) indicates the time instant when the MMSE (dB) over 100 indepdendent runs
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system changes suddenly). s = piovm = fosnus = frarva = 0.016,
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-10T b
MSE results by 200 independent runs
T T T T
2oL (1) ATNA (plus) ‘ | -151 E
(2) RMN (square) 1(3350)
(3) LMM (bold circle) AMN
{4) TLMM (bold diamond) 20| b
15 (5) TLMS (triangle) 4
(6) OSLMS (hexagram) o LMM OSLMS
)
10} w25 . J
D(1648,1841,2253,2620) E
o
Z
w
g o -35 TLMM TLMS S
5 401 .
45 1 L 1 1 . 1
-10 a_a—g s 5 10 15 20 25 30 35 40
3 SNR (dB)
-15} . .
Fig. 6. MMSE versus SNR of Example 8, = 9 and . = 0.02.
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the probability of impulseg, in the desired signaf(n) is plotted
Fig. 4. MSE resultsif = 1500 to 4200) (Example 1), = 0.005, N, = in Fig. 5. The following are observed: the MMSE performance of
14, SNR= 35 dB. (1) ATNA (plus); (2) RMN (square); (3) LMM (bold circle); the TLMM, LMM, ATNA, OSLMS, and RMN algorithms are only
(4) TLMM (bold diagonal); (5) TLMS (triangle), and (6) OSLMS (hexagram).g|ightly impaired when the percentage of impulse noise is increased.
The performance of these algorithms demonstrates the effectiveness
its LMS nature. The TLMM algorithm provides a much faster rate aff the robust statistics approach in suppressing the adverse influence
convergence compared to the RMN, OSLMS, and ATNA algorithmsf the impulse noise. The TLMM algorithm has the best MMSE
The TLMM algorithm is also more robust to sudden system parameferformance compared with other algorithms considered under the
changess{ = 7000) than other algorithms. It is also found that theexperimental conditions, and there is about 10 dB improvement over
performance of the OSLMS algorithm is degraded significantly by theher algorithms.
impulse in the input signal at = 3350. Under the experiment condi- Example 3: MMSE Versus Signal-to-Noise Ratibhe experimental
tions, the performance of the RMN algorithm is rather poor. conditions are identical to those of Example 2 except that the parame-
Example 2: MMSE Versus Probability of Occurrence of Imtersp, andy:,. are setto 0.02 and 300, respectively. The MMSE per-
pulses: This example evaluates the performance of various algorithfa@mance of various algorithms as a function of the SNR is plotted in
under different probability of occurrence of impulses. The parametgig. 6. It can be seen that the TLMM algorithm has the lowest MMSE.
settings are identical to those in Example 1 except that the locaticfise improvement in the MMSE for the TLMM and the LMM algo-
of impulses are not fixed, there is no impulse in the input signal, amthms decreases when the SNR is reduced, whereas for the OSLMS
N, is set to nine for the LMM and TLMM algorithms. The meanand RMN algorithms, the MMSE performance improves slightly with
MSE (MMSE) performance of various algorithms as a function dhe increase of the SNR.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 2000 1569

Due to page limitations, simulations regarding the sensitivity of the[11] Y. Zou, “Robust statistics based adaptive filtering algorithms for impul-
LMM and the TLMM algorithms to the choice of the threshold param- Zi(\)/gOnOise suppression,” Ph.D. dissertation, Univ. of Hong Kong, May
eterske, ka,, andka, for §, A, andA, are omitted in .thls paper._ rLlZ] S. S.Narayan and A. M. Peterson, “Transform domain LMS algorithm,”
Interested readers are referred to [11], where extensive simulations * |£eg Trans. Acoust., Speech, Signal Processiaty ASSP-31, no. 3,
were performed with the threshold parameters chosen from the ranges  pp. 609-615, 1983.

1.287 < ke < 2.576,1.43956 < ka, < 3.091, and1.6449 < [13] D.F. Marshall and W. K. Jenkins, “The use of orthogonal transforms for
ka, < 3.481. This corresponds to (80-99)% and (85-99.98)% confi- improving performance of adaptive filterd ZEE Trans. Circuits Syst.
dence to down weight the error in the intervills A (] and[A, As] vol. 36, no. 4, pp. 474-484, 1989. : }

) . . X ’ ! [14] S. Haykin, Adaptive Filter Theory2nd ed. Englewood Cliffs, NJ:
respectively, and (90 99.98)% confidence to reject it when)| > Prentice-Hall, 1991.
As. It was found that the performance of the LMM and the TLMM al- [15] S. R. Kim and A. Efron, “Adaptive robust impulsive noise filtering,”
gorithms together with the proposed threshold parameter estimation is  |EEE Trans. Signal Processingol. 43, no. 8, pp. 1855-1866, 1995.
robust to impulse disturbances within a wide range of threshold values
for impulses appearing in the desired signal. Moreover, it is also not
sensitive to the choices &, ka,, andka, when the input signal is
corrupted by impulses provided that they are not at the tail part of the
signal distributions [11].

From the simulation results of the above examples, it can be corPynamic Biasing for True Low-Voltage CMOS Class AB

cluded that under the experimental conditions specified, the TLMM Current-Mode Circuits
algorithm is more effective and robust than the ATNA, RMN, LMM, ) o
and OSLMS algorithms in mitigating the adverse effects due to im- G. Palmisano and S. Pennisi

pulses either in the desired signal or in the input signal. Itis an attractive
suboptimal algorithm with a much lower computational complexity of

. . Abstract—Thi t d ic biasi h f
O(N) when compared with other RLS-based algorithms. srac 19, haper Presers a cynamic biasing approach ot

continuous-time CMOS class AB current-mode circuits. The method
allows low-voltage circuits to be implemented whose supply requirements
are restricted to one threshold voltage plus two saturation voltages.
VI. CONCLUSION Fundamental limitations of the approach are analyzed and found to be
compatible with a wide spectrum of analog applications, some of which are
Two new adaptive filtering algorithms, called the least m&Atesti- briefly discussed. A complementary current mirror, a current comparator,

. f and a current amplifier were designed using the proposed technique.
mate and the transform-domain least ma#restimate, have been pro- SPICE simulations using a 0.8xm process are provided, which confirm

posed for robust adaptive filtering in impulse noise environment. Th@ye overall performance of these circuits especially in terms of low-voltage
can be viewed, respectively, as the generalization of the LMS and tapability and speed without compromising linearity.

transfqrm—domain LMS .algorithms using the. robust statistics 9°”C6pt1ndex Terms—Biasing, class AB, CMOS, current mirrors, current mode,
The arithmetic complexity of the algorithms is of orde(N'), which 0w voltage, switched capacitor.

is much lower than that of the RLS-based algorithms. Simulation re-

sults have shown that the TLMM algorithm, in particular, is more ro-

bust and effective in suppressing the effects of impulsive disturbances |. INTRODUCTION

when compared with the ATNA, OSLMS, and RMN algorithms. In recent years, current-mode (CM) signal processing has been

widely investigated, and several works have demonstrated that this
approach can solve many circuit and system problems. As can be
expected from circuits exploiting CM techniques, performance in
[1] T. 1. Haweel and P. M. Clarkson, “A class of order statistic LMS algoterms of low-voltage capability, slew rate, and bandwidth can in
rithms,” |IEEE Trans. Signal Processingol. 40, no. 1, pp. 44-53, 1992. principle be maximized [1]. However, when class AB topologies
[2] R. Settineri, M. Najim, and D. Ottaviani, “Order statistic fast Kalmarhaye to be implemented, the need for a complementary structure has

gltig;;ig E;ocl'l'ﬁE_ElElém' Symp. Circuits and Systems (ISCAS'98)  evented, until now, the achievement of true low-voltage features.

[3] S. Koike, “Adaptive threshold nonlinear algorithm for adaptive filterscompalred to class A topologies, C!QS_S AB versions provide better
with robustness against impulsive noiséEEE Trans. Signal Pro- dynamic range [2] and reduced sensitivity to process tolerances [3]. In
cessingvol. 45, no. 9, pp. 2391-2395, 1997. addition, they exhibit extremely high slew-rate values.

[4] J. k;: \:\ﬁtng'anq S. H-lLeungy “ﬁf?ptiV?E’I‘Eoé"li”feg R'-Sg'go,'tithm Jor Although the well-known switched-current approach has been used
g)yslizm's ?{';g;gfgggfi nHoL)s:é }20:10; 1997 Sp' 23?(?7‘)_'2312%1 158N the past to achieve both class AB and low-voltage operations [4], no

[5] J. A. Chambers and A. Avlonitis, “A robust mixed-norm (RMN) adap-€ffective continuous-time approach providing the same performance
tive filter algorithm,” IEEE Signal Processing Leftvol. 4, no. 2, pp. exists at present.
46-48, 1997. . ) o For instance, a popular class AB CM input stage capable of man-
[6] Y.Zou, S.C.Chan, andT. S. Ng, "Arobust M-estimate adaptive filter fog, iy 5 pinolar current is shown in Fig. 1. This has been used in a
impulse noise suppression,” Rroc. Int. Conf. Acoustic Speech Signal " L . .
Processing (ICASSP'99)ol. 4, 1999, pp. 1765—1768. wide range of applications, such as in the input stages of current am-
[7] Y.Zou, S.C. Chan, and T. S. Ng, “A recursive least M-estimate (RLMplifiers [5], current conveyors [6], [7], current comparators [8]-[10],
adaptive filter for robust filtering in impulsive noise,” IEEE Signal Pro-
cessing Lett., 2000, submitted for publication.
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